Skip to main content
Log in

Undulation instability of lamellar phases under shear: A mechanism for onion formation?

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract

We consider a lamellar phase of bilayer membranes held between two parallel plates and subject to a steady shear. Accounting for the coupling with the shear flow of the short wavelength undulation modes that are responsible for the membrane excess area, we argue that the flow generates an effective force which acts to reduce the excess area. From the viewpoint of the macroscopic lamellar whose geometric dimensions are fixed, this force translates into an effective lateral pressure. At low shear rates \(\dot \gamma\) this pressure is balanced by the elastic restoring forces of the lamellar. Above a critical shear rate \(\dot \gamma _c \sim d^{ - 5/2} D^{ - 1/2}\), where d is the interlayer distance and D is the gap spacing, the lamellar buckles into a harmonic shape modulation, and we predict its wavelength λc and amplitude U o. We show that our model is isomorphic to a dilative strain, which is known to induce a similar buckling (undulation) instability. Indeed, at threshold the wavelength is \(\lambda _c \sim \sqrt {Dd}\) and is identical in both cases. Using a non-linear analysis, we discuss how the wavelength and amplitude vary with shear rate away from the threshold. For \(\dot \gamma \gg \dot \gamma _c\) we find \(\lambda _c \sim \dot \gamma ^{ - 1/3}\) and \(U_o \sim \dot \gamma ^{2/3}\). We then focus on the coupling of the buckling modulation itself with the flow, and obtain a criterion for the limit of its stability. Motivated by experiments of D. Roux and coworkers, we assume that at this limit of stability the lamellar breakups into “onion”-like, multilamellar, vesicles. The critical shear rate \(\dot \gamma *\) for the formation of onions is predicted to scale as \(\dot \gamma * \sim \dot \gamma _c \sim d^{ - 5/2} D^{ - 1/2}\). The scaling with d is consistent with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Granek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zilman, A.G., Granek, R. Undulation instability of lamellar phases under shear: A mechanism for onion formation?. Eur. Phys. J. B 11, 593–608 (1999). https://doi.org/10.1007/s100510051187

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100510051187

Navigation