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Abstract The paper proposes a new method for initiali-

zation of the multiple restart EM algorithm for Gaussian

mixture model-based clustering. The method initializes

randomly both the mean vector and covariance matrix of a

mixture component. In particular, the mean vector is ini-

tialized by a feature vector selected deterministically from

a random subset of candidate feature vectors. The selection

criterion is the maximum Mahalanobis distance from the

already initialized mixture component centers. The

covariance matrix of a component is initialized by ran-

domly generating its eigenvalues and eigenvectors. In

computational experiments, the used approach was com-

pared with three other random EM initialization methods.

The experiments were performed on synthetic datasets

generated from the Gaussian mixtures with the different

overlap characteristics, as well as on four real-life datasets.

The results on synthetic data indicate that, for well sepa-

rated clusters, for which the maximum pairwise overlap is

not excessively high, the described method yields cluster-

ings which correspond better to the original partitions of

data, as indicated by the adjusted Rand index. The exper-

iments on real data indicate that the performance of the

method is comparable to other three methods for two

smaller datasets and significantly better for two larger

datasets.

Keywords Gaussian mixture models � EM algorithm

initialization � Model-based clustering � Multiple restart

EM

1 Introduction

Mixture models [12, 25, 27] are very useful tools, widely

applied in pattern recognition for modeling complex

probability distributions. A finite mixture model pðxjHÞ
can be expressed by a weighted sum of K components:

pðxjHÞ ¼
XK

m¼1

ampmðxjhmÞ; ð1Þ

where am is m-th mixing proportion and pm is the proba-

bility density function of the m-th component. In (1), hm is

the set of parameters defining the m-th component andH ¼
fh1; h2; . . .; hK ; a1; a2; . . .; aKg is the complete set of the

parameters needed to define the mixture.H is unknown and

has to be estimated in the mixture learning process. The

mixing proportions must satisfy the following conditions:

am [ 0; m ¼ 1; . . .;K and
XK

m¼1

am ¼ 1: ð2Þ

The number of components K is either known a priori or

has to be determined during the mixture learning process.

In the paper it is assumed that K is known.

The present paper considers the most widely used class

of mixture models known as the Gaussian mixture models

(GMMs), in which the probability density function of the

m-th component is given by:

pmðxjhmÞ ¼
1

ð2pÞd=2jRmj1=2
exp � 1

2
ðx� lmÞTR�1

m ðx� lmÞ
� �

;

ð3Þ

where lm and Rm denote, respectively, the mean vector and

covariance matrix, j � j denotes a determinant of a matrix

and d is the dimension of the feature space. The set of

parameters of the m-th component is hm ¼ flm;Rmg. Thus,
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for a GMM H is defined by: H ¼ fl1;R1; . . .; lK ;
RK ; a1; . . .; aKg: GMMs are widely used in such applica-

tions as data clustering [12, 27], data classification [15],

speaker recognition [33], image segmentation and classi-

fication [29].

Estimation of the parameters of a GMM can be performed

using the maximum likelihood approach. Given a set of

independent and identically distributed feature vectors

X ¼ fx1; x2; . . .; xNg, called the learning set, the log likeli-

hood corresponding to a K-component GMM is given by:

log pðXjHÞ ¼ log
YN

i¼1

pðxijHÞ ¼
XN

i¼1

log
XK

m¼1

ampmðxijhmÞ:

ð4Þ

The maximum likelihood estimate of the parameters is

given by:

HML ¼ argmax
H

flog pðXjHÞg: ð5Þ

Since the solution of this maximization problem cannot be

obtained in a closed form (cf. [5]), a numerical optimiza-

tion method has to be employed.

Because of its simplicity, the EM (expectation-maxi-

mization) algorithm [9, 24] is the most popular tool for

maximum likelihood estimation of the parameters of

GMMs. This procedure, however, is highly sensitive to

initialization and easily gets trapped in a local optimum of

(4). Therefore, the quality of the final solution is strongly

dependent on the initial guess of the mixture parameters.

The problem can be to some degree alleviated by per-

forming multiple runs of the algorithm, each run starting

from different initial conditions and returning the result

with the highest log pðXjHÞ. This approach is called mul-

tiple restart EM (MREM).

Model-based clustering [12, 27] is one of the most

important applications of GMMs. The aim of clustering can

be defined as dividing a set of objects into K disjoint

groups, called clusters, in such a way that the objects

within the same group are very similar, whereas the objects

in different groups are very distinct. In applications of

GMMs to clustering, it is assumed that each feature vector

was generated from one of K mixture components. The

goal of clustering is to identify, for each feature vector, the

mixture component from which it was generated. If it is

possible to estimate the mixture parameters, clustering can

be performed using maximum a posteriori (MAP) rule, by

allocating a feature vector to a cluster (mixture component)

with the highest posterior probability. From the Bayes

theorem, this probability for the mixture component m can

be expressed as:

hmðxiÞ ¼
ampmðxijhmÞ
pðxijHÞ : ð6Þ

Maximization of (6) is equivalent to finding the mixture

index m with the highest value ampmðxijhmÞ.
The aim of the paper is the description and thorough

evaluation of a new method for the initialization of the EM

algorithm for Gaussian model-based clustering. The

method, while retaining the probabilistic nature of random

initialization, tries to initialize the component means by

feature vectors located far away from the already initialized

components. The advantage of the method compared to

purely random approach is the increased probability of

proper initialization of all cluster (components) centers in

case of well-separated clusters, which can lead to better

clustering results.

The remainder of the paper is organized as follows. In

the next section, the research background related to the

presented work is discussed. In Sect. 3, the EM algorithm

for GMMs is described. Section 4 presents the author’s

approach to the initialization problem. Section 5 presents

the results of computational experiments, in which the

approach was compared to three other initialization meth-

ods for solving the clustering problem, using both synthetic

and real data. The final section offers the concluding

remarks.

2 Related research

The EM algorithm is a local optimization method. Because

the log likelihood function (4) has numerous local maxima

[25], performance of the EM algorithm is strongly depen-

dent on the initial conditions. Many initialization methods

have been proposed, but no single strategy outperforms the

rivaling procedures in all cases. In this section, only the

most popular approaches are mentioned.

The standard procedure for tackling the problem of the

EM algorithm initialization is the multiple restart approach

(MREM). In this approach the EM algorithm is run many

times, each run being started with different random initial

conditions. The result of the best run (in the sense of the

highest final log pðXjHÞ) is returned as the final outcome.

The most popular random method [25], which in this paper

is called rnd-nearest, initializes the component means with

randomly chosen feature vectors. After initialization of the

means, the feature vectors are clustered by assigning a

particular feature vector to the cluster represented by the

closest mean. Next, the covariance matrix and the mixing

proportion of each cluster are used as initial estimates of

the parameters. A variant of this method which is known as

rnd-kmeans uses the K-means algorithm [26], initialized by

random feature vectors, to find component means. Next,

the covariance matrices and mixing proportions are ini-

tialized using the same method as in the rnd-nearest

758 Pattern Anal Applic (2015) 18:757–770

123



technique. However, the K-means algorithm is in itself

susceptible to the local maxima.

Another random initialization method [10, 30] uses

mixing proportions equal to 1=K, selects random feature

vectors as component means, and employs a spherical

covariance matrix equal to 0:1r2I, where I is the identity

matrix and

r2 ¼ 1

d
traceðRÞ: ð7Þ

In the above equation, R is the covariance matrix of the

learning set X. This approach is referred to as rnd-

spherical.

In [4], an extension of MREM called emEM was pro-

posed. The idea of emEM involves performing several

short EM runs using different random starting points and a

lax convergence criterion. The mixture parameters

obtained by the best (in the sense of the highest

log pðXjHÞ) short run are used as a starting point for a long

EM run. This strategy can be improved by repeating it

many times until the available CPU time is exhausted. A

variant of emEM called rndEM [21] reduces the short EM

phase to the evaluation of log pðXjHÞ of the random

starting position.

In yet another approach to the GMM parameter estimation

problem, the EM algorithm is combined with some global

optimization method, e.g.. an evolutionary algorithm [1, 30]

or a particle swarm optimizer [7]. However, global opti-

mizers have high computational demands and this approach

is limited to moderately sized datasets. Other algorithms

proposed to deal with the problem of local maxima include

versions of EM with split and merge operations [34, 36], a

greedy learning method [35], and a component-wise method

[10]. Some of these approaches try to estimate simulta-

neously the number of components K while searching for the

optimal set of mixture parameters H.

The idea of using distant feature vectors to initialize

center-based clustering algorithms is not new. In [17] it

was described in the context of Lloyd’s method for vector

quantization, equivalent to the K-means algorithm. The

original approach initialized the centroid of the first cluster

with the feature vector with maximum norm and consid-

ered all feature vectors (instead of a random subset, as in

the method presented in this article) as new cluster centers.

For this reason, it had a deterministic nature and was

unsuitable for multiple restart scenario. In [18] a probabi-

listic version of this method for the K-means algorithm was

proposed. Since the K-means algorithm can be interpreted

in the framework of model-based clustering (see e.g., [21]

or [23]), the method proposed in this paper can be con-

sidered as a generalization of [18] to the cases of non-

spherical and non-homogeneous covariances. The well-

known K-means?? algorithm [2] initializes cluster

centroids by random feature vectors chosen with the

probability proportional to the squared shortest distance to

the already initialized centroids.

The present article is an extension of the conference

paper [19], in which initial experimental results achieved

by the method were reported.

3 EM algorithm for Gaussian mixture models

The EM algorithm [9, 24] is an iterative method which,

starting from an initial guess of mixture parameters Hð0Þ,

generates a sequence of estimates Hð1Þ;Hð2Þ; . . .;HðjÞ; . . .

with increasing log likelihood (i.e., log pðXjHðjÞÞ[
log pðXjHðj�1ÞÞ. Each iteration j of the algorithm consists

of two steps called the expectation step (E-step) and the

maximization step (M-step). For GMMs, these steps are

defined as follows [27, 32]:

– E-Step: Given the set of mixture parameters Hðj�1Þ

from the previous iteration, for each m ¼ 1; . . .;K and

i ¼ 1; . . .;N, the posterior probability that a feature

vector xi was generated from the m-th component is

calculated as:

hðjÞm ðxiÞ ¼ aðj�1Þ
m pmðxijhðj�1Þ

m Þ
PK

k¼1 a
ðj�1Þ
k pkðxijhðj�1Þ

k Þ
; ð8Þ

where hðj�1Þ
m and hðj�1Þ

k denote parameters of compo-

nents m and k, in the iteration j� 1, respectively.

– M-Step: Given the posterior probabilities h
ðjÞ
m ðxiÞ, the

set of parameters HðjÞ is calculated as:

aðjÞm ¼ 1

N

XN

i¼1

hðjÞm ðxiÞ ð9Þ

lðjÞm ¼
PN

i¼1 h
ðjÞ
m ðxiÞ � xi

PN
i¼1 h

ðjÞ
m ðxiÞ

ð10Þ

RðjÞ
m ¼

PN
i¼1 h

ðjÞ
m ðxiÞðxi � lðjÞm Þðxi � lðjÞm ÞT

PN
i¼1 h

ðjÞ
m ðxiÞ

: ð11Þ

The E-steps and M-steps are applied alternately until a

convergence criterion is met. In the experiments presented

in this paper, a convergence criterion based on a relative

improvement of log likelihood was employed. The EM

algorithm was terminated if

log pðXjHðjÞÞ � log pðXjHðj�1ÞÞ
log pðXjHðj�1ÞÞ

\�; ð12Þ

where � � 1 was a user-defined termination threshold (in

the present case � ¼ 1e� 5).
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4 Description of the proposed rnd-maxmin method

In the discussed method, equal initial mixing proportions

(að0Þm ¼ 1=K) are used. In the next two sections, we describe

how we generate initial component means and covariances.

4.1 Component means

The rationale behind the presented approach to initialization

of the EM algorithm for GMMs was to correct the short-

comings of the random initialization methods shown in

Fig. 1. The figure presents the stage of initialization algo-

rithm for a three-component mixture at which two compo-

nent means (labeled as 1st component and 2nd component)

were correctly initialized by one of feature vectors marked

by h. To increase the chances of discovering the optimal

solution, it would be beneficial to initialize the mean of the

third component by one of the feature vectors labeled M.

However, in the standard random initialization method, all

the feature vectors, including the vectors labeledh, have the

same probability of being selected as the means of the third

component. In that situation, the selection of one of the

vectors marked by h may lead to a suboptimal solution.

To amend this shortcoming, the method devised by the

authors, denoted as rnd-maxmin, initializes the component

means and covariances incrementally. When selecting new

feature vectors as component means, it tries to disregard

the vectors located closely to the already initialized com-

ponents. The method has a probabilistic nature, which

allows it to be used in the MREM algorithm. The initiali-

zation procedure can be described by the following steps:

1. Choose the mean of the first component lð0Þ1 as a

random feature vector. Generate randomly the covari-

ance matrix Rð0Þ
1 . Set m ¼ 2.

2. Choose t (t is a parameter of the method) random

unique feature vectors from the remaining (not yet

selected as component means) elements of X. Denote

by Xr ¼ fxr1 ; xr2 ; . . .; xrtg the set of the chosen vectors.

For each xri 2 Xr; compute the minimal squared

Mahalanobis distance to the already chosen component

means lð0Þ1 ; . . .; lð0Þm�1:

dmin2ðxriÞ ¼ min
j¼1;...;m�1

d2M lð0Þj ;Rð0Þ
j ; xri

� �
; ð13Þ

where d2Mðl
ð0Þ
j ;Rð0Þ

j ; xriÞ is given by:

d2Mðl
ð0Þ
j ;Rð0Þ

j ; xriÞ ¼ ðlð0Þj � xriÞ Rð0Þ
j

� ��1

ðlð0Þj � xriÞ
T:

ð14Þ

3. Select as the m-th component mean the element of Xr

with the largest minimal squared distance:

lð0Þm ¼ argmax
Xri

2Xr

dmin2ðxriÞ: ð15Þ

4. Generate randomly the covariance matrix Rð0Þ
m .

5. m ¼ mþ 1 if m\K then goto Step 2. Otherwise,

terminate the algorithm.

The preliminary experiments indicated that the choice of

parameter t has an influence on the performance of the

above initialization method. In the computational experi-

ments reported in section 5, we have chosen value t ¼ 5 for

K[ 5 and t ¼ K for K� 5, which yielded good results.

4.2 Component covariances

Random generation of the covariance matrix Rð0Þ
m was

based on the eigenvalue decomposition. Since a covariance

matrix of a non-degenerate multivariate normal distribution

is positive definite, it can be expressed as:

Rð0Þ
m ¼ QmKmQ

T
m; ð16Þ

where Km is a diagonal matrix of eigenvalues with all

diagonal elements positive, and Qm is an orthogonal matrix

of eigenvectors. In the presented method, the eigenvalues

are generated first. They are generated randomly with the

following two restrictions:

– The relation of the largest eigenvalue to the smallest

eigenvalue cannot be greater than 10.

– The sum of all eigenvalues should be equal 1
10dK

trðRÞ,
where tr is the trace of a matrix and R is the covariance

matrix of the learning set X.

Two fulfill these two conditions we first randomly generate

d positive numbers k1; k2; . . .; kd from the uniform distri-

bution. Let kmax be the maximal generated number. For

each of the generated numbers ki; we check if ki\0:1kmax.

3rd component

2nd component

1st component

Fig. 1 Example of a three-component mixture illustrating the

motivation for the rnd-maxmin method
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If this condition holds we assign ki ¼ 0:1kmax. Finally, we

scale all the numbers by the same factor, so their sum

fulfills the second condition.

In the next step, the orthogonal matrix Qm is obtained by

randomly generating a square d � d matrix (each element

is generated independently from the standard normal dis-

tribution) and performing its QR decomposition [13]. The

covariance matrix Rð0Þ
m is then obtained using (16).

4.3 Influence of the proposed method on computational

complexity of the MREM algorithm

The computational complexity of a single EM iteration is

OðNKd2 þ Kd3Þ. Because usually K � N and d � N, this

complexity can be approximated by OðNKd2Þ. The com-

putation of trðRÞ requires OðNdÞ time and is performed

only once per MREM run. Initialization of a single com-

ponent by our method requires random generation of

covariance matrix and computation of its inverse, which

can be accomplished in Oðd3Þ time. Initialization of a

component also involves random generation of the mean

which can be accomplished in Oðtd2Þ time. In all experi-

ments, we used t� 5. For that reason, we can simplify

this expression to Oðd2Þ. Since there are K components

in a mixture, the total time of initialization is

OðKðd2 þ d3ÞÞ ¼ OðKd3Þ. Because there are hundreds of

EM iterations in a single MREM run, and for typical

datasets K � N and d � N, the overhead of initialization

is usually very low.

We have performed some profiling experiments with our

software, which confirmed the above analysis: the ratio of

the runtime of our initialization method to the total runtime

of the MREM was less than 1.5 %.

5 Experimental results

In this section, the results of the computational experiments

performed on many synthetic datasets and four real-life

datasets are presented. The experiments used GMMs for

model-based clustering, in which, after the learning of

model parameters by the MREM algorithm, the feature

vectors were clustered using the MAP rule, as explained in

Sect. 1. External cluster validity measure was employed to

compare the partitions of data discovered in the course of

clustering with the original partitions. In the case of syn-

thetic data, the original partitions were known, because all

the datasets were generated by a random number generator,

making it possible to track the source (i.e., mixture com-

ponent) of each feature vector. Also, the real-life datasets

come with class labels, which allows to compare their

original partitions with the obtained clustering results.

The external cluster validity measure used to compare

the results of clustering methods was the adjusted Rand

index (ARI) [16]. The expected value of ARI in the case of

randomly generated partitions is 0. A higher value of ARI

indicates a higher similarity between partitions; the maxi-

mum value of 1 means that two partitions are identical.

The main aim of computational experiments with syn-

thetic data was to identify conditions in which MREM

using our initialization method produces better clustering

results than MREM using other common methods. We also

wanted to demonstrate its performance on several real-life

datasets.

5.1 The algorithms

The rnd-maxmin method described in Sect. 4 was com-

pared with rnd-nearest, rnd-spherical, and rnd-kmeans

methods outlined in Sect. 2. It is possible that, after the

initialization of component means, rnd-nearest or rnd-

kmeans methods obtain a singular component covariance

matrix. This happens, for instance, when the number of

objects in the initial cluster is smaller than the number of

dimensions d. In this case, the used implementations of

rnd-nearest and rnd-kmeans resort to rnd-spherical ini-

tialization of the covariance matrix of the component.

The four random methods were always compared on an

equal runtime basis. Each of the methods was allocated the

same amount of CPU time. Then, the MREM algorithm

was run until the allocated time was exhausted. The result

of the best (in the sense of the highest log likelihood)

solution found by the MREM was considered as the out-

come of the method.

It should be noted that the log likelihood for GMMs is

unbounded [5]. As a consequence, the EM algorithm may

converge to the boundary of the parameter space, with a

covariance matrix of a component becoming arbitrarily

close to singular and log pðXjHÞ approaching infinity. In

the present experiments with the multiple restart version of

the EM algorithm, this issue was addressed by computing,

after each EM iteration, condition numbers of component

covariances [10]. If the largest condition number was

above a fixed large threshold, the EM run was aborted and

a new one was commenced.

5.2 Hardware and software

The EM algorithm and all four random initialization

methods were implemented in C?? language and com-

piled by the Intel C?? compiler version 14.0.1 using

optimizing options (-O3 -ipo -march=core2 -fno-alias). The

algorithms were run on a Dell Poweredge 1950 server with

two quad-core Intel Xeon 5355 (2.66 GHz) processors and

16 GB of RAM, running Ubuntu Linux 12.04. The

Pattern Anal Applic (2015) 18:757–770 761
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implementation of EM was parallelized [20] using Open-

MP standard for shared memory computers, taking

advantage of all eight cores of the system. Moreover, a

cluster of 16 identical Dell servers was put to use, making

it possible to perform up to 16 independent experiments in

parallel. While the approach with multiple servers did not

speed up a single EM run, it was able to speed up batches

of EM runs which had to be performed.

To prove that the difference between EM initialization

methods was not a random effect, nonparametric statistical

tests using R software package [31] were performed.

5.3 Synthetic datasets

In the experiments with synthetic data, a generator recently

proposed in [22] was employed which randomly generates

Gaussian mixtures according to the user-defined overlap

characteristics. The overlap xij between two clusters i and j

is defined as the sum of two misclassification probabilities

xjji and xijj where:

xjji ¼ Pr½aipðxjli;RiÞ\ajpðxjlj;RjÞjx�Nðli;RiÞ	;
ð17Þ

and similarly:

xijj ¼ Pr½ajpðxjlj;RjÞ\aipðxjli;RiÞjx�Nðlj;RjÞ	: ð18Þ

The overlap characteristics of mixtures obtained from the

generator [22] were controlled by the two parameters: �x
specifying average pairwise overlap between components

and �x specifying maximum pairwise overlap. In the

experiments, the number of components K was fixed at 20

and mixtures with dimension d 2 f2; 5; 10g were gener-

ated. For each dimension, following [22], we used

�x 2 f0:001; 0:01; 0:05g. For each value of �x we used three

values of �x: a value specifying very high maximum

overlap, a value specifying very low maximum overlap and

an intermediate value specifying moderate maximum

overlap. Thus, for each dimension d; we used nine ð �x; �xÞ
pairs. The parameter p^ determining minimal mixing

proportion was set at p^ ¼ 0:25 � 1=K ¼ 0:0125. Figure 2

shows six example datasets simulated from the mixtures

obtained from the generator [22] for three values of �x and

extreme values of �x.
As noticed in [22], both parameters influence overlap

characteristics of generated mixtures. For instance, mix-

tures illustrated in Fig. 2a, b have very low average overlap

( �x ¼ 0:001) between component pairs. However, in Fig.

2b with high �x ¼ 0:15; the components are much better

separated, except for two component pairs which mostly

contribute to average overlap. Similar trends are repeated

in Fig. 2c, d. Mixture components in Fig. 2e, f are both

poorly separated.

The experimental setup was as follows. For each triplet

ðd; �x; �xÞ, 50 different random mixtures were generated

using MixSim software [28]. The generated mixture

parameters were stored to be used as ground truth for com-

parison. Then, for each mixture a single dataset consisting of

6000 feature vectors was realized, and for each of the datasets

a single run of MREM using a given initialization method

was performed. The runtime allocated for MREM was 100 s

for d ¼ 10, 50 s for d ¼ 5, and 20 s for d ¼ 2.

The feature vectors were clustered by the MAP rule

using the best (in the sense of highest log pðXjHÞ) set of
parameters found by MREM. Next, the partition found by

cluster analysis was compared (using ARI) with the ori-

ginal partition of the data obtained by tracking a source

(mixture) component which generated each feature vector.

The average ARI values obtained for the clustering based

on ground truth mixture parameters were used as the baseline

for comparison of the four EM initialization methods. For

each method, the result is presented as % error relative to

the ground truth mixture parameters. The % error �A of

the method A is computed as �A ¼ ðARIT � ARIAÞ=
ARIT � 100, where ARIT is the average (over 50 different

mixtures) ARI obtained using the ground truth parameters

and ARIA is average ARI obtained using mixture parameters

estimated by MREM using the initialization method A. A

lower value of �A indicates a better performance; values close

to 0 indicate that MREM running the initialization method A

achieves a similar performance as clustering using the

ground truth mixture parameters.

To assess the statistical significance of the differences in

ARI and log likelihood, Wilcoxon signed rank test for

paired data [8] was conducted in which, separately for each

triplet ðd; �x; �xÞ, the results obtained by the rnd-maxmin

method were compared with the results obtained by the

best of the three remaining methods.

The results of the experiments with synthetic data for

dimension d ¼ 2 and different values of �x and �x are

shown in Table 1. �A represents % error in ARI relative

ground truth mixture parameters. The last row of the Table,

labeled ’optimal ARI’ shows the ARI obtained when

clustering was performed using ground truth mixture

parameters. L represents average (over 50 different mix-

tures) log likelihood obtained using a given initialization

method. In each column, the best results for �A and L are

shown in italics. In the row presenting the results of the

rnd-maxmin method, p� and pL represent Wilcoxon signed

rank test p values in statistical comparison of the rnd-

maxmin method with the best of the three remaining with

respect to �A and L, respectively. If the comparison is

statistically significant at 0:05 level, the corresponding

result of rnd-maxmin is shown in bold.

The results obtained for d ¼ 5 and d ¼ 10 are shown in

Tables 2 and 3, respectively.
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Fig. 2 Two-dimensional datasets simulated from 20-component

mixtures with (a) �x ¼ 0:001 and �x ¼ 0:05, (b) �x ¼ 0:001 and
�x ¼ 0:15, (c) �x ¼ 0:01 and �x ¼ 0:25, (d) �x ¼ 0:01 and �x ¼ 0:60,

(e) �x ¼ 0:05 and �x ¼ 0:45, (f) �x ¼ 0:05 and �x ¼ 0:75. The ellipses

are centered around component means and represent 95 % confidence

regions

Pattern Anal Applic (2015) 18:757–770 763

123



The results from Tables 1–3 indicate that average

overlap �x alone is mostly sufficient for determining the

attainable ARI, when clustering is performed using the

ground truth parameters. However, both �x and �x influence

the performance of the four initialization methods with

respect to �A.

The comparison of the performance of the rnd-maxmin

method with the best of the remaining methods indicates

that:

– rnd-maxmin dominates the others with respect to ARI

and log likelihood when the average overlap between

components is very low ( �x ¼ 0:001) regardless of the

value of d and �x.
– For situations with low average overlap ( �x ¼ 0:01), our

method also dominates the others if the maximum

overlap between component is not very high. However,

the experiments identified the clear weakness of our

approach: it usually yields results worse than the other

methods (and sometimes by a large margin) if the

maximum overlap between components is very high.

We conjecture, that in these cases our strategy of

locating component means far from already initialized

components fails to place two means in close vicinity.

– A similar trend is repeated for �x ¼ 0:05.

– The performance trends with respect to ARI and log

likelihood are not identical (although they are very

similar for �x ¼ 0:001).

We summarize the results with synthetic data in Table 4,

which shows the number of significant (at 0:05 level) wins

scored by each method against the best of the other meth-

ods, separately for each value of �x. Table 4 demonstrates

that if we remove rnd-maxmin from the competition, there

is no clear winner among the three remaining methods.

5.4 Real datasets

In this section, we demonstrate the performance of the rnd-

maxmin method on four real-life datasets with known class

labels. Two of them: iris and thyroid are small-scale datasets

available from UCI machine learning repository [3]. They are

commonly used in comparisons of clustering algorithms. Two

other datasets: Brodatz and pendigits are examples of more

challenging problems, because of greater sample size,

dimension of feature space and number of classes.

In the experiments the class information was discarded

during GMM learning; it was used only to compute ARI.

(Figs. 3a–6a and Tables 5–8). MREM algorithm with each

of the initialization methods was run for 200 s larger

Brodatz and pendigits datasets and for 0.1 s for smaller iris

and thyroid datasets. This experiment was repeated 50

times, each time starting with a different seed of the ran-

dom number generator. To assess statistical significancesT
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of differences in ARI and log pðXjHÞ; the Wilcoxon rank

sum test [8] was performed.

5.4.1 Pendigits dataset

The pendigits dataset is available from the UCI machine

learning repository [3]. It describes handwritten images of

ten digits. Each digit is represented by a 16-dimensional

feature vector. In [30] a subset of this dataset describing the

first five digits was used for GMM learning. To evaluate

the learning algorithm in a more challenging setting, in the

presented experiments the complete dataset (K ¼ 10)

consisting of 10992 feature vectors was used. Similarly to

[30], first the dimensionality was reduced using principal

component analysis (PCA), retaining the first nine principal

components which together captured more than 95 % of

the total variance.

Figure 3 illustrates the progress toward the final solution

of the four random initialization methods. The curves in

Fig. 3a were obtained by measuring the ARI of the best (in

the sense of highest log likelihood) solution found so far by

the MREM algorithm in time steps of 10 s. The curves in

Fig. 3b were updated after each EM run (average time of a

single EM run was about 0.2 s).

Table 5 shows the comparison of the final solutions of

the four random initialization methods based on 50 inde-

pendent runs. The first column of the table indicates the

name of the method. The second column shows the average

(over 50 experiments) log likelihood obtained by the

Table 4 Summary of the experiments with synthetic datasets. For

each value of �x and each method, we report the number of experi-

ments (out of 9 conducted experiments) in which the method per-

formed significantly better (at 0:05 level) than the best of the

remaining methods. The numbers before ‘‘/’’ signs concern ARI; the

numbers after these signs concern log likelihood

Method �x ¼ 0:001 �x ¼ 0:01 �x ¼ 0:05

rnd-maxmin 9/9 6/6 2/0

rnd-kmeans 0/0 0/1 0/1

rnd-nearest 0/0 0/1 0/0

rnd-spherical 0/0 0/0 0/0
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Fig. 3 Progress toward final solution of the four random initialization methods for pendigits data: (a) adjusted Rand index, (b) log likelihood of

the best solution. The curves represent the averaged results of 50 independent experiments

Table 5 Comparison of four random initialization methods for pendigits dataset. The results are based on 50 independent 200 s runs of MREM

Method log pðXjHÞ pL ARI pARI

rnd-spherical -419829 ± 142 4.35e–11 0.6214 ± 0.011 1.97e–4

rnd-nearest -419849 ± 171 6.38e–10 0.6204 ± 0.012 3.35e–3

rnd-kmeans -420267 ± 117 4.47e–18 0.6149 ± 0.007 2.65e–14

rnd-maxmin -419687 ± 33.1 – 0.6254 ± 0.005 –
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method and the standard deviation after 
 sign. The third

column shows the p value for a statistical comparison of

log likelihood (obtained using the Wilcoxon rank sum test)

of the method with rnd-maxmin. The fourth column pre-

sents average ARI and the standard deviation. The last

column shows the p value for a statistical comparison of

ARI (obtained using the Wilcoxon rank sum test) of the

method with rnd-maxmin.

The results in Fig. 3 and Table 5 indicate that the rnd-

maxmin method outperforms the three other random ini-

tialization methods with respect to ARI. Although the

relative difference in ARI in comparison with the second

best rnd-spherical is very small (about 0.5 %), it is sta-

tistically significant at the 0:05 level. The difference in log

likelihood is significant as well.

5.4.2 Brodatz dataset

The Brodatz dataset originated from the Laboratory of

Image Processing and Pattern Recognition (INPG-

LTIRF). It was used in the framework of the Esprit

project ELENA1. The original source of data was the

Brodatz texture album [6]. Each object in the dataset

belongs to 1 of 11 classes representing textures from the

album. The objects are described by 40 features

extracted using estimation of fourth-order modified

moments in four orientations: 0, 45, 90 and 135 degrees

[14]. Each of the 11 groups consists of 500 objects.

In this dataset there are linear dependencies between 40

features: the determinant of the covariance matrix is very

near zero and the first 37 principal components capture

100 % of the total variance. Thus, this dataset is badly

conditioned and a GMM cannot be estimated by the EM

algorithm using the original features. To remove linear

dependencies from this data, we used PCA to reduce the

dimensionality to 37.

Figure 4 illustrates the progress toward the final solution

of the four random initialization methods.

It is evident that MREM using rnd-kmeans is easily

trapped in local minima of the log likelihood function, as

its performance is far worse than the performance of the

other three methods. Table 6 shows the comparison of the

final solutions of the four random initialization methods

based on 50 independent runs.

Similarly, as in the case of pendigits dataset, the rnd-

maxmin method outperforms the others with respect to ARI

of the clustering solution (1.9 % relative difference) and

the log likelihood of estimated GMMs. The differences are

significant at the 0:05 level.

5.4.3 Thyroid dataset

The thyroid dataset is also available from the UCI reposi-

tory. It consists of the thyroid disease measurements of 215

patients from the same hospital. Each of the patients

belongs to one of three groups with a known diagnosis: a
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Fig. 4 Progress toward the final solution of the four random initialization methods for Brodatz data: (a) adjusted Rand index, (b) log likelihood

of the best solution. The curves represent the averaged results of 50 independent experiments

1 https://www.elen.ucl.ac.be/neural-nets/Research/Projects/ELENA/

elena.htm.
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group of healthy patients (150 cases), patients with

hyperthyroidism (35 cases), and patients with hypothy-

roidism (30 cases). Each patient is characterized by the

results of five laboratory tests.

Figure 5 illustrates the progress toward the final solution

of the four random initialization methods. The curves in

Fig. 5a were obtained by measuring the ARI of the best (in

the sense of highest log likelihood) solution found so far by

the MREM algorithm in time steps of 0.005 s. The curves

in Fig. 5b were updated after each EM run (the average

time of a single EM run was about 0.002 s).

Table 7 shows the comparison of the final solutions of

the four random initialization methods based on 50 inde-

pendent runs. Since the same partition of data was found by

every method in each of the 50 runs (i.e., there was no

difference between the methods), we did not perform sta-

tistical significance tests.

5.4.4 Iris dataset

The well-known iris dataset [11], available from the UCI

repository, contains four measurements of 150 samples of

three iris species. The feature vectors are divided evenly

into three classes.

Fig. 6 illustrates the progress toward the final solution of

the four random initialization methods.

Table 8 shows the comparison of the final solutions of

the four random initialization methods based on 50 inde-

pendent runs. The results indicate that similarly, as in the

Table 6 Comparison of four

random initialization methods

for Brodatz dataset. The results

are based on 50 independent

200 s runs of MREM

Method log pðXjHÞ pL ARI pARI

rnd-spherical 227429
 471 1:21e�4 0:8634
 0:026 1:26e�4

rnd-nearest 227181
 587 3:97e�7 0:8564
 0:028 2:66e�7

rnd-kmeans 225001
 209 6:9e�18 0:7966
 0:011 9:34e�18

rnd-maxmin 227766
 384 – 0:8794
 0:018 –
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Fig. 5 Progress toward final solution of the four random initialization methods for thyroid data: (a) adjusted Rand index, (b) log likelihood of the

best solution. The curves represent the averaged results of 50 independent experiments

Table 7 Comparison of four random initialization methods for thy-

roid dataset. The results are based on 50 independent 0.1 s runs of

MREM

Method log pðXjHÞ ARI

rnd-spherical �2238:39
 0 0:8629
 0

rnd-nearest �2238:39
 0 0:8629
 0

rnd-kmeans �2238:39
 0 0:8629
 0

rnd-maxmin �2238:39
 0 0:8629
 0
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case of the thyroid dataset, there was no discernible dif-

ference between the four methods.

6 Conclusions and future work

In this article, a new random method for initialization of the

EM algorithm for Gaussian mixture model-based clustering

was proposed. The method was compared with three other

approaches. The tests were carried out using multiple restart

EM algorithm (MREM) on many synthetic datasets with

different overlap characteristics and four real-life datasets.

The results of experiments confirm the well-known fact

that no single method outperforms the others in all cases.

Our approach also has its strengths and weaknesses. Gen-

erally, it performs better (or comparable) than other

methods if the maximum overlap between clusters is not

very high. Otherwise, it produces clustering results worse

then the competing algorithms.

Finally, it should be noted that for small-scale clustering

problems, as exemplified by experiments with the iris and

thyroid datasets, the performance of model-based cluster-

ing solution estimated by the MREM algorithm may be

similar (if not virtually the same) irrespective of the ini-

tialization method.

There are several possible directions of future work. To

correct the deficiencies of our method, we plan to devise a

hybrid solution combining rnd-maxmin with other random

methods. For the MREM approach, the hybrid solution

could be easily obtained by alternately running the EM

algorithm using two or more different initialization meth-

ods (and keeping the mixture with the highest log likeli-

hood). We plan to apply this hybrid method to

classification problems and use it to model class-condi-

tional densities in discriminant analysis [15]. This appli-

cation of GMMs is often characterized by high overlap

between mixture components. In this situation, a rnd-

maxmin strategy alone performs poorly.

An anonymous reviewer has pointed out that there are

other possibilities than Mahalanobis distance, for measuring

distance between a feature vector and a component mean

(for instance, the contribution of the feature vector to the log

likelihood). We plan to implement different distance met-

rics in the rnd-maxmin method and test their performance.

Also, there are ideas to combine the described method

for initialization of the EM algorithm with a global opti-

mization method, e.g., differential evolution, similarly to

that done with the K-means algorithm in [18].
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Fig. 6 Progress toward the final solution of the four random initialization methods for iris data: (a) adjusted Rand index, (b) log likelihood of the

best solution. The curves represent the average results of 50 independent experiments

Table 8 Comparison of four random initialization methods for the

iris dataset. The results are based on 50 independent 0.1 s runs of

MREM

Method log pðXjHÞ ARI

rnd-spherical �180:186
 1e� 4 0:9039
 0

rnd-nearest �180:186
 1e� 4 0:9039
 0

rnd-kmeans �180:186
 0 0:9039
 0

rnd-maxmin �180:186
 1e� 4 0:9039
 0
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