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Abstract The paper presents a new fuzzy approach to

off-line handwritten signature recognition. The solution is

based on characteristic feature extraction. After finding sig-

nature’s center of gravity a number of lines are drawn

through it at different angles. Cross points of generated lines

and signature sample, which are further grouped and sorted,

are treated as the set of features. On the basis of such struc-

tures, obtained from a chosen number of learning samples, a

fuzzy model is created, called the fuzzy signature. During a

verification phase the level of conformity of an input sample

and the fuzzy signature is calculated. The extension in feature

extraction as well as proposed fuzzy model has never been

employed before. It needs to be emphasized that information

stored within the verification system cannot be used to

recreate the original signatures collected at the enrolment

phase. The fact is particularly valuable for large databases

and systems where storage safety is crucial. The solution is

very flexible and allows the user to extend an intuitive

structure of fuzzy sets by employing dynamic features,

making the approach an on-line method. The results obtained

should be still improved, similarly to the case of other known

biometric systems related to signature recognition. However,

the presented technique can be easily utilized in applications

where FAR coefficient should be very low and is more

important than FRR ratio.

Keywords Signature recognition � Fuzzy sets � Fuzzy

system

1 Introduction

An analysis of handwritten documents is an important task

for business, forensic casework, banking, etc. Obviously,

handwriting should be considered individually, because

each person has unique style of writing. For this reason

professional recognition of a writer is treated as complex

and difficult task. The result is credible when performed by

highly qualified graphologists only. It should be noted that

such investigations are expensive and rarely commis-

sioned—in cases when documents are very important and

their authenticity questioned. Moreover, graphological

analysis of long documents is very time-consuming.

Some inconveniences can be overcome when only

handwritten signature is analysed. Depending on type of an

electronic handwriting capture, the source can be processed

as a digital image or as a set of dynamic features—when

signature is stored using a specialised device such as tablet.

The second approach allows the potential system to analyse

the source more precisely because in this case other unique

properties are available.

The signature features are very often classified as global

or local. Global features describe an entire signature and

are determined, i.e. by means of both the discrete Wavelet

and Hough transform, horizontal and vertical projections

and so on. On the contrary, local features describe dynamic

properties such as pen motion, slant, pressure, tremor and

so on.

The signature recognition methods are also classified as

on-line and off-line, where appropriate dynamic or static

features are extracted and analysed. These techniques are

well known within the research community [7, 13, 23–25,

34, 41].

There is a number of limitations in the data acquisition

phase. The first is signature’s length. In case of too long

P. Kudłacik � P. Porwik (&)

Institute of Computer Science,

University of Silesia, Katowice, Poland

e-mail: piotr.porwik@us.edu.pl

P. Kudłacik

e-mail: przemyslaw.kudlacik@us.edu.pl

123

Pattern Anal Applic (2014) 17:451–463

DOI 10.1007/s10044-012-0283-9



signatures the data analysis may be difficult for the rec-

ognition system to identify the unique data points. In

addition, pre-processing and recognition process are time

consuming. On the other hand, in case of too short signa-

tures the data set may not be representative enough and

false accept rate (FAR) coefficient may be too high (i.e. an

impostor can be authorised by the system).

The second limitation is the environment and conditions

where a person performs the enrolment and verification

phase. For example, two signatures taken from an indi-

vidual may substantially differ from each other only

because the position of a person was different.

After the data acquisition phase the recognition system

extracts the unique features; hence signature recognition is

classified as behaviour biometric. Given signature is

described by means of unique features that identify the

signer. Biometric systems should be able to detect whether

the signature is genuine or forged. The results of the veri-

fication depend on the type of forgery. The first type is a

random forgery and can be represented by a signature that

belongs to any writer (forger has no information about the

signature style and the name of a signer). The second type—

simple forgery is a signature characterised by a similar

shape as the genuine. The third type is so-called skilled

forgery, which is a professional imitation of the genuine.

Off-line verification methods are used to detect the ran-

dom and simple forgeries. It follows from the fact that in

this approach only the shape of the signature is accessible,

so only this kind of data can be considered. Unfortunately,

the off-line method does not register timestamps; hence

modelling of the signer’s pen motion is impossible or very

complex, which makes the recognition task even harder.

On-line method requires a stylus and an electronic tablet

connected to a computer to capture dynamic signature

information. In this method, nature of signatures can be

described more precisely because additional parameters

can be measured like velocity, pressure points, strokes,

accelerations as well as static characteristics. This tech-

nique is preferable because dynamic features are very

difficult to imitate. Unfortunately, these systems require

user-cooperation and complex hardware.

In case of off-line recognition, signature template comes

from an imaging device, and hence only static data are

obtained. The person does not have to be present at the

time of verification. For this reason, off-line signature

recognition is simpler and convenient in various situations

such as document verification, banking transactions, etc.

The paper proposes off-line fuzzy approach, which

makes recognizing forged and genuine signatures possible.

However, the method is flexible and allows the future user

to include on-line features.

The most important advantage of the fuzzy approach is

adjusting uncertainty to the input data. Each feature of the

signature has a different soft constraint assigned in a fuzzy

set form, relevant to a divergence occurring within learning

samples. Therefore, to allow the system a proper adjust-

ment, the signature of each individual must be captured at

least several times.

The whole process of proposed recognition is described

in the following sections of the paper. First, the pre-pro-

cessing phase is presented. The process of building a fuzzy

structure, called the fuzzy signature, is described next.

Subsequent sections present the verification phase and

obtained results with conclusion at the end.

2 Related works and critical remarks

Signature recognition methods are extensively studied and

developed for many years [24, 34]. Unfortunately, reliable

comparison of different approaches is quite difficult, which

is caused by inconsistency in presented standards. In

practice different databases are used, where different

number of original and forged signatures are stored. The

datasets of biometric features are frequently composed on

the basis of private (hence unavailable) signatures as well

as signatures coming from professional, published dat-

abases. It is a well-known fact that recognition perfor-

mance decreases when number of samples in a database of

biometric features is increased. It can be noticed even for

small number of additional database records [27]. Such

important remark is often ignored; therefore, we postulate

that presented results should always be normalized and

presentation principles should be respected. In presented

approach all results were obtained for SVC2004 database,

which is fully available [49]. Hence, results obtained and

proposed algorithms can be always reliably compared with

achievements of other authors.

On the other hand, it can be also observed that results

reported in many papers use different coefficients (FAR,

FRR, EER) and factors (accuracy, sensitivity, specificity).

Unfortunately, only one of these parameters is very often

treated as a single quality factor of described biometric

systems. It is another obstacle precluding comparison of

achieved results.

An influence of mentioned difficulties can be observed

in the short review of obtained results in the work [7],

where main recent research directions and results have

been presented and discussed. Results gathered in that

work are presented in Table 1 for off-line and Table 2 for

online methods. The same problem can be noticed for

results gathered in earlier extensive survey of the state-of-

the-art [24].

Since the beginning of the theory presented by Zadeh

[56] fuzzy sets have become a popular and intuitive tool for

uncertainty representation. They are widely used in popular
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types of intelligent systems handling variations of the input

data [40, 43, 50]. Because of the nature of signature veri-

fication problems fuzzy approaches are also employed in

this kind of research.

Enrolment phase of a general fuzzy approach to signa-

ture verification, as well as non-fuzzy methods, usually

consists of three stages. The first step considers simple

preprocessing of the input data, like normalisation and

image filtering. In the second phase signature information

is analysed and specific features are extracted. The last

phase of fuzzy approaches considers building a fuzzy

system (fuzzy model) based on variation of features

extracted from learning samples. The verification phase of

such systems confronts chosen signature sample (or

extracted features) to the fuzzy model and calculates the

level of conformity.

Recent research in the field of automatic signature ver-

ification employing fuzzy systems are based on different

approaches. A significant number of contemporary solu-

tions use different kind of neuro-fuzzy applications [18, 30,

38, 45, 52]. Data for the fuzzy systems come from

extraction of various features like position and pressure

Table 1 Performance comparison with off-line signature secognition systems [7]

Sr. Approach FAR FRR Accuracy

1 Proposed fuzzy approach 0.61/1.52 22.16/12.16 99.18/98.38

2 Signature recognition using clustering technique [7] 2.5/8.2 6.5/2.96 95.08

3 Contour Method [35] 11.60 13.20 86.90

4 exterior contours and shape features [8] 06.90 06.50 93.80

5 Local granulometric size distributions [47] 07.00 05.00 –

6 Back-propagation neural network prototype [1] 10.00 06.00 –

7 Geometric centers [39] 09.00 14.58 –

8 Two-stage neural network classifier [6] 03.00 09.81 80.81

9 Distance statistics [29] 34.91 28.30 93.33

10 Modified direction feature [4] – – 91.12

11 Hidden Markov model and cross-validation [15] 11.70 00.64 –

12 Discrete random transform and a HMM [9] 10.00 20.00 –

13 Kernel principal component selfregression [58] 03.40 08.90 –

14 Parameterized Hough transform [28] – – 95.24

15 Smoothness index-based approach [17] – – 79.00

16 Geometric based on fixed-point arithmetic [19] 4.9–15.5 5.61–16.39 –

17 HMM and graphometric features [16] 23.00 01.00 –

18 Virtual support vector machine [5] 13.00 16.00 –

19 Wavelet-based verification [12] 10.98 05.60 –

20 Genetic algorithm [55] 01.80 08.51 86.00

Table 2 Performance comparison with on-line signature recognition systems [7]

Sr. Approach FAR FRR ERR Accuracy

1 ER2—dynamic time wrapping [36] – – 7.20 –

2 On-line SRS—digitizer tablet [26] 7.50–1.10 03.90 – –

3 Image invariants and dynamic features [2] – – – 83.00

4 On-line SRS model guided segmentation [46] 0.80 – 3.40 –

5 Conjugate gradient neural networks [3] – – – 98.40

6 Consistency functions [42] 01.00 07.00 – –

7 Variable length segmentation and HMM [48] 04.00 12.00 11.50 –

8 Implementing a DSP kernel [14] \0.01 – – [99.0

9 Dynamic feature of pressure [51] 6.80 10.80 – –

10 Low cost dynamic SRS [21] 7.00 6.00 – –
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[30], angles [38], Zernike moments [18], result of discrete

wavelet transform [52] and pseudo-outer product [45].

However, alternative solutions are also developed.

Papers [53, 54] introduce fuzzy snake models. The

solution is based on open polygonal line (snake) composed

by a variable number of equally spaced control points

(piecewise-linear, two-dimensional structure). In this case

database stores the exact information about signature’s

shape, which for some applications could be a disadvantage

because of data security reasons.

System based on Bezier curves is presented in paper

[57]. The approach allows the user to control the level of

uncertainty by adjusting a-cuts, which results in variable

ranges of possible position for Bezier nodes. As well as the

previous method, this solution also stores the information

about signature’s shape.

Paper [22] proposes Takagi-Sugeno model with fuzzy-

fied angle features extracted from box approach.

The authors of [20] introduced a biometric crypto sys-

tem with a fuzzy key, which is not the issue of this paper.

However, the approach employs methods of authorisation

with interesting feature extraction based on quantized

maxima and minima from upper and lower envelopes of

the signature.

The mentioned methods were tested mostly on private

and unavailable databases with relatively small number of

samples (less than 400). Data tested in paper [38] were

obtained from four people and include only 20 forged

samples. For that case the final average result is also not

defined.

Comparison and assessment of methods introduced in

papers [20, 53, 57] is impossible because no test results

were presented.

Results obtained by authors of analysed examples are

various and strongly depend on the type of database that

was used. For example, the paper [18] reports the average

error rate obtained at the level of 0.5 %. However, tests of

that particular case are based on a database of 200 samples

collected from 10 people without any forged samples. In

addition, the reported error rate is not precisely defined.

Only the authors of [52, 54] used published databases,

where the latter is no longer available at the specified

website. The first paper reports EER at the level of 12.5 %.

It needs to be emphasized that in this case FRR exceeded

25 % for FAR equal 5 % (based on presented ROC curve).

The second paper reports FAR and FRR coefficients gen-

erally at the levels exceeding 10 % for a database con-

taining more than 2000 samples.

Non-standard results are also reported in [22], where

percentages of accepted and rejected samples are given.

The best results were obtained for random forgery tests,

where percentage of accepted samples equals 22.5 and

25 %, depending on the used type of method.

Private database employed in tests of online approach

[30] (position and pressure) allowed the authors to obtain

FAR and FRR coefficients equal 0 and 3.5 % respectively,

which is a very good result that unfortunately cannot be

verified. The same problem is encountered in another

online approach employing a neuro-fuzzy method [45],

where the best results were obtained for signatures of

Chinese individuals.

The fuzzy approach described in this paper have never

been proposed before. The first novelty can be found in the

preprocessing phase. The method of feature extraction

introduced in [44] was extended, which significantly

reflects in results of the system. The second novelty is the

original fuzzy model created on the basis of structure

obtained in the first phase.

Information stored within database of the verification

system cannot be used to recreate original shapes of sig-

natures, which is an advantage from data security point of

view. Moreover, the solution is characterised by relatively

small computational complexity and in comparison with

other methods it is much easier to implement.

Considering a relatively big database (1600 samples in

SVC2004 database [49]), results obtained for FAR and

FRR coefficients are very promising and encourage to

further development of the solution.

3 Signature preparation

The main goal of writer recognition systems is determining

whether two handwritten samples were performed by the

same person or not. Signatures of the same individual can

differ in many parameters such as size, pen pressure,

velocity, etc. Therefore, one of the most important aspects

of recognition is the unification process (pre-processing),

which allows a system to compare signatures more pre-

cisely. The approach is based on the idea of characteristic

signature preprocessing [44].

A signature can be treated as a set of discrete points

ðxj; yjÞ laying on the Carthesian X–Y plane, where j ¼
1; 2; . . .;N; which describes piecewise-linear graphical

form. The number N can vary for different signatures. The

solution’s first step is calculating a signature’s center point

ðx; yÞ as so-called center of gravity, by the following

Eq. [44]

x ¼ 1

N

XN

j¼1

xj; y ¼ 1

N

XN

j¼1

yj: ð1Þ

In the next step a new set of points ðxk; ykÞ is obtained,

where k ¼ 1; 2; . . .;M and M � N: The new points are

calculated from an intersection of a signature and lines

generated at different angles and passing through the center
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point. The phase is shown at Fig. 1. The number of gen-

erated lines depends on an angle step Da; which is a

parameter of the method. Fig. 1 contains visualization for

Da ¼ 30� and for that reason six lines are drawn at 0�; 30�;
60�; 90�; 120� and 150�:

For each point of intersection ðxk; ykÞ the distance from

the center point dk is calculated [44]:

dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xÞ2 þ ðyk � yÞ2

q
; ð2Þ

and normalized [44]:

lk ¼
dk

dmax

; dmax ¼ maxfd1; d2; . . .; dMg: ð3Þ

The normalized lk values create the XSi
set, obtained from

Si signature. The XSi
is naturally divided into Xa

Si
subsets,

including only those lk values obtained for angle a, which

can be designated as lak
. Additionally, the lak

values of Xa
Si

subsets are arranged in decreasing order. For all the

presented sets the following equations have to be obviously

satisfied

#XSi
¼
X

a

#Xa
Si
: ð4Þ

It is important to notice that the preprocessing loses

information of signature’s shape and cannot be used to

recreate the original. The XSi
set after the described phase

is stored as the characteristics of Si signature.

3.1 Possible extension of the method

Described process is very flexible and easy to extend. In

particular, more parameters can be considered such as

pressure, velocity or pen’s angle. Each parameter corre-

sponds with one additional set of values within each Xa
Si

set. Considering the mentioned parameters, each element

of the XSi
set can be described as the following:

ðlk; prk; vek; ankÞ; k ¼ 1; 2; . . .;M;

where prk; vek; ank corresponds with pressure, pen’s

velocity and angle in ðxk; ykÞ: Therefore, the generalised

element of XSi
can be described as the following:

ðwk1
;wk2

; . . .;wkG
Þ; k ¼ 1; 2; . . .;M;

where wk1
;wk2

; . . .;wkG
represent parameters assigned to

the ðxk; ykÞ point of a given signature and G is a number of

parameters.

4 Fuzzy signature

Preprocessing may generate a different number of elements

in XSi
, even for signatures captured from the same indi-

vidual. Situation is depicted in Fig. 2 for XSi
obtained from

three sample signatures Si; i ¼ 1; 2; 3 with Da ¼ 30�:
Because of page size limit only two groups of sets are

shown for a equal 0� and 30�:
The main idea of the method is to construct a fuzzy

structure—fuzzy signature FS—for each person chosen to

be recognized by the system. The structure is formed by a

number of fuzzy sets relevant to the input data. Constructed

fuzzy sets reflect a diversity existing in the subsequent

signatures within a learning set. Let the three samples

presented in Fig. 2 represent a learning set. In general, the

size of a learning set is not limited.

One can notice that the number of elements for X0
S1
; X0

S2

and X0
S3

varies from 2 to 4 and for X30
S1
; X30

S2
and X30

S3
; from 2

to 3. The next step of preparation levels out the sub sets to

the maximum size of Xa
Si

within the same a: As depicted in

Fig. 3, values 0, presented with bold font, are inserted at

the end. The figure also contains the original size of Xa
Si
;

which is needed for further analysis.

The first reason why 0 is used as a fill up value is simple.

As it was mentioned at the end of Sect. 3, each Xa
Si

is sorted

in decreasing order, so the smallest values are located at the

end. The value 0 is the shortest distance possible, obtained

when the signature’s center of gravity (1) is one of the

signature’s points. Therefore, the smallest value fills up

shorter sets, preserving the order. To present the second

reason, that mainly explains why to level out the sets,

further steps of the method are needed to be introduced.

Fig. 1 Points of intersection of a sample signature and lines

intersecting a signature’s center point

Fig. 2 Points after preprocessing phase for three sample signatures

S1; S2 and S3
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When sizes of Xa
Si

are even for each a in all learning

samples, they are again divided into groups in order to

obtain a membership functions lai and lSa describing fuzzy

sets. The process is depicted in Fig. 3 by frames and

arrows. It is important to notice that lai are created from

the content of Xa
Si

and lSa from the size of Xa
Si
: Each frame

on the figure represents values of a different universe of

discourse Xai
and XSa—the domains of lai and lSa;

respectively.

Therefore, a fuzzy signature FS consists of fuzzy sets Aai

and ASa described as follows:

Aai
¼ fðx; lai

ðxÞÞ : x 2 Xai
g; ð5Þ

ASa ¼ fðx; lSaðxÞÞ : x 2 XSag: ð6Þ

Gaussian-type membership functions were chosen for Aai

sets. However, other functions, like triangular or trape-

zoidal, can be applied. ASa sets, described with piecewise-

linear membership functions, are precisely analysed in

subsequent section.

Functions lai
; describing Aai

sets, are defined as follows:

lai
ðx; mai; raiÞ ¼ e

�ðx�maiÞ2

2rai
2 ; x 2 Xai

; ð7Þ

where mai is an arithmetic mean of Xa
Si

elements from Xai

domain for all learning samples (values in one frame at

Fig. 3). The parameter rai represents the range between

elements and is obtained on the basis of the following

equation:

rai ¼
c

xaimax
� xaimin

2
for rai [ rmin

rmin for rai� rmin

(
ð8Þ

where xaimax
and xaimin

are, respectively, maximum and

minimum of Xa
Si

elements from Xai
domain for all learning

samples. The fuzzyfication ratio c is a global parameter of

the system and allows the user to influence all fuzzy sets by

increasing or decreasing their width (for 0\c\1 or c [ 1

respectively). Additionally, the rai is limited from below

by rmin; which is another global parameter of the fuzzy

system. This parameter allows the user to set the minimum

width, which is applied in case of too small diversity of

elements in the Xa
Si

set.

Trapezoidal and triangular membership functions can be

defined, respectively, by the following equations:

lai
ðx; mai; raiÞ

¼

0 for x\ðmai � raiÞ
2x�ðmai�raiÞ

rai
for ðmai � raiÞ� x\ðmai � rai

2
Þ

1 for ðmai � rai

2
Þ� x\ðmai þ rai

2
Þ

�2x�ðmaiþraiÞ
rai

for ðmai þ rai

2
Þ� x\ðmai þ raiÞ

0 for ðmai þ raiÞ� x

8
>>>>>><

>>>>>>:

;

ð9Þ

lai
ðx;mai;raiÞ¼

0 for x\ðmai�raiÞ
x�ðmai�raiÞ

rai
for ðmai�raiÞ�x\mai

�xþðmaiþraiÞ
rai

for mai�x\ðmaiþraiÞ
0 for ðmaiþraiÞ�x

8
>>>><

>>>>:

;

ð10Þ

where parameters mai and rai have the same meaning as in

(7).

Therefore, the fuzzy signature FS contains a number of

fuzzy sets adjusted to learning samples. The placement of

peaks and width of membership functions’ shapes are

based on the mean of relevant values and their range,

respectively. One can notice that the step of sets levelling,

by adding 0 values, lowers the influence of other values in

calculation of the mean. It informs there was no value in

that domain for this sample, which appropriately reflects in

produced soft constraint—a fuzzy set.

4.1 Fuzzy size of Xa
Si

The previous section distinguishes two different types of

fuzzy sets. The first, as depicted in Fig. 3, is created from

the values of Xa
Si
: The second type, designated as ASa with

lSa membership function, represents the fuzzy size of Xa
Si
:

The sets and creation of their membership functions are

precisely analysed in this section.

In general the size of Xa
Si

sets is a very important

information for the recognition system. It is the crucial

parameter for the presented method, because similar

Fig. 3 Scheme of fuzzy

signature creation

456 Pattern Anal Applic (2014) 17:451–463

123



signatures should produce similar sizes of the Xa
Si

sets.

Obviously, the XSa domains of lSa functions are discrete,

containing sizes, which are natural numbers. The fact can

be noted by the following expression:

#Xa
Si
2 XSa 2 N: ð11Þ

Therefore, similarly to the first type of fuzzy sets, obtaining

lSa membership functions is based on appropriate pro-

cessing of values from XSa domains for all learning sam-

ples. In this case no predefined function is chosen. The

solution simply assumes that multiple occurrence of the

same size should be promoted by assigning a higher

membership level. In addition, lower membership levels

are appropriately assigned to the sizes that do not occur

within the learning samples, but are sufficiently close

(within b range), which forms a soft constraint. The general

idea is depicted in Fig. 4, where two membership functions

are presented for analysed example.

Considering Fig. 3 presented in previous section, it can

be noticed that membership levels of lS0 and lS30 are

relevant to the number of occurrence of Xa
Si

size within

learning samples. For Xa¼0
Si

three sizes occur once: 3, 2 and

4. That is why to each of those values the same member-

ship level is assigned (circles with black fill). While for

Xa¼30
Si

size 3 occurs once, but 2 occurs twice. Therefore, the

size 2 is described with a higher membership level.

At this point, considering parameter b ¼ 0, the mem-

bership function lSa can be defined as follows:

lSaðxiÞ ¼
Oxi

NL
for

Oxi

NL
[ 1

2

1
2

for 0\ Oxi

NL
� 1

2

8
<

: ; xi 2 N; ð12Þ

where xi represents the analysed size, Oxi
represents the

number of its occurrence and NL represents the number of

learning samples.

The presented solution promotes multiple occurrence of

Xa
Si

sizes; however, the minimum level is set to 0:5 (only in

case of
Oxi

NL
greater than zero and less than 0:5). The mini-

mum is set to avoid too small membership levels and to

increase their influence in recognition algorithm, which is

precisely described in the following sections.

Nevertheless, Fig. 4 depicts a number of extra points with

nonzero membership level, inserted additionally to create a

soft constraint (circles with white fill). The membership

levels in this case are obtained from a linear function created

according to the chosen b range—near xSamin
as a raising edge

and xSamax
as a falling edge (xSamin

; xSamax
represent minimum

and maximum of #Xa
Si
2 XSa for all learning samples).

The b range for the analysed example is set to 2.5; hence

two additional points are inserted at each edge. Considering

the short analysis and the influence of the b parameter, the

lSa membership function can be fully defined by the fol-

lowing equation:

lSaðxiÞ ¼

Oxi

NL
for

Oxi

NL
[ 1

2

1
2

for 0\ Oxi

NL
� 1

2

fupðxiÞ for xSamin
� b\xi\xSamin

fdownðxiÞ for xSamax
\xi\xSamax

þ b

;

8
>>>><

>>>>:

ð13Þ

where xi; Oxi
; NL have the same meaning like in (12) and

fup; fdown represent linear functions defined as follows:

fupðxiÞ ¼
lsaðxSamin

Þ
b

ðxi � ðxSamin
� bÞÞ; ð14Þ

fdownðxiÞ ¼ �
lsaðxSamax

Þ
b

ðxi � ðxSamax
þ bÞÞ: ð15Þ

It is important to emphasize that the formula (13) produces

fuzzy sets with valuable information about the input data.

Properties of the membership function, like the maximum

value or the range between xSamin
and xSamax

; can be used to

assess the quality of the input data only through an analysis

of the ASa fuzzy sets. This kind of information can be used

by an adaptive method of learning, choosing only the

informative Xa
Si

sets in the process.

4.2 Extension of the method and the fuzzy signature

The Sect. 3.1 introduced an extension in preprocessing

phase, where more parameters of a signature can be con-

sidered (i.e. pen’s angle, velocity, pressure etc.). Creating

the fuzzy signature FS in this case is not much more

(a) (b)Fig. 4 Membership functions

of fuzzy sizes for sample

signatures: a lS0ðÞ for a ¼ 0�;
b lS30ðÞ for a ¼ 30�
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complicated. The only difference lies in the content of Xa
Si

which elements are extended, containing more information

for each point of a signature. Obviously, the #Xa
Si

does not

change; therefore, fuzzy size ASa can be obtained as

described in the previous section. However, other stored

parameters need to be processed, which will extend the

fuzzy signature FS by additional fuzzy sets.

Membership functions of additional fuzzy sets can be

obtained analogically to lai
of Aai

; which are precisely

described in Sect. 4.

Let Aaki
designates the generalised version of Aai

; where

k ¼ 1; 2; . . .;G describes the G number of additional

parameters. In that case the Gaussian membership function

laki
describing the fuzzy set, is defined as follows:

lakiðx; maki; rakiÞ ¼ e
�ðx�makiÞ2

2raki
2 ; x 2 Xaki

ð16Þ

where maki; raki and Xaki
domain represent parameter k and

are analogical to mai; rai and Xai
from (7), which has been

described in Sect. 4.

The generalized versions of trapezoidal and triangular

membership function laki
can be obtained the same way.

5 Signature recognition

The fuzzy signature FS is created and stored in the sys-

tem’s database for each person that needs to be recognised.

The process of recognition is based on obtaining the levels

of conformity of a given signature with fuzzy structures

from the database. If the level of conformity meets con-

figured requirements, the signature can be considered as

recognised. In general, the task can be accomplished by

different means. However, the first phase of calculation is

common for different approaches; that is why it will be

described next.

Let Sin represent an input signature after preprocessing

and FS is a fuzzy signature chosen from the database. If the

preprocessing parameter Da was the same for learning

samples creating the FS and given Sin; the structures can be

directly compared, because of the same number of Xa
Si

sets.

If this condition is not satisfied, the structures cannot be

compared and are treated as different (the level of con-

formity equals 0). The scheme of the phase is depicted in

Fig. 5 where subsets for the two sample a parameter: 0�

and 30�; are presented.

The values of Xa
Sin

and their sizes are taken as an input of

the relevant membership functions of the FS. It is impor-

tant to emphasize that in case of different number of lai
and

lai
; which is a normal situation, elements that cannot be

paired are simply omitted in the process. The problem

occurs for the example on Fig. 5 for l304
and l04

depicted in

frames. Therefore, the results Rai
2 ½0; 1� and RSa 2 ½0; 1�

are obtained, respectively, by the following equations:

Rai
¼ lai

ðlai
Þ; i ¼ 1; 2; . . .; na ð17Þ

RSa ¼ lSað#Xa
Sin
Þ; ð18Þ

where lai
2 Xa

Sin
and assuming lak

for k ¼ 1; 2; . . .;Ka; the

value na ¼ minðKa;#Xa
Sin
Þ:

Calculated results are basis for further processing within

different verification methods that produce one final result R 2
½0; 1�; representing the output level of conformity. In general,

this kind of tasks are performed by operators of aggregation.

Let � represent operator of aggregation as a mapping

� : ½0; 1�I ! ½0; 1� of I values x1; x2; . . .; xI 2 ½0; 1� to one

x 2 ½0; 1�; that is [10]:

x ¼a
I

i¼1

xi ¼ �ðx1; x2; . . .; xIÞ: ð19Þ

Therefore, the general method of signature verification can

be described by the following equation:

R ¼a
amax

a¼0

RSaHT a
na

i¼0

Rai

( )
; ð20Þ

where amax represents the maximum a for Sin and FS; na is

a number of Rai
results for particular a and HT represents

any T-norm [10, 11, 37].

The main idea of the approach is that the influence of the

local results—aggregated Rai
—is controlled by the RSa;

because the fuzzy size ASa is the most important element in

the structure of FS. It can be described as higher in the

hierarchy. For a better result, the sizes of Xa
Sin

have to be

matched first to increase the influence of the lower struc-

ture. Various methods of verification can be obtained from

(20) by applying different � operators.

The most restrictive solution is obtained when aggre-

gation operator is a T-norm. In that case the Eq. (20) takes

the following form:

R ¼FT

amax

a¼0
RSaHTFT

na

i¼0
Rai

� �
; ð21Þ

where FT; as HT ; represents any T-norm. Therefore, the

lowest partial result has the most influence on the output

result like for the classic approach of Mamdani and Assilan

[40]. The method is named ‘‘hard’’, because it absolutelyFig. 5 Scheme of a signature verification
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disqualifies signatures with partial match. On the other

hand, the least restrictive solution is obtained for a mean as

the aggregation operator. In this case the Eq. (20) takes the

following form:

R ¼
]amax

a¼0

RSaHT

]na

i¼0

Rai

( )
; ð22Þ

where ] represents any mean operator. Contrary to previ-

ous one, this method is named ‘‘soft’’, because it allows the

system to obtain results greater than zero in case of partial

matches.

Additional methods are created as a hybrid solution of

the presented above. First, called ‘‘hard-soft’’, assumes a T-

norm as the first aggregation operator and a mean as the

second. Hence, the Eq. (20) takes the following form:

R ¼FT

amax

a¼0
RSaHT

]na

i¼0

Rai

( )
: ð23Þ

The equation for the method called ‘‘soft-hard’’ is obtained

analogically and defined as follows:

R ¼
]amax

a¼0

RSaHTFT

na

i¼0
Rai

� �
: ð24Þ

5.1 Assessment of an input signature

After obtaining the final result R; which is the level of

conformity, an assessment needs to be performed in order

to classify the input signature Sin as genuine/matched or

forged/not matched. In general, two solutions are possible.

The most simple way is to assume one fixed level Rminin
for

the whole recognition system. Unfortunately, as it is easy

to apply, it makes the system insensitive to diversity

between different cases.

The second approach considers each fuzzy signature

separately. In this case every fuzzy signature stored in the

database has a decision level Rmini
assigned, where i ¼

1; 2; . . .;P and P is the number of stored fuzzy signatures

FS: The Rmini
value works as a trigger. When R	Rmini

for

the Sin sample, it is classified as genuine/matched for sig-

nature number i or forged/not matched if R\Rmini
:

In the presented approach the second form of assessment

is applied. The trigger level Rmini
is calculated immediately

after obtaining the fuzzy signature FS and again involves

the learning samples in the process. The idea is to calculate

the level of conformity of the FS with the learning samples

and to adjust the Rmini
to the worst result. It can be

described by the following equation:

Rmini
¼ minðR1;R2; . . .;RLÞð1� DrÞ; ð25Þ

where R1;R2; . . .;RL represent the levels of conformity

obtained for L learning samples. An additional parameter

Dr 2 ½0; 1� is used to allow the system user to define an

extra range where signatures are also classified as genuine/

matched.

6 Results obtained

The described method was implemented in Java program-

ming language using the FUZZLIB library [31–33] as the

set of tools for fuzzy systems development. The designed

application allows the system user to configure many dif-

ferent properties and parameters, which are presented in

Table 3.

Tests were performed for different configuration of

parameters to find the suite of values and properties giving

the best results of FAR and FRR error levels. As the source

of signatures the SVC2004 database was used [49]. It

contains 1,600 signatures of 40 people, where 40 signatures

are assigned to each person (20 genuine and 20 profes-

sionally forged). Unfortunately, performing tests covering

all possible combinations, even for several values of each

Table 3 Configurable properties and parameters of the fuzzy system

Property/

parameter

Description

Verification

method

A type of verification method used to obtain the output level of conformity (‘‘hard’’, ‘‘soft’’, ‘‘hard-soft’’ and ‘‘soft-hard’’)

T-norm A type of triangular norm used in computation (considered types implemented in FUZZLIB library: minimum, product,

nilpotent, Hamacher product and Łukasiewicz t-norm)

Da The angle step of the preprocessing phase—Fig. 1

c The fuzzyfication ratio (8)—influences the width of lai
membership functions

rmin The minimum width of the lai
membership functions—Eqs. (8), (7)

b The range defining the width of edges for the lSa membership functions—Fig. 4 and Eq. (13)

Dr The range of classification (25)

L the number of learning samples
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parameter, is extremely time-consuming because of an

exponential complexity of the problem. That is why in

assessment of the most important parameters of the system

test were executed starting with arbitrarily chosen values

which were modified during the process. In many cases this

kind of method reveals a general influence of one changing

parameter on the obtained results.

Before the tests the problem of the learning samples

number (parameter L) had to be analysed. In general, if

more signature samples of an individual are involved in the

learning process, then the recognition level for signatures

of that person is higher. On the other hand, in case of the

analysed approach, too much samples can generate large

widths of created fuzzy sets making the system too

‘‘fuzzy’’, having a negative impact on the FRR error. It is

caused by the differences between signatures of one per-

son. Secondly, adjusting the system with too big number of

learning signatures is uncomfortable for the user and the

person responsible for the process. Even if it is done only

once, in case of many potential users it could be considered

as a disadvantage of the verification system. That is why

the size of a learning set have to be chosen reasonably by

finding a compromise.

During tests of the presented system it was assumed that

the number of learning signatures should not exceed 5

samples. The decision was based mainly on the small

number of genuine signatures for each individual in

SVC2004 database (20 signatures). In that case, for at least

15 remaining samples, the obtained FRR coefficient can be

considered as representative. That is why the tests were

performed for two values: the highest L ¼ 5; which were

expected to give better results and smaller L ¼ 3 to analyse

the influence of a decreased number of learning samples.

The results presented at Fig. 6 confirm the expectations.

The verification method and the type of T-norm were

analysed next. The best results were obtained for the ‘‘soft-

hard’’ approach and the minimum T-norm. The ‘‘hard’’ and

‘‘hard-soft’’ solutions were rejected at the beginning. The

methods practically adjust the system only to the learning

samples and reject most of the other genuine samples,

which results in a very big FRR and disqualifies the

approaches. The ‘‘soft’’ and hybrid ‘‘soft-hard’’ methods

gave the best results, making the system much more

responsive to adjustment of the parameters. However, only

with the ‘‘soft-hard’’ method the system was able to obtain

a very low FAR for FRR below 25 %. In case of T-norm

analysis, the Lukasiewicz and the nilpotent T-norms

occurred to be too restrictive. These functions assign zero

to lower values of their parameters, which is undesirable

particularly for the ‘‘hard’’ verification method and partial

matching in general. For the product and the Hamacher

product the system produces very low values of conformity

levels, which causes a difficulty in adjustment of Dr: The

problem can be partially solved by increasing c—the

fuzzyfication ratio, which obviously reflects on the FAR

error. This fact causes that the system is less responsive to

changes of the parameters in comparison to the minimum

T-norm.

One of the most important parameters is the Da:
Therefore, the second group of tests were performed with

fixed configuration of other parameters (c; rmin; b; Dr) to

analyse the influence of different Da values. Results

obtained for Da ¼ 1; 2; 3; 5; 10; 15; 20; 30; 35; 40 and 45

are shown in a chart form at Fig. 6.

Fig. 6 FAR and FRR errors

depending on the Da parameter.

Charts obtained for the ‘‘soft-

hard’’ and ‘‘soft’’ methods
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Taking into account both FAR and FRR coefficients it

can be noticed that the highest recognition levels (espe-

cially FAR) were obtained for Da� 25�: Larger values of

the parameter cause a noticeable growth of the FAR

coefficient in particular. Results of FAR for the ‘‘soft-hard’’

approach in the described range are very similar. However,

in case of Da ¼ 25� there is much smaller number of

analysed angles, which gives a much shorter time of

computation (i.e. around 25 times less data to analyse in

comparison to Da ¼ 1�). That is why two values from the

range were chosen for a detailed analysis: Da ¼ 10�

because of the lowest FRR levels and Da ¼ 25� because of

the computation time. For the two chosen angles, the ‘‘soft-

hard’’ verification method and the minimum T-norm, the

remaining parameters of the system were adjusted: fuzzy-

fication ratio c; minimum width rmin; the range b and the

range Dr: The number of learning samples L was set to 5,

because it gave better results in the previous test. Table 4

contains two groups of the best results obtained for FAR

near 0.6 and 1.5 %.

6.1 Computational complexity

The process of creation of the fuzzy signature FS is char-

acterized by a linear time complexity (OðnÞ), according to

the Da parameter. During tests the 2core 2.2 GHz Intel

processor machine was used. The average time of compu-

tation of one fuzzy signature was equal 1.7 ms for Da ¼
10�; and 0.77 ms for Da ¼ 25�: Each FS was created from

five learning samples. An average time of verification for

one signature (Sin) was equal 0.59 and 0.27 ms, respectively.

It is important to emphasize that all numerical tests were

implemented in the Java language and executed within the

Java Virtual Environment. Considering the fact of possible

implementation at non-virtual platform it gives hope for

much shorter times of computation.

7 Conclusions

As it was mentioned in the introduction, one goal of the

paper was to define an automated process of signature

analysis for biometric classifiers, where machine learning

methods can be used. The present paper formulates the

appropriate structure of such method and describes all the

phases needed to build a fuzzy system dedicated for signa-

ture verification. The proposed method can be applied in the

environment, where input signatures, even of the same

person, are characterised by a large differences and for this

reason cannot be accurately recognized using other meth-

ods. The high FRR ratio causes that the technique is destined

for important security systems, where FAR errors should be

very low. It must be emphasised that a very good result of

FAR obtained for the presented solution stands against the

common opinion that the off-line methods are easy to forge.

Another advantage of the approach, certainly very

important for security systems, is the characteristic pre-

processing phase, which greatly increases the safety level

of information stored in the database. In case of a data theft

the intruder has an access to a processed form of signatures,

which cannot be used to recreate the original. In addition,

small time complexity of the algorithm gives hope for a

further development of the method, which can be applied

in various domains.
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tribution, and reproduction in any medium, provided the original
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