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Abstract. The Yano-Koonin-Podgoretskĭı (YKP) parametrisation of Hanbury Brown-Twiss (HBT) two-
particle correlation functions opens new strategies for extracting the emission duration and testing the lon-
gitudinal expansion in heavy-ion collisions. Based on the recently derived model-independent expressions,
we present a detailed parameter study of the YKP parameters for a finite, hydrodynamically expanding
source model of heavy-ion collisions. For the class of models studied here, we show that the three YKP
radius parameters have an interpretation as longitudinal extension, transverse extension and emission du-
ration of the source in the YKP frame. This frame is specified by the fourth fit parameter, the Yano-Koonin
velocity which describes to a good approximation the velocity of the fluid element with highest emissivity
and allows to test for the longitudinal expansion of the source. Deviations from this interpretation of the
YKP parameters are discussed quantitatively.

1 Introduction

The spatio-temporal extension and evolution of the in-
teraction region in heavy-ion collisions are not directly
observable. Indirect experimental access to its geometry
and dynamics is possible through Hanbury Brown-Twiss
(HBT) intensity interferometry [1,2]. However, the inter-
pretation of the measured HBT correlations is in general
model dependent, and the question arises to what extent
their interpretational ambiguity can be reduced by a re-
fined analysis of the data.

In general, HBT radius parameters measure the Gaus-
sian widths (second central moments) of the source distri-
bution in space-time [3–7]. It is the finite lifetime of the
particle source in heavy ion collisions which complicates
their interpretation. For a static boson emitting source,
the HBT-radii have a unique interpretation in terms of
geometrical source sizes. For dynamical sources like those
created in heavy ion collisions, however, the HBT-radii
measure certain linear combinations of the lifetime, the
geometrical sizes and other space-time correlations [3–5,
7, 8]. Furthermore, if the source expands all HBT param-
eters become functions of the pair momentum [9,6].

For azimuthally symmetric sources, corresponding to
heavy-ion collisions at zero impact parameter, there ex-
ist two different “complete” Gaussian parametrisations
for the correlation function: the Cartesian parametrisa-
tion with parameters Rs, Ro, Rl and Rol [8,9,3,4], and the
Yano-Koonin-Podgoretskĭı (YKP) parametrisation with
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parameters R⊥, R‖, R0 and v [5, 7, 10–12]. In each case,
for expanding sources, these parameters are functions of
the pair momentum. The R-parameters have the dimen-
sion of a length while v is a velocity. The Cartesian
parametrisation has the additional difficulty that the value
and the spatio-temporal interpretation of its parameters
depend strongly on the longitudinal rest frame of the ob-
server. The YKP radius parameters R⊥, R‖, and R0, on
the other hand, are independent of the longitudinal veloc-
ity of the frame in which the particle momenta are mea-
sured. The fourth YKP fit parameter, the Yano-Koonin
velocity v, singles out a specific longitudinal rest frame
(relative to the observer) in which the spatio-temporal in-
terpretation of the (longitudinally boost-invariant) YKP-
radius parameters becomes particularly simple. In fact,
for “transparent” sources (i.e. sources, for which particle
emission occurs from the whole volume and is not sur-
face dominated) without collective transverse expansion,
it was shown in [5] that R⊥, R‖, and R0 give exactly the
transverse, longitudinal and temporal widths respectively,
of the source emission function in the Yano-Koonin frame
where v = 0. We will show here that in this case, up to
small corrections from asymmetries of the source rapidity
profile due to longitudinal expansion flow, v coincides with
the longitudinal velocity of the fluid element around the
point of highest emissivity in the source, such that R⊥,
R‖ and R0 measure (and cleanly separate) the transverse,
longitudinal and temporal lengths of homogeneity of the
source in the rest frame of the emitter. As discussed in
Sect. 4.1, the pair momentum dependence of v allows to
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measure the longitudinal expansion of the source in a very
direct way.

For the class of models studied here, we will also show
(see Sect. 4.4) that in the absence of transverse collective
expansion the YKP parameters show perfect M⊥-scaling,
i.e., they are, for a given source, universal functions of the

transverse mass M⊥ =
√

m2 + K2
⊥ of the particle pair,

independent of the particle rest mass. This can be tested
by comparing ππ, KK, and pp correlations. The same
is not true for the Cartesian parameters which contain
additional kinematic and frame dependent factors which
distinguish between pairs of particles with different mass.
This type of M⊥ scaling of the YKP parameters is vio-
lated for sources with transverse collective expansion; also
other types of transverse x-p-correlations, like e.g. those
occurring in opaque sources [13], and final state effects
like resonance decays after freeze-out [14], can break this
scaling. For a detailed discussion of these effects see [15]
(opaque sources) and [16,17] (resonance decays).

One of the purposes of this paper is to investigate the
specific effects on the correlator and the related correc-
tions to the spatio-temporal interpretation of the YKP
parameters introduced by transverse expansion flow in
the source. These will in general depend on the particular
source model, and such an investigation thus must nec-
essarily involve an extensive model study. We investigate
here numerically a simple parametrisation of the source
which implements the finite longitudinal, transverse and
temporal extension and the longitudinal expansion of re-
alistic heavy-ion generated sources and contains the trans-
verse expansion flow as a tunable parameter. We will see
that strong transverse flow affects the interpretation of the
YKP parameter R0 as the lifetime of the source (in its own
rest frame) and thus renders the extraction of the duration
of particle emission from the correlation data more diffi-
cult and less quantitatively reliable. On the other hand, it
also spoils the M⊥-scaling of the YKP radius parameters
which opens the possibility for an independent estimate
of the transverse flow velocity from comparison between
pion and kaon correlations. Clearly, such an estimate will
remain somewhat model-dependent, but the mechanisms
isolated in the present paper should still be very useful for
qualitative consistency checks between data and theoreti-
cal interpretation.

The investigation reported here has two aspects: an an-
alytical and a numerical one. On the analytical level, we
study the connection between the YKP parameters and
the second space-time moments of the emission function,
discussing the dependence of the latter on various geo-
metric and dynamical features of particle emission. This
discussion is largely model-independent; it is much more
detailed than the short account given in [7] and should
thus serve as a general basis of understanding which can
be used to qualitatively anticipate the behaviour of the
YKP parameters also for other source models than the one
studied here. The numerical side of our study is, of course,
model-dependent and our quantitative results must there-
fore be regarded with the necessary caution.

Our paper is organized as follows: In Sect. 2, we shortly
compare the Cartesian and YKP parametrisations, there-
by setting up our notation. In Sect. 3, we introduce a
class of hydrodynamical models for the emission function.
Sect. 4 contains a general discussion and a detailed nu-
merical study of these models. We focus in particular on
the effects of collective expansion flow on the YKP pa-
rameters. The main results are summarized in Sect. 5.

2 HBT formalism

We shortly recall the basic relations between the emission
function S(x, K), the measured two-particle correlation
function C(q,K), and the different Gaussian parametri-
sations of this correlator in terms of Cartesian or YKP
radius parameters. We start from the relation [18,1,9,19]
(here written down for bosons)

C(q,K) ≈ 1 +

∣∣∫ d4x S(x, K) eiq·x∣∣2∣∣∫ d4x S(x, K)
∣∣2 . (2.1)

Here, the emission function S(x, p) is the (Wigner) phase
space density of the boson emitting sources [18,9,19] and
denotes the probability that a boson with momentum p
is emitted from the space time point x. It specifies the
one-particle momentum spectrum P1(p) = EpdN/d3p =∫

d4x S(x, p) as well as the two-particle correlation
C(q,K). The r.h.s. of (2.1) has to be evaluated at K =
1
2 (p1 + p2) (the average momentum of the particle pair)
and q = p1 − p2 (their corresponding relative momentum)
where the pi are on-shell. The Fourier transform in (2.1)
does not have a unique inverse since the four components
of the relative momentum q are not independent, due to
the on-shell constraint

q0 = β · q , β =
K
K0

≈ K
EK

, (2.2)

which follows from q·K = 0. In practice the analysis of
HBT correlation data must therefore be based on a com-
parison with specific models for the emission function
S(x, K), with the aim of constraining the class of “reason-
able” model sources as far as possible. An important tool
for this procedure are the model-independent expressions
for the HBT parameters [3,4,8] which allow to calculate
from an arbitrary emission function S the characteristic
parameters of the two-particle correlation function C by
simple quadrature. Experimentally, these HBT parame-
ters are obtained via a multidimensional Gaussian fit to
C(q,K) in momentum space. To compute these Gaus-
sian parameters of the (momentum) correlation function
C it is sufficient to use the Gaussian approximation of the
(space-time) emission function S,

S(x, K) = N(K) S(x̄(K), K) (2.3)

× exp
[
−1

2
x̃µ(K) Bµν(K) x̃ν(K)

]
+ δS(x, K) ,

neglecting δS(x, K) [6]. Here, the x̃µ denote the space-
time coordinates relative to the effective “source centre”
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x̄(K) for pions with momentum K,

x̃µ(K) = xµ − x̄µ(K), x̄µ(K) = 〈xµ〉, (2.4)

and
(B−1)µν(K) = 〈x̃µx̃ν〉 (2.5)

is the inverse of the Gaussian curvature tensor in (2.3), ad-
justed such that the first term in (2.3) reproduces the rms
width of the full source S(x, K). The (K-dependent) ex-
pectation values in these definitions are defined as space-
time averages over the emission function:

〈f(x)〉 =
∫

d4x f(x) S(x, K)∫
d4x S(x, K)

. (2.6)

The correction term δS contains information on the de-
viation of the emission function S(x, K) from a Gaussian
form in coordinate space, i.e. on sharp edges, wiggles, sec-
ondary peaks, etc. For the class of models discussed in this
paper, however, the contributions from δS are known to
have little influence on the half width of the correlation
function [6], and can be neglected. Then, the two-particle
correlation function C(q,K) can be calculated analyti-
cally from (2.1):

C(q,K) = 1 + exp [−qµqν〈x̃µx̃ν〉(K)] . (2.7)

It is fully determined by the K-dependent second space-
time moments (B−1)µν of the source (the “effective
widths” 〈x̃µx̃ν〉(K) or “lengths of homogeneity” [4,20]).

2.1 Gaussian parametrisations
of the correlation function

In general, a Gaussian parametrisation of C(q,K) is spec-
ified by selecting a particular choice of three independent
components of the relative momentum q and implement-
ing in (2.7) the on-shell constraint q·K = 0 accordingly.
This is usually done in a Cartesian coordinate system with
z along the beam axis and K lying in the x-z-plane. One
labels the z-component of a 3-vector by l (for longitu-
dinal), the x-component by o (for outward) and the y-
component by s (for side-ward). The mass-shell constraint
(2.2) reads

q0 = β⊥qo + βlql (2.8)

where β⊥ = |K⊥|/K0 ≈ |K⊥|/EK denotes (approximate-
ly) the velocity of the particle pair transverse to the beam
direction, and βl its longitudinal component.

The standard Cartesian parametrisation [3,4] of the
correlation function is obtained by using (2.8) to eliminate
q0 from (2.7). This determines 6 Cartesian HBT radius
parameters Rij in terms of the variances 〈x̃µx̃ν〉(K) of
the emission function:

C(q,K) = 1 + exp


−

∑
i,j=s,o,l

R2
ij(K) qi qj


 ,

R2
ij(K) = 〈(x̃i − βit̃)(x̃j − βj t̃)〉 , i, j = s, o, l .(2.9)

For an azimuthally symmetric collision region, C(q,K)
is symmetric with respect to qs → −qs [5]. Then R2

os =
R2

sl = 0 and [3]

C(q,K) = 1 + exp
[−R2

s(K)q2
s − R2

o(K)q2
o

−R2
l (K)q2

l − 2R2
ol(K)qoql

]
, (2.10)

with [3,8]

R2
s(K) = 〈ỹ2〉 , (2.11a)

R2
o(K) = 〈(x̃ − β⊥t̃)2〉 , (2.11b)

R2
l (K) = 〈(z̃ − βl t̃)2〉 , (2.11c)

R2
ol(K) = 〈(x̃ − β⊥t̃)(z̃ − βl t̃)〉 . (2.11d)

An alternative way of eliminating the redundant compo-
nent of q in (2.7) leads to the Yano-Koonin-Podgoretskĭı
parametrisation [5,10,11] of C(q,K),

C(q,K) = 1 + exp
[
−R2

⊥(K) q2
⊥ − R2

‖(K)
(
q2
l − (q0)2

)
−
(
R2

0(K) + R2
‖(K)

)
(q · U(K))2

]
. (2.12)

This is based on replacing in (2.7) qo and qs in terms of
q⊥ =

√
q2
o + q2

s , q0, and ql. Here, U(K) is a (K-dependent)
4-velocity with only a longitudinal spatial component:

U(K) = γ(K) (1, 0, 0, v(K)) , with γ =
1√

1 − v2
.

(2.13)
This parametrisation has the advantage that the YKP pa-
rameters R2

⊥(K), R2
0(K), and R2

‖(K) extracted from such
a fit do not depend on the longitudinal velocity of the
observer system in which the correlation function is mea-
sured; they are invariant under longitudinal boosts. The
model-independent expressions for these YKP-parameters
are most conveniently given in terms of the notational
shorthands [7]

A =

〈(
t̃ − ξ̃

β⊥

)2〉
, (2.14a)

B =

〈(
z̃ − βl

β⊥
ξ̃

)2
〉

, (2.14b)

C =

〈(
t̃ − ξ̃

β⊥

)(
z̃ − βl

β⊥
ξ̃

)〉
, (2.14c)

where ξ̃ ≡ x̃ + iỹ and 〈ỹ〉 = 〈x̃ỹ〉 = 0 for azimuthally
symmetric sources such that 〈ξ̃2〉 = 〈x̃2 − ỹ2〉. In terms of
these expressions one finds1

v =
A + B

2C


1 −

√
1 −

(
2C

A + B

)2

 , (2.15a)

1 These expressions are valid as long as (A + B)2 > 4C2, i.e.
as long as expression (2.15a) for the velocity v is defined. The
alternative forms of R2

‖ and R2
0 given in [7] are only valid if

additionally A + B > 0. For a detailed discussion see [15]



602 Y.-F. Wu et al.: Yano-Koonin-Podgoretski ı̆ parametrisation of the Hanbury Brown-Twiss correlator

R2
‖ = B − vC, (2.15b)

R2
0 = A − vC, (2.15c)

R2
⊥ = 〈ỹ2〉 . (2.15d)

For non-vanishing transverse pair momentum K⊥, the
Cartesian (2.9) and the YKP (2.12) parametrisations are
equivalent and it is instructive to compare them. The
Cartesian parameters can be calculated from the YKP
ones via [7]

R2
diff = R2

o − R2
s = β2

⊥γ2
(
R2

0 + v2R2
‖
)

, (2.16a)

R2
l =

(
1 − β2

l

)
R2

‖ + γ2 (βl − v)2
(
R2

0 + R2
‖
)

, (2.16b)

R2
ol = β⊥

(
−βlR

2
‖ + γ2 (βl − v)

(
R2

0 + R2
‖
))

, (2.16c)

R2
s = R2

⊥ . (2.16d)

Later we will see that, for the explicit source models
studied in this paper, in most cases the Yano-Koonin ve-
locity v is very close to the longitudinal pair velocity βl.
If this is true (and one should be careful not to use the
following expressions without first checking this) (2.16b,c)
simplify to

R2
l ≈ R2

‖/γ2 , (2.17a)

R2
ol ≈ −β⊥βlR

2
‖ . (2.17b)

There is a slight subtlety for K⊥ = 0. In this limiting
case, the on-shell constraint (2.2) reads q0 = βlql and can-
not be used to eliminate in (2.7) qo and qs in terms of q⊥,
q0 and q3. Hence, strictly speaking, the YKP parametri-
sation exists only for K⊥ 6= 0. In practice, however, this
does not lead to complications since the K⊥ → 0 limit is
well-defined for all YKP-parameters (see Sect. 4.2).

2.2 Advantages and drawbacks
of different Gaussian parametrisations

The relations (2.16) provide a powerful consistency check
on the experimental fitting procedure of the correlation
radii. They show that both parametrisations contain ex-
actly the same spatio-temporal information. However, cer-
tain space-time characteristics of the source are more di-
rectly accessible in a particular parametrisation. This is
especially the case for the duration of the particle emis-
sion process, the “lifetime” of the source.

To see this we return to the expressions (2.11) for
the Cartesian HBT radii. These mix spatial and tempo-
ral information on the source in a non-trivial and frame-
dependent way. Their interpretation in various reference
systems was analysed analytically [3–6] for a large class
of (azimuthally symmetric) model emission functions and
compared with the numerically calculated correlation func-
tion [6]. For these models, the difference

R2
diff ≡ R2

o−R2
s = β2

⊥〈t̃2〉−2β⊥〈x̃t̃〉+(〈x̃2〉 − 〈ỹ2〉) (2.18)

is dominated by the first term on the r.h.s. and thus pro-
vides access to the lifetime ∆t =

√〈t2〉 − 〈t〉2 of the source
[21]. Note, however, that the definitions (2.11) and (2.18)
are not Lorentz invariant, and that the lifetime ∆t ex-
tracted from (2.18) thus depends on the analysis frame.
Furthermore, in practice the term β2

⊥〈t̃2〉 turned out to
be much smaller than the terms 〈x̃2〉 and 〈ỹ2〉 which are
the leading contributions to R2

o and R2
s, respectively [3–

6]. As a consequence, excellent statistics of the data with
very small statistical errors of Ro and Rs are required to
extract the small contribution R2

diff . This makes the ex-
traction of a small source lifetime from the standard fit dif-
ficult2. Successful attempts have been reported from low-
energy heavy-ion collisions (using 2-proton correlations)
where the measured lifetimes are very long: 25 ± 15 fm/c
in Ar+Sc collisions at E/A = 80 MeV [23] and 1400±300
fm/c in Xe+Al collisions at E/A = 31 MeV [24] (the lat-
ter is the typical evaporation time of a compound nu-
cleus). Two-pion correlations at ultra-relativistic energies
(E/A = 200 GeV) so far failed to yield positive evidence
for a non-vanishing emission duration [25,26], except for
the heaviest collision system Pb+Pb [27], but even there
the effective lifetime is only a few fm/c.

For the YKP parametrisation the situation is differ-
ent. The parameters R0, R‖ and R⊥ are invariant under
longitudinal boosts and thus independent of the analysis
frame. The key to their space-time interpretation is pro-
vided by the fourth fit parameter v(K). It specifies a (pair
momentum dependent) longitudinal reference frame, the
Yano-Koonin (YK) frame which defined by v = 0 resp.
C = 0 (see (2.15a)), in which the space-time variances
(2.15) for the YKP radius parameters simplify consider-
ably. Especially, for certain classes of source models in-
cluding the one studied below, the terms proportional to
〈z̃x̃〉, 〈x̃t̃〉, and 〈x̃2 − ỹ2〉 are small [5]. Neglecting these
terms one obtains [5,7] in the YK frame

R2
⊥(K) = 〈ỹ2〉 , (2.19a)

R2
‖(K) = B =

〈(
z̃ − βl

β⊥
x̃

)2
〉

− β2
l

β2
⊥

〈ỹ2〉 ≈ 〈z̃2〉 , (2.19b)

R2
0(K) = A =

〈(
t̃ − 1

β⊥
x̃

)2
〉

− 1
β2

⊥
〈ỹ2〉 ≈ 〈t̃2〉 . (2.19c)

In neighbouring frames, the Yano-Koonin velocity can be
calculated with the same approximations as

v ≈ C

A + B
≈ 〈z̃t̃〉

〈t̃2〉 + 〈z̃2〉 . (2.20)

2 The situation may be better for very long-lived sources
which are predicted by hydrodynamics if there is a phase tran-
sition to a quark-gluon plasma and the collision fireball is ini-
tiated within a certain range of energy densities [22]
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Note that in the YK frame the temporal structure of the
source enters only in the parameter R0. Its leading contri-
bution is given by the time ∆t(K) =

√
〈t̃2〉 during which

particles of momentum K are emitted in this frame. In
the YKP parametrisation R0 ≈ ∆t is fitted directly and
not obtained as the difference of two large fit parameters
as in the Cartesian fit.

In practice, however, the extraction of R0 from the
YKP fit is still not easy. From (2.12) it follows that in the
YK frame R0 must be extracted from the q0-dependence
of the correlator. Due to the mass-shell constraint (2.2)
the interesting range of q0 is limited, especially for low-
momentum pairs, and the sensitivity of the fit function
(2.12) to R0 is weaker than to the two other radius pa-
rameters. R0 values thus tend to come out with larger
experimental error bars.

3 A model for a finite expanding source

For our numerical study we have taken the model from [5]
with the emission function

S(x, K) =
M⊥ cosh(η − Y )
(2π)3

√
2π(∆τ)2

exp
[
−K · u(x)

T

]

× exp
[
− (τ − τ0)2

2(∆τ)2
− r2

2R2 − (η − η0)2

2(∆η)2

]
. (3.1)

The first term specifies the shape of the freeze-out hyper-
surface, the second one is a Lorentz-covariant Boltzmann
factor encoding the assumption of local thermal equilibra-
tion superimposed by collective expansion, while the last
one has a purely geometrical interpretation. The space-
time coordinates in longitudinal and temporal directions
are parametrised by the space-time rapidity η = 1

2 ln[(t +
z)/(t−z)] and the longitudinal proper time τ =

√
t2 − z2.

In the transverse direction, the radius is r =
√

x2 + y2.
Accordingly, the measure reads d4x = τ dτ dη r dr dφ. The
time–component of the pair momentum is set to the on-
shell value K0 = EK =

√
m2 + K2. This approximation

was studied in detail in [4] where it was shown to be ac-
ceptable. Thus the pair momentum K can be parametrised
using the momentum rapidity Y = 1

2 ln[(1 + βl)/(1 − βl)]
and the transverse mass M⊥ =

√
m2 + K2

⊥,

Kµ = (M⊥ cosh Y, K⊥, 0, M⊥ sinhY ). (3.2)

We implement longitudinal and azimuthally symmetric
transverse expansion of the source by parametrising the
flow velocity in the form

uµ(x) =
(
cosh ηl(τ, η) cosh ηt(r),

x

r
sinh ηt(r),

y

r
sinh ηt(r), sinh ηl(τ, η) cosh ηt(r)

)
.(3.3)

For the longitudinal flow rapidity we take ηl(τ, η) = η in-
dependent of τ , i.e. we assume a Bjorken scaling profile

[28] vl = z/t in the longitudinal direction. For the trans-
verse flow rapidity we take a linear profile of strength ηf :

ηt(r) = ηf

( r

R

)
. (3.4)

The scalar product in the exponent of the Boltzmann fac-
tor generates the x-K-correlation in our source. It can
then be written as

K · u(x) = M⊥ cosh(η − Y ) cosh ηt(r)

−K⊥
x

r
sinh ηt(r), (3.5)

Please note that for non-zero transverse momentum K⊥,
a finite transverse flow breaks the azimuthal symmetry of
the emission function via the second term in (3.5). For
ηf = 0, the emission function is azimuthally symmetric
for all K⊥. Also, it then has no explicit K⊥-dependence,
and M⊥ is the only relevant scale. As will be discussed in
Sect. 4.4 this gives rise to perfect M⊥-scaling of the YKP
radius parameters in the absence of transverse flow, which
is again broken for non-zero transverse flow [29].

Besides ηf , the model parameters are the freeze-out
temperature T , the transverse geometric (Gaussian) ra-
dius R, the average freeze-out proper time τ0 as well as
the mean proper emission duration ∆τ , the centre of the
source rapidity distribution η0, and the (Gaussian) width
of the space-time rapidity profile ∆η. A rough spatial pic-
ture of the source at various fixed coordinate times can
be gleaned from the Figs. 1 and 2 in [30] (although
their source has sharp edges whereas ours is smoothed by
Gaussian profiles) and from Figs. 1 and 2 in [15]. Note
that our parametrisation of S(x, K) does not allow for the
case of opaque sources where the emission is surface dom-
inated [13,15]. In this case, the contribution of 〈x̃2 − ỹ2〉
may become negative and large [13] which might alter
the argument following (2.18). A detailed study of such
opaque sources is presented in [15]. On the basis of a
comparison with the preliminary data of [27] the authors
of that study conclude that the source created in Pb+Pb
collisions at the CERN SPS is rather transparent and not
opaque; its qualitative features are well described by the
model presented here [31].

We did our calculations for pions (m = mπ± = 139
MeV/c2) and kaons (m = mK± = 494 MeV/c2). Res-
onance decays [14,16] are not discussed here but are de-
ferred to a separate publication [17]. The calculations pre-
sented here are meant to illustrate general properties of
the YKP parameters; no attempts to compare with data
will be made.

4 Lifetimes and sizes from the YKP-fit
to the correlation function

In this section we present a quantitative study of the YKP
fit-parameters. Since the YKP-parameter R⊥ is identi-
cal to the “side” radius of the Cartesian parametrisation,
R2

⊥ = R2
s = 〈y2〉, its interpretation is obvious and inde-

pendent of the longitudinal velocity of the reference frame.
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Hence we focus subsequently on the remaining three pa-
rameters R2

0, R2
‖, and v.

Unless stated otherwise, the numerical calculations be-
low are done with the set of source parameters T = 140
MeV, R = 3 fm, ∆η = 1.2, τ0 = 3 fm/c, ∆τ = 1 fm/c.

4.1 The Yano-Koonin velocity

According to (2.13), the YKP fit parameter v is a lon-
gitudinal velocity. In this subsection we give a detailed
discussion of the reference frame specified by v and estab-
lish its relation to several other commonly used reference
frames. Their definitions are:

– CMS: The centre of mass frame of the fireball, speci-
fied by η0 = 0.

– LCMS (Longitudinally CoMoving System [21]): A
pion (kaon) pair-dependent frame, specified by βl =
Y = 0. In this frame, only the transverse velocity com-
ponent of the pion (kaon) pair is non-vanishing.

– LSPS (Longitudinal Saddle-Point System [32]): The
longitudinally moving rest frame of the point of maxi-
mal emissivity for a given pair momentum. In general,
the velocity of this frame depends on the momentum
of the emitted particle pair. For symmetric sources the
point of maximal emissivity (“saddle point”) coincides
with the “source centre” x̄(K) defined in (2.4). In this
approximation, for a source like (3.1), the LSPS veloc-
ity is given by the longitudinal component of uµ(x̄(K)).

– YK (Yano-Koonin frame [7]): The frame for which the
YKP velocity parameter vanishes, v(K) = 0. Again,
this frame is in general pair momentum dependent.

These four frames are quite different in nature. The
velocities (or rapidities) of the CMS and LCMS frames
can be easily determined experimentally, the first from
the peak in the single particle rapidity distribution, the
second from the longitudinal momentum of the measured
pion pair. However, the velocity of the LSPS is in a sense
more interesting: from its definition it is directly related
to the longitudinal expansion velocity of the source. In
fact, longitudinal expansion of the source leads to a char-
acteristic dependence of the LSPS velocity vLSPS on the
pair rapidity. This is most easily seen by considering two
extreme fireball models:

(1) If the source does not expand, all its elements
move with the same velocity (rapidity), namely that of
the CMS. Then there is no kinematic difference between
different parts of the fireball, and the saddle point is K-
independent and given by the peak of the space-time dis-
tribution of the source. Thus the rapidity of the LSPS,
defined as YLSPS = 1

2 ln [(1 + vLSPS)/(1 − vLSPS)], is inde-
pendent of the pair rapidity Y and identical to the rapidity
of the CMS.

This behaviour of YLSPS arises automatically if the
source has no x−K correlations, i.e. if the emission func-
tion factorizes, S(x, K) = F (x) G(K). Then all space-time
characteristics of the source, including the LSPS veloc-
ity, are determined by F (x) alone and do not depend
on K. Hence YLSPS is independent of Y . Factorization is,

however, not necessary for this behaviour: Non-vanishing
x − K correlations generated, e.g., by temperature gradi-
ents don’t induce a Y -dependence of YLSPS as long as the
source does not expand longitudinally.

(2) If we set in (3.1) ∆η → ∞, we recover the Bjorken
model [28] for a longitudinally infinite source with boost-
invariant longitudinal expansion. The only η-dependence
then comes from the thermal Boltzmann factor, and the
longitudinal saddle point obviously lies at η = Y . Since
for the Bjorken scaling profile η coincides with the lon-
gitudinal fluid rapidity, this implies that in this case the
rapidity of the LSPS is identical with the pair rapidity,
YLSPS = Y , i.e. the LSPS coincides with the LCMS.

It is obvious from this discussion that knowledge of
the function YLSPS(Y ) would allow to distinguish between
these two scenarios: A non-expanding source would yield
YLSPS(Y ) = const. while a source with boost-invariant lon-
gitudinal expansion gives YLSPS(Y ) = Y . Realistic models
are expected to lie in between these two extremes.

Unfortunately, the LSPS-velocity vLSPS(K) cannot be
measured. This is clear from its definition as the longi-
tudinal flow velocity evaluated at the point of maximum
emissivity. As discussed above, this point is approximately
given by the source centre x̄(K) which itself is unmea-
surable: it drops out [7] from both the single and two-
particle spectra which are invariant under a translation of
the source centre (even if K-dependent!). The only veloc-
ity we can measure, namely from an YKP fit of the two-
particle correlator, is the Yano-Koonin (YK) velocity v(K)
resp. the associated rapidity YYK = 1

2 ln [(1 + v)/(1 − v)].
It is therefore very gratifying to know that for sufficiently
rapidly expanding systems the two velocities are always
closely related (although in general not identical). In par-
ticular, we will show below that for the class of models
(3.1) the function YYK(Y ) shares with YLSPS(Y ) the fea-
ture that it provides a direct signature for longitudinal
expansion.

The close relationship between the (measurable) YK-
velocity and the (theoretical) LSPS-velocity for certain
source models has been known for years. In [11] a “sym-
metric frame” was introduced as the reference frame, in
which the production process is symmetric in the beam di-
rection. In this frame, the longitudinal extension and the
lifetime of the source reach their extremal values [11].
For moving, but non-expanding azimuthally symmetric
sources Podgoretskĭı found in this way the parametrisa-
tion (2.12), with K-independent parameters R⊥, R‖, and
R0, and with what we call the Yano-Koonin velocity v be-
ing identical to the velocity of his “symmetric frame”. In
this case the YK-system also coincides with the rest frame
of the source as a whole (CMS) as well as with the LSPS.

That the coincidence between the YK and LSPS sys-
tems is more generally valid for sources which are sym-
metric around their saddle point x̄(K) has been observed
in [5,32]. It thus holds for any emission function in the
Gaussian saddle-point approximation, due to the symme-
try of the latter. As the following paragraph will show, dif-
ferences between the YK-velocity and the velocity of the
LSPS are only due to asymmetries of the source around
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its saddle point. Although such asymmetries usually ex-
ist for collectively expanding sources with finite geometric
extension, they are generally small and can be treated per-
turbatively. Therefore, the YK-frame and the LSPS-frame
are usually very close to each other, v ≈ vLSPS . From the
examples above it is clear, however, that the same is not
true for the LCMS (i.e. the longitudinal rest frame defined
by the pair rapidity Y ), and that generally v 6= vLCMS .

Let us now discuss the difference v − vLSPS in more
detail. If it is small, so is C when evaluated in the LSPS-
frame. From (2.20) and (2.14c) we see that then in the
LSPS frame v is given by

v ≈ C

A + B
≈ 1

〈z̃2〉 + 〈t̃2〉 (4.1)

×
(

〈z̃t̃〉 − 1
β⊥

〈z̃x̃〉 − βl

β⊥
〈t̃x̃〉 +

βl

β2
⊥

〈x̃2 − ỹ2〉
)

,

where we expanded in first order of 〈t̃x̃〉, 〈z̃x̃〉, 〈x̃2 − ỹ2〉.
The smallness of these terms was argued in [5] and will be
checked in the following subsection. The first and second
term of (4.1) reflect the longitudinal asymmetry of the
source around the saddle point; they vanish for sources
with longitudinal reflection symmetry z̃ → −z̃. Similarly,
the second and third term vanish unless the reflection
symmetry x̃ → −x̃ around the saddle point in the “out”-
direction is broken (e.g. by transverse flow). (Asymmetry
in t̃ is needed for the first and third terms to become non-
zero.) A non-zero value of the last term, finally, indicates
the breaking of the “out”-“side” rotation symmetry; this
can again be caused by transverse source gradients as e.g.
transverse flow (see (3.5)). We conclude that the differ-
ence v −vLSPS is entirely due to asymmetries of the source
around the saddle point. Furthermore, we will show in
Sect. 4.2 that the last three terms in (4.1) are small for
small values of the transverse flow rapidity ηf and/or small
values of K⊥. (They vanish for ηf = 0.) In these limits the
difference between v and vLSPS is dominated by the longi-
tudinal source asymmetry, and v is very accurately given
by the (leading) first term in (4.1), see (2.20). Note that
in our model the breaking of the longitudinal reflection
symmetry is due to the non-symmetric rapidity profile of
the emission function for Y 6= η0.

For a quantitative discussion we plot in Fig. 1 the
Yano-Koonin rapidity YYK as well as the difference YYK −
YLSPS as functions of M⊥ and Y . All rapidities are given
relative to the CMS. One sees that for large values of K⊥
the agreement of YYK with YLSPS is almost perfect. Also, in
this limit both rapidities approach the value of Y , i.e. the
YK and LSPS systems coincide with the LCMS. The rea-
son for this is that for large K⊥ the Boltzmann term in the
emission function (3.1) becomes sharply peaked around
the point x where the fluid velocity agrees with the pair
velocity; the geometric terms in the emission function are
much smoother and can be neglected. The relevant term
is the first term in (3.5), and thus the relevant variable
is the transverse mass M⊥. Hence this kinematic region
starts for kaons at smaller values of K⊥ than for pions
(see Fig. 1).

For small values of M⊥, the difference YYK − YLSPS

increases, and both begin to lag behind the LCMS rapidity
Y . Still, the YK frame is closer to the LCMS than is the
LSPS.

The fact that the YK and LSPS systems track each
other so closely implies that the linear rise of the YK ra-
pidity with the pair rapidity Y reflects nothing but a sim-
ilar rise of the LSPS rapidity with Y . As argued above,
the latter is a direct indication for longitudinal expansion
of the source. However, it should be noted that this ex-
pansion need not necessarily be of hydrodynamic nature.
The same feature would be generated by a source con-
sisting of free-streaming pions and resonances which were
created at an initial proper time τform through a boost-
invariant production mechanism [28], suffering no further
re-scattering. It is easily seen that the strict correlations
between coordinates and momenta in a free-streaming gas
again lead to a linear dependence of the “source rapidity”
YYK on the pair rapidity, with M⊥-independent unit slope.
In fact, it is possible to simulate this situation with the
emission function (3.1, 3.3) by setting T and ηf to zero,
i.e. by eliminating the thermal smearing of the momenta
and the transverse collective flow. (Of course, this would
also result in vanishing YKP radius parameters, because
pions of fixed rapidity Y can come from only a single point
in the source.)

A linear rise of YYK with Y (with approximately unit
slope) was recently observed by the GIBS collaboration in
Dubna [12] by analysing pion correlations from Mg+Mg
collisions at 4.4 A GeV/c. They interpreted their result
as evidence for rapid longitudinal expansion of the source.
The data were averaged over the transverse pair momen-
tum K⊥. The data sample was taken with a “central”
trigger, but since 24Mg is a rather small nucleus with a
large surface to volume ratio it is not clear what frac-
tion of the participating nucleons were stopped to become
part of a thermalized fireball. The strong linear increase
of YYK with Y could thus also reflect to some part the
free-streaming expansion of the pion sources created in
the periphery of the nuclear reaction. Preliminary results
of the NA49 collaboration at CERN for Pb+Pb collisions
at 158 A GeV/c also show a rise of YYK with the pair
rapidity Y [27]. Here, however, the Y -dependence of YYK

does not appear to be quite linear, and its slope is less
then 1. With all due caution with regard to the still pre-
liminary nature of these results, this may indicate gen-
uine hydrodynamic longitudinal expansion at a somewhat
slower rate than resulting from our longitudinal scaling
profile. NA49 have also looked separately at a subsample
of pairs with K⊥ > 300 MeV/c, showing that for them
the YK rapidity appears to rise more rapidly with Y than
in the K⊥-averaged sample, in agreement with theoretical
expectations for a thermalized source (see. Fig. 1a).

The M⊥-dependence of YYK can be understood along
the same lines. Figure 1b shows that YYK(Y ) approxi-
mates Y better with increasing transverse mass. In the
limit M⊥ → ∞ the bosons can be emitted only from the
source element which moves exactly with the same rapid-
ity, hence YYK → Y . In the opposite limit M⊥ → 0 the
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Fig. 1. a The rapidity of the YK frame as a function of the pair rapidity Y (both measured in the source CMS), for pions
(solid) and kaons (dashed) and for transverse momenta K⊥ = 1 MeV and K⊥ = 1000 MeV. The transverse flow was set to
ηf = 0.3. b Same as a, but shown as a function of M⊥ for different values of Y . c The difference YYK −YLSPS (see text), plotted
in the same way as a. d Same as c, but shown as a function of M⊥ for different values of Y

Boltzmann factor in (3.1) becomes a smooth function of x,
and the emission function is dominated by the Gaussian
geometric terms. In this limit one thus expects the YK
rapidity to approach the value YYK = η0. The numerical
results of Fig. 1b show that the value of the pion mass is
already large enough for the Boltzmann part of the emis-
sion function to become important. As a result the M⊥-
dependence of YYK is weak in the entire range which can
be covered by pions, and even weaker for kaons.

4.2 Correction terms

In this subsection, we study quantitatively the correction
terms of (2.19) and (4.1) which may compromise the ap-
proximation (2.20) for v and the simple interpretation of
R‖ and R0 as longitudinal and temporal widths of the
emission function. Since the geometric interpretation of
R‖ and R0 refers to the YK frame, our analysis will also
be done in this frame.

Let us first focus on the central rapidity region Y = η0.
Then YYK = YLSPS = Y , i.e., the four reference frames
listed in Sect. 4.1 coincide. Furthermore, the source is

symmetric in the longitudinal direction and thus 〈x̃z̃〉 =
〈z̃t̃〉 ≡ 0. The only non-vanishing corrections thus arise
from the terms 〈x̃t̃〉 and 〈x̃2 − ỹ2〉. In Fig. 2 they are plot-
ted as a function of K⊥ for different values of the scaling
parameter ηf for the transverse flow. Without transverse
flow (i.e. for ηf = 0) the source is azimuthally symmetric
(see (3.5)) which implies 〈x̃2 − ỹ2〉 = 0. Also, the source
is reflection symmetric in the out-direction, 〈x̃t̃〉 = 0. For
non-zero transverse flow the correction terms are generally
non-zero, and they grow with increasing ηf . Note that, for
fixed ηf and K⊥, the correction terms are considerably
smaller for kaons than for pions. This can be understood
as follows: as discussed after (3.5), for ηf = 0 the source
depends only on M⊥, and thus even for non-zero trans-
verse flow everything to zeroth order still scales with M⊥.
We will show below that for expanding sources the re-
gions of homogeneity, which effectively contribute to the
correlation function, are generically decreasing functions
of M⊥. This is thus also true for the correction terms.
Since at fixed K⊥ the value of M⊥ is larger for kaons than
for pions, the corresponding correction terms are smaller
in absolute terms (although not necessarily relative to the
leading contributions).
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Fig. 2. The correction terms 〈x̃2 − ỹ2〉 (a) and 〈x̃t̃〉 (c), for pairs with Y = 0 in the CMS, as functions of K⊥ for different values
of ηf . The third correction term 〈x̃z̃〉 vanishes at Y = 0. Solid (dashed) lines refer to pion (kaon) pairs. Figs. b and d show the
same quantities, but scaled by the appropriate inverse powers of β⊥ (see text)

The K⊥-dependence of the correction terms at non-
zero transverse flow ηf 6= 0 can also be easily understood.
The rise of 〈x̃2 − ỹ2〉 for increasing transverse momentum
(Fig. 2a) is due to the azimuthal symmetry breaking by
the second term of (3.5) which increases both with K⊥
and ηf . It agrees with the findings of [6] but, as pointed
out in [13], contradicts the behaviour seen by Pratt in the
first of references [9] for an infinitesimally thin spherically
expanding shell where 〈x̃2 − ỹ2〉 decreases with increas-
ing K⊥. A similar behaviour is seen [33] in hydrodynami-
cal simulations where freeze-out occurs along an infinites-
imally thin freeze-out hypersurface; there also 〈x̃2 − ỹ2〉
first decreases very rapidly with increasing K⊥, then sat-
urates and slightly increases again without, however, ever
turning positive. The strong decrease of 〈x̃2 − ỹ2〉 with
K⊥ appears to be an artefact of the idealization of an in-
finitesimally thin expanding shell; in [15] it was shown to
be much less visible for opaque sources with a finite thick-
ness of the emitting surface layer, returning to the here
observed rise already for a rather modest surface thick-
ness.

Different from 〈x̃2 − ỹ2〉, the variance 〈x̃t̃〉 reaches an
extremum and then decreases again for very large K⊥
(Fig. 2c). This results from an interplay between the in-
creasing breaking of the x̃ → −x̃ reflection symmetry,
which tends to increase the value for 〈x̃t̃〉, and a decreasing
homogeneity length in space-time rapidity η which affects
the t = τ cosh η part of this variance.

In the model-independent expressions (2.19) and (4.1)
for the YKP parameters, the correction terms discussed
above are divided by β⊥ and β2

⊥, respectively. From Ap-

pendix A we know that the ratios remain finite in the limit
β⊥ → 0. Still, the corrections to the YKP parameters
could become sizeable, depending on how slowly the vari-
ances 〈x̃t̃〉 and 〈x̃2 − ỹ2〉 vanish in this limit. In Fig. 2b,d
we show that the correction terms actually remain small
even after dividing them by the appropriate powers of β⊥.
Thus, at least at mid-rapidity, the leading order approxi-
mations (2.19b,c) are seen to be generally very good. The
largest correction comes from the difference 〈x̃2 − ỹ2〉/β2

⊥
in (2.19c). A more detailed discussion of its effects on R0
will follow in the next subsection.

We now proceed to a discussion of the correction terms
for Y 6= η0. We define YCM = Y − η0 as the rapidity of
the pair in the CMS. In Fig. 3 we compare the correc-
tion terms for YCM = 3 to those for YCM = 0. Of course,
at YCM = 3 the YK frame no longer coincides with the
CMS, see Sect. 4.1. Since the transverse variances are not
affected by longitudinal boosts nor do they depend on Y
(see Appendix A), 〈x̃2 − ỹ2〉 does not change with the
pair rapidity. However, at a given value of K⊥ the trans-
verse pair velocity β⊥ = K⊥/EK becomes smaller, since
EK increases with the pair rapidity YCM . The correction
term 〈x̃2 − ỹ2〉/β2

⊥ thus increases with YCM , especially at
low K⊥. A similar effect is seen in the plots for 〈x̃t̃〉/β⊥.
While 〈x̃t̃〉 decreases with increasing YCM , the ratio with
β⊥ actually increases by about a factor 2 at small K⊥.
Since in the forward rapidity region the source becomes
non-symmetric under reflection z → −z, 〈x̃z̃〉 and 〈x̃z̃〉/β⊥
are non-zero, but small.
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We conclude this subsection with a discussion of the
sensitivity of the correction terms to the longitudinal ex-
tension of the source, which is parametrised by ∆η. We
again put YCM = 0, so that 〈x̃z̃〉 = 0. From the explicit
expressions given in Appendix A it is clear that the trans-
verse variances 〈x̃2− ỹ2〉 are independent of ∆η. Therefore
only the size of 〈x̃t̃〉 changes. In Fig. 4 we show its K⊥-
dependence for different values of ∆η. Due to our assump-
tion of freeze-out along a hyperbola of constant proper
time τ0 (smeared by an amount ∆τ), an increase of ∆η
causes a larger effective extension of the source both in the
z and in the time direction. This becomes especially im-
portant at small K⊥ where the geometrical factors in the
emission function (3.1) play an important role. This ex-
plains the relatively large ∆η-dependence of 〈x̃t̃〉 at small
K⊥ and the weaker dependence at large K⊥ where the
source distribution is dominated by the Boltzmann term
which does not depend on ∆η.

4.3 Quantitative numerical study
of YKP radius parameters

In this subsection we combine the results from the previ-
ous subsection for the correction terms with the leading
contributions in order to arrive at a quantitative under-
standing of the longitudinal and temporal YKP radius pa-
rameters R‖ and R0, and in particular of their dependence
on the pair momentum K.

In Fig. 5 we show R0 and R‖ together with their ap-
proximations

√
〈t̃2〉, √〈z̃2〉, for pion pairs with rapidity

YCM = 0 and YCM = 3, respectively, as functions of K⊥.
For vanishing transverse flow both approximations are
seen to be exact, in agreement with the discussion from
the previous subsection. For non-zero transverse flow the
approximation R‖ ≈ √〈z̃2〉 remains exact for pairs with
YCM = 0. The reason is that for such pairs the YK ra-
pidity relative to the CMS is zero, and thus the longitu-
dinal velocity βl (which multiplies the correction terms
in (2.19b)) of the pair in the YK frame vanishes. From
Fig. 5b one sees, however, that also for forward rapidity
pairs at YCM = 3 the correction terms stay below 10% at
all values of K⊥.

The situation is not quite as good for R0. Here one
sees apparently strong differences between R0 and

√
〈t̃2〉

as soon as the transverse flow is switched on. From Fig. 2
it is clear that the (in our case positive) correction term
〈x̃2 − ỹ2〉 is the culprit and dominates the difference. For
a transverse flow of ηf = 0.6 as shown in Fig. 5a this
term becomes (in the experimentally accessible K⊥ range)
larger than 1 (fm/c)2 and thus comparable to the leading
term

√
〈t̃2〉. However, the numerical results shown in this

figure actually correspond to a rather extreme situation.
First, the assumed transverse flow rapidity ηf = 0.6 is
large; the heavy ion data at AGS and CERN energies for
Si- and S-induced reactions seem to require smaller val-
ues [34–36]. Second, the difference between R0 and

√
〈t̃2〉

is small at low transverse momenta and becomes large
only at large K⊥; in that range the leading term

√
〈t̃2〉 is
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Fig. 5. a R0 and
√

〈t̃2〉 as functions of K⊥ for ηf = 0 and
ηf = 0.6, for pion pairs with rapidity YCM = 0 and YCM = 3.
The lifetime

√
〈t̃2〉 is evaluated in the YK rest frame. b Same

as a, but for R‖ and the longitudinal length of homogeneity√
〈z̃2〉 in the YK rest frame. For YCM = 0, R‖ and

√
〈z̃2〉 agree

exactly because βl = 0 in the YK frame

essentially given by the source parameter ∆τ (see discus-
sion below) which in Pb+Pb and Au+Au collisions [27,30]
(where ηf may be larger than for the smaller systems an-
alyzed so far) seems to be bigger than the 1 fm/c assumed
here3.

Figure 5a shows that the effective source lifetime ∆t =√
〈t̃2〉 is a strong function of the pair momentum K: it is

largest at small rapidity YCM and transverse momentum
K⊥ and decreases with increasing YCM and/or K⊥. Its
asymptotic value for large K in the CMS is, not unex-
pectedly, given by the variance (A11) of the proper time
distribution of our source (3.1). But why is it larger for
pairs with smaller momenta K?

From Fig. 5b it is clear that the longitudinal region of
homogeneity R‖ is a decreasing function of the pair mo-

3 If the source, unlike ours, is opaque, i.e. if the particle emis-
sion is strongly surface dominated, 〈x̃2 − ỹ2〉 tends to be neg-
ative [13,15,33]. In this case, the deviation of R0 from

√
〈t̃2〉

will have the opposite sign [13,33], and R2
0 usually even turns

negative for small values of K⊥. For a detailed study we refer
to [15]
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mentum K. The reason for this is the same as the similar
decrease of Rl in the Cartesian fit and well understood [37]
as a consequence of the strong longitudinal expansion of
the source. This expansion introduces a longitudinal veloc-
ity gradient, and the longitudinal length of homogeneity
is given by the inverse of this gradient multiplied by a
“thermal smearing factor” [4]. The latter reflects the sta-
tistical distribution of the particle momenta around the lo-
cal source fluid velocity, and for a thermal distribution the
spatial region over which this thermal smearing is effective
decreases with increasing pair momentum. This causes the
shrinking of the longitudinal homogeneity length with K.

Since for different pair momenta R0 measures the
source lifetime in different YK reference frames, the freeze-
out “hypersurface” will in general appear to have differ-
ent shapes for pairs with different momenta. Only in our
model, where freeze-out occurs at fixed proper time τ0
(up to a Gaussian smearing with width ∆τ), is it frame-
independent. It is thus generally unavoidable (and here,
of course, true in any frame) that freeze-out at different
points z in the source will occur at different times t in the
YK frame. Since a z-region of size R‖ contributes to the
correlation function, R‖ determines how large a domain of
this freeze-out surface (and thus how large an interval of
freeze-out times in the YK frame) is sampled by the corre-
lator. This interval of freeze-out times combines with the
intrinsic Gaussian width ∆τ to yield the total effective du-
ration of particle emission. It will be largest at small pair
momenta where the homogeneity region R‖ is biggest, and
will reduce to just the variance of the Gaussian proper
time distribution at large pair momenta where the lon-
gitudinal (and transverse) homogeneity regions shrink to
zero.

Another interesting feature of Fig. 5 is that at large K⊥
both R‖ and R0 are independent of the pair rapidity Y .
This is a consequence of our boost-invariant longitudinal
velocity profile and need not remain true for systems with
different longitudinal expansion. As argued before, at large
M⊥ the space-time shape of the source is dominated by the
Boltzmann term and becomes insensitive to the Gaussian
geometric factors. The HBT radii thus only see the local
velocity gradients which in our case are invariant under
longitudinal boosts. At large M⊥ pion pairs with different
rapidities Y thus all see the same local source structure,
and the YKP radii become Y -independent.

We close this subsection with a discussion of the de-
pendence of R‖ and R0 on the other source parameters.
Since the rapidity dependence does not change qualita-
tively from what has already been discussed, we concen-
trate on zero rapidity pion pairs, YCM = 0. For the trans-
verse flow we choose a non-zero, but moderate value of
ηf = 0.3.

In Fig. 6 we show the dependence on the longitudi-
nal size of the source which is parametrised by ∆η. One
sees that at large transverse momenta neither R‖ nor R0

and
√

〈t̃2〉 are affected by the width ∆η of the Gaussian
geometric factor, in line with the arguments above. At
small transverse momenta, both radii increase monotoni-
cally with ∆η. This means that, at low K⊥, R‖ becomes
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〈t̃2〉 as functions of K⊥, for different longi-
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with YCM = 0 and for transverse flow ηf = 0.3. The lifetime√
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√
〈z̃2〉 agree exactly

sensitive to the global longitudinal geometry of the source
and no longer only reflects the local longitudinal velocity
gradients. Figure 6a is very interesting: for small ∆η the
longitudinal length of homogeneity is limited by the lon-
gitudinal geometry, and R0 never has a chance to probe a
large region of the proper time freeze-out surface. Hence
∆t is limited to the variance of the proper time distri-
bution T (τ) in the source (see (A2,A11)), independent of
K⊥. As ∆η increases, at small K⊥ the longitudinal length
of homogeneity increases too, and R0 receives an addi-
tional contribution from the time variation (in the YK
rest frame) along the freeze-out surface inside a longitudi-
nal region of size R‖. Thus the rise of the effective source
lifetime ∆t at small K⊥ is an indirect measure for the lon-
gitudinal geometric size of the source. Unfortunately, the
detailed quantitative dependence is model-dependent.

Figure 7 shows what happens when the width of the
proper time distribution T (τ) (see (A2)) is changed. In-
creasing ∆τ by 1 fm/c, R0 also increases by about 1 fm/c



Y.-F. Wu et al.: Yano-Koonin-Podgoretski ı̆ parametrisation of the Hanbury Brown-Twiss correlator 611

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000

0

1

2

3

4

5

0 200 400 600 800 1000

⊥K  (MeV)

(b)

∆τ = 1 fm/c

(a)

R 0

R
   

 o
r

II
 (

fm
)

  z
  ∼
2

  t  ∼2

R
   

 o
r

0
  (

fm
/c

)
  t

  ∼
2

pion pairs
η  = 0.3f

⊥K  (MeV)

pion pairs
η  = 0.3f

∆τ = 2 fm/c
 (τ  = 3 fm/c)

∆τ = 1 fm/c
∆τ = 2 fm/c

 (τ  = 3 fm/c)

0

0

Y   = 0CM

Y   = 0CM

Fig. 7. Same as Fig. 6, but for different widths ∆τ of the
proper time distribution in the source

(slightly less at large K⊥4), while R‖ increases more at
small K⊥ and less at large K⊥. The increase of R‖ is due
to the decrease of the longitudinal velocity gradient (which
for a boost-invariant profile is 1/τ) with τ . As the time
distribution T (τ) becomes wider, larger proper times are
probed by the emitted pions resulting in larger longitudi-
nal homogeneity regions.

Changing the average freeze-out time τ0 rather than
its spread ∆τ has qualitatively similar consequences (see
Fig. 8), only that R0 at sufficiently large K⊥ again reduces
to the same small variance of the time distribution T (τ).
Note that, at small K⊥, R0 increases both with increasing
∆η and increasing ∆τ ; this supports our claim that it is
“sensitive” to the total longitudinal extension of the source
∆z ' 2τ0 sinh∆η. However, the relation is not linear (in
particular in our numerical results a doubling of ∆η is
seen to have less effect than a doubling of τ0), making it
hard to use in practice. It is obvious that the longitudinal
velocity gradient (which decreases by a factor 2 when τ0
is doubled) has a stronger influence on R0 and R‖ than
the geometrical width in η.

4 Actually, the proper way of looking at this increase is by
studying the variance of the function T (τ): according to (A11)
it increases from 0.89 fm/c for ∆τ = 1 fm/c to 1.49 fm/c for
∆τ = 2 fm/c

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000

0

1

2

3

4

5

6

7

0 200 400 600 800 1000

(b)

(∆τ   = 1 fm/c)

(a)

R 0

R
   

 o
r

II
 (

fm
)

  z
  ∼ 2

  t  ∼2

R
   

 o
r

0
  (

fm
/c

)
  t

  ∼ 2

τ   = 3 fm/c0

τ   = 6 fm/c0

(∆τ   = 1 fm/c)
τ   = 3 fm/c0

τ   = 6 fm/c0

pion pairs

η  = 0.3f

pion pairs

η  = 0.3f

⊥K  (MeV)

⊥K  (MeV)

Y   = 0CM

Y   = 0CM

Fig. 8. Same as Fig. 6, but for different average freeze-out
times τ0

4.4 Transverse flow, M⊥-scaling,
and kaon interferometry

In this subsection we compare pion and kaon correlation
functions. We discuss the M⊥-scaling of the YKP radius
parameters and its breaking by transverse collective flow.
At the end of the subsection we formulate a program how
to extract transverse flow from the M⊥-dependence of the
YKP radius parameters.

In Fig. 9 we compare, for central rapidity pairs YCM =
0, the three YKP radius parameters for pion and kaon
pairs, as functions of K⊥. The left column shows a source
without transverse expansion, in the right column the
transverse flow rapidity was set to ηf = 0.6. The onset of
transverse flow has two qualitative effects: (i) the trans-
verse radius acquires a K⊥-dependence [6], and (ii) R0 and√

〈t̃2〉 begin to deviate from each other, as discussed in the
previous subsection. (The equality R2

‖ = 〈z̃2〉 remains ex-
act because we are studying pion pairs at YCM = 0.) The
effects of flow on R‖ and

√
〈t̃2〉 are seen to be weak, for

both pions and kaons.
Note also that at small K⊥ the kaon radii are gener-

ically smaller than the pion radii, with or without trans-
verse flow. This is also seen in experiment [26,38]. How-
ever, except for the change in the rest mass we have
changed no parameters in the emission function, so the
difference must be entirely kinematic. Indeed, it just re-
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flects the fact that for thermalized sources like (3.1) the
leading dependence on the particle rest mass is through
the variable M⊥ =

√
m2 + K2

⊥. As discussed after (3.5)
the source (3.1) depends only on M⊥ if it does not expand
transversally (ηt(r) = 0). In this case the correction terms
in (2.19b,c) vanish exactly, and R2

⊥ = 〈ỹ2〉, R2
‖ = 〈z̃2〉,

and R2
0 = 〈t̃2〉 are also functions of M⊥ only. This is shown

in the left column of Fig. 10 where the YKP radii for a
source without transverse flow are plotted as functions of
M⊥ and seen to exactly coincide for pions and kaons in
the common M⊥-range. Since in the absence of transverse
flow the Boltzmann factor in (3.1) has no transverse gra-
dients (we have assumed a constant temperature T ), the
transverse radius R⊥ is M⊥ independent and equal to the
transverse geometric (Gaussian) radius R. It was pointed
out in [4,32] that transverse temperature gradients can
also cause an M⊥-dependence of the transverse radius R⊥;
but since the source remains in this case a function of M⊥
only, the M⊥-scaling of the YKP radii persists; it can only
be broken by transverse flow.

The breaking of the M⊥-scaling by transverse flow is
shown in the right column of Fig. 10, for ηf = 0.6. It has
two origins: the emission function itself is no longer a func-

tion of M⊥ only (see (3.5)), and the now non-vanishing
correction terms in (2.19b,c) depend on β and thus on
both M⊥ and the rest mass m. It is obvious that the scal-
ing violations induced by the pion-kaon mass difference
are weak and require very accurate measurements. Fur-
thermore, one may be worried that resonance decay con-
tributions to the correlation radii [14] (which we haven’t
discussed here) lead also to a breaking of the M⊥ scal-
ing, because they affect pions more than kaons, and this
may make it difficult to isolate the transverse flow effects.
We refer to the detailed discussion of resonance decays
in the context of the model source (3.1) in [17]. That
study shows, however, that their influence on the M⊥-
dependence of the transverse radius parameter R⊥ is weak
[16,17]. Furthermore, resonances tend to increase all three
HBT radii (in particular the effective lifetime R0), while
the M⊥-scaling violations from transverse flow have the
opposite sign for R‖ and R⊥, R0.

Detailed dynamical studies of the freeze-out process
have shown that the transverse gradients of the temper-
ature across the freeze-out surface tend to be small [39,
40]. So the experimentally observed M⊥-dependence of
the transverse radius [25–27] is presumably due to trans-
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verse flow [41]. It was shown in [6] that the strength of
the M⊥-dependence of R⊥ increases monotonously with
the strength ηf of the transverse expansion. Alber [41]
has suggested to quantify the strength of collective flow
by fitting the HBT radii to a power law in M⊥,

R⊥(M⊥) ∝ M−α⊥
⊥ , Rl(M⊥) ∝ M−αl

⊥ , (4.2)

and using the magnitude of the extracted (negative) power
as a flow measure. He found αl ' 0.5 for Rl and smaller
values for α⊥, with a tendency to increase for larger col-
lision systems [41]. He interpreted this as a signature for
strong longitudinal and weaker transverse expansion, the
latter becoming more important for larger systems.

In Fig. 11 we study the possible conclusions from such
an exercise when applied to the results from our model.
The left column shows double logarithmic plots for R⊥
and R‖ as functions of M⊥. Obviously the assumption of
a power law dependence is well justified for R‖ but some-
what marginal for R⊥. R0(M⊥) cannot be approximated
by a power law at all. In the right column we show the
extracted powers as a function of ηf , the scale parameter

for the transverse flow. Since R⊥ is not well represented
by a power law, the extracted slope depends somewhat
on the fit region, as indicated for the two sets of curves
in Fig. 11b. Altogether it is, however, clear that for pi-
ons the power α⊥ increases approximately linearly with
ηf and for kaons somewhat more strongly. But even for
large transverse flow rapidities ηf ' 0.5 the power re-
mains below 0.2. In contrast, the corresponding power α‖
in a fit R‖(M⊥) ∝ M

−α‖
⊥ is already 0.55 in the absence of

transverse flow, reflecting the strong boost-invariant lon-
gitudinal expansion. (Note that the decrease of R‖ with
increasing M⊥ is faster than the

√
T/M⊥-law suggested

in [37] – see also [6,42] for a discussion of this point.) As
the transverse flow is switched on, α‖ changes much more
weakly than α⊥, showing that R‖ is mostly sensitive to the
longitudinal flow while R⊥ is only affected by transverse
expansion. Again, kaons are affected by the transverse flow
more strongly than pions.
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5 Conclusions

We have presented a numerical study of the Yano-Koonin-
Podgoretskĭı fit parameters for the two-particle correla-
tion function. Our starting point were the recently de-
rived model-independent expressions for the YKP param-
eters in terms of second order space-time variances of the
source emission function. These expressions allow for an
easy evaluation of the YKP parameters as functions of
the pair momentum K and for detailed parameter stud-
ies. We exploited them for a class of hydrodynamic models
describing locally thermalized and collectively expanding
sources, and we studied the dependence of the YKP pa-
rameters on the longitudinal and temporal extension of
the source as well as on its longitudinal and transverse
expansion velocity.

In the context of such models it has been argued pre-
viously that in a certain approximation (which becomes
exact in the absence of transverse x-p-correlations of the
source as, e.g., induced by transverse expansion flow) the

YKP parametrisation achieves a perfect factorisation of
the longitudinal and transverse spatial and the tempo-
ral extensions (“lengths of homogeneity”) of the source,
in the comoving frame of the emitting fluid element. The
velocity of this emitting fluid element is then given by
the fourth YKP parameter (the YK velocity). Here we
have shown numerically that, within these models, these
features are preserved even in the presence of transverse
flow. The transverse radius parameter R⊥(K) gives the
effective transverse size of the source, the longitudinal ra-
dius parameter R‖(K) its effective longitudinal size, both
in the local rest frame of the emitter as seen by pairs with
momentum K. Also, the YKP parameter R0(K) provides
a direct estimate of the effective emission duration for par-
ticles with momentum K; this estimate is quite accurate
as long as the average transverse flow rapidity remains be-
low 0.5 and the “lifetime parameter” ∆τ is not too small
(∆τ > 1 fm/c).

We also showed analytically and numerically that the
YK velocity obtained from the YKP fit is indeed approx-
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imately equal to the longitudinal velocity of the emitting
fluid element (the LSPS velocity), and that the small dif-
ferences between these two velocities can be understood
quantitatively in terms of asymmetries of the source around
the point of maximum emissivity (its “saddle point”). This
enables us to interpret the rise of the YK rapidity with the
pair rapidity Y as a direct consequence of the longitudinal
expansion of our source, and the M⊥-dependence of the
slope of the function YYK(Y ) as a signature for the thermal
smearing of the particle momenta in the fluid rest frame.
In [7] we further showed that the slope of the function
YYK(Y ) is nearly independent of the transverse flow ra-
pidity ηf . Thus the YK rapidity is manifestly dominated
by the longitudinal expansion and hardly affected by the
transverse expansion at all. The latter causes, on the other
hand, an M⊥-dependence of the transverse radius param-
eter R⊥, which in turn is completely unaffected by the lon-
gitudinal expansion. In the present model study, the YKP
parametrisation thus not only leads to a factorisation of
the (transverse and longitudinal) spatial and temporal as-
pects of the source geometry, but it also cleanly separates
its transverse and longitudinal dynamics.

The sensitivity of the YKP radius parameters to the
transverse expansion of the source was investigated quan-
titatively in Sect. 4.4. While the longitudinal radius pa-
rameter R‖ is affected very little by the transverse flow
(its strong M⊥-dependence arises from the strong longi-
tudinal flow), the transverse radius shows a considerable
dependence on ηf (but none to the longitudinal flow). Fur-
thermore, transverse flow breaks the exact M⊥-scaling of
the YKP radius parameters which we showed to exist for
ηf = 0 (see also [29]). As explained in Sect. 4.4, both
effects can be combined for a quantitative extraction of
the mean transverse expansion velocity from the YKP ra-
dius parameters. The results from a comprehensive anal-
ysis [17] of resonance decay contributions to the correla-
tion function indicate that they don’t jeopardise such a
program.

We would not like to close without remarking that the
class of source models studied here is restricted in one
crucial aspect: if the source is “opaque” [13], (i.e. the par-
ticle emission is strongly surface dominated rather than
being distributed over the whole emission region with a
Gaussian geometric weight as assumed here), the result-
ing differences between the variances 〈x̃2〉 and 〈ỹ2〉 lead to
much larger contributions in (2.18), (2.19) and (4.1) than
found in the present study. In [15] it is shown that this
affects strongly the interpretation of measured YKP pa-
rameters, in particular of the “temporal” parameter R2

0,
which typically becomes strongly negative for small K⊥
due to the negative contribution from 〈x̃2 − ỹ2〉 in this
case. However, that study also shows that presently avail-
able data on YKP radii from Pb+Pb collisions [27] do not
show any such indications for opaqueness of the source
and favor models with volume dominated emission. The
NA44 data [43] for HBT radii from heavy ion collisions
with Pb targets at the CERN SPS, which within the stan-
dard Cartesian parametrisation seem to be consistent with
Ro = Rs, are more difficult to interpret because of the

non-trivial shape of the acceptance window of this exper-
iment in the Y − K⊥ plane and the lack of information
on the K-dependence of these parameters. Also, the im-
portant consistency relations (2.16) so far have only been
checked by the NA49 collaboration [27] whose data are in
qualitative agreement with the numerical results presented
here [31]. A quantitative comparison with the experiments
will be presented as soon as finalized data become avail-
able.
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A Space-time moments
of the emission function

Using cylindrical coordinates τ, η, r, φ with d4x = τ dτ dη
r, dr dφ, we can write the emission function (3.1) as

S(x, K) d4x = T (τ) P (r, φ) H(r, η) dτ dη dr dφ , (A1)

with

T (τ) =
τ√

2π(∆τ)2
exp

(
− (τ − τ0)2

2(∆τ)2

)
, (A2)

P (r, φ) =
1
2π

eb(r) cos φ , (A3)

H(r, η) =
r

(2π)2
exp

(
− r2

2R2 − (η − η0)2

2(∆η)2

)
×M⊥ cosh(η − Y ) e−a(r) cosh(η−Y ) , (A4)

where we defined

a(r) =
M⊥
T

cosh ηt(r) , (A5)

b(r) =
K⊥
T

sinh ηt(r) . (A6)

The φ and τ integrations can be done analytically. We use

∫ 2π

0

dφ

2π
eb cos φ cos(nφ) = In(b) (A7)

and define

T0 = 〈1〉τ =
∫ ∞

−∞
T (τ) dτ = τ0 , (A8)

T1 = 〈τ〉τ =
∫ ∞

−∞
τ T (τ) dτ = τ2

0 + (∆τ)2 , (A9)

T2 = 〈τ2〉τ =
∫ ∞

−∞
τ2 T (τ) dτ

= τ3
0 + 3τ0(∆τ)2 . (A10)
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The variance of the τ -distribution T (τ) is

〈τ2〉τ − 〈τ〉2τ = (∆τ)2
(

1 −
(

∆τ

τ0

)2
)

. (A11)

Defining further

〈f(r, η)〉∗ =

∫∞
0 dr

∫∞
−∞ dη H(r, η) I0(b(r)) f(r, η)∫∞

0 dr
∫∞

−∞ dη H(r, η) I0(b(r))

(A12)

we find for the non-vanishing moments up to second order

〈x2〉 =
1
2

〈
r2
(

1 +
I2(b(r))
I0(b(r))

)〉
∗

, (A13)

〈y2〉 =
1
2

〈
r2
(

1 − I2(b(r))
I0(b(r))

)〉
∗

, (A14)

〈z2〉 =
T2

T0

〈
sinh2 η

〉
∗ , (A15)

〈t2〉 =
T2

T0

〈
cosh2 η

〉
∗ , (A16)

〈x〉 =
〈

r
I1(b(r))
I0(b(r))

〉
∗

, (A17)

〈z〉 =
T1

T0
〈sinh η〉∗ , (A18)

〈t〉 =
T1

T0
〈cosh η〉∗ , (A19)

〈xt〉 =
T1

T0

〈
r cosh η

I1(b(r))
I0(b(r))

〉
∗

, (A20)

〈zt〉 =
T2

T0
〈sinh η cosh η〉∗ , (A21)

〈xz〉 =
T1

T0

〈
r sinh η

I1(b(r))
I0(b(r))

〉
∗

. (A22)

For ηf 6= 0 the 〈. . .〉∗-averages have to be done numeri-
cally. For convenience we also give

〈x̃t̃〉 =
T1

T0

[〈
r cosh η

I1(b(r))
I0(b(r))

〉
∗

−
〈

r
I1(b(r))
I0(b(r))

〉
∗
〈cosh η〉∗

]
, (A23)

〈x̃2 − ỹ2〉 =
〈

r2 I2(b(r))
I0(b(r))

〉
∗

−
〈

r
I1(b(r))
I0(b(r))

〉2

∗
.(A24)

Please note that for small arguments In(b) ∼ bn. Thus for
small ηf and/or K⊥, 〈x̃t̃〉 and 〈x̃2 − ỹ2〉 vanish linearly
and quadratically, respectively.
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(MTA KFKI Press, Budapest, 1991), p. 75.

22. D.H. Rischke, M. Gyulassy, Nucl. Phys. A607, 479 (1996)
23. M.A. Lisa et al., Phys. Rev. Lett. 71, 2863 (1993)
24. M.A. Lisa et al., Phys. Rev. C49, 2788 (1994)
25. NA35 Coll., T. Alber et al., Z. Phys. C66, 77 (1995);

NA35 Coll., T. Alber et al., Phys. Rev. Lett. 74, 1303
(1995)

26. NA44 Coll., H. Beker et al., Phys. Rev. Lett. 74, 3340
(1995)

27. K. Kadija (NA49 Coll.), Nucl. Phys. A610, 248c (1996)
28. J.D. Bjorken, Phys. Rev. D27, 140 (1983)
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