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Abstract In this paper, biometric methods for contactless

and unrestricted access control for mobile devices are

proposed. The major contribution of this paper are palm-

print and knuckles feature extraction methods dedicated for

the mobile contactless biometrics. We use texture mask-

based features for the palmprint. For the knuckles, we use

Probabilistic Hough Transform and Speeded Up Robust

Features as well as the 3-step classification methodology.

We prove the efficiency of the presented methods by

reporting promising results.

Keywords Pattern recognition � Biometrics �
Emerging biometric modalities � Palmprint biometrics �
Knuckle biometrics

1 Introduction

Even though biometric identification systems have become

reality and are no longer science-fiction visions, only

several modalities have been widely deployed and such

systems still have many drawbacks. The most known and

often used modalities are fingerprints, face, hand geometry

and iris. These are widely deployed in large-scale systems

such as border control and biometric passports. But due to

the problems with large-scale scalability, security, effec-

tiveness and, last but not least, user-friendliness and social

acceptance, new emerging modalities are still needed.

Moreover, most current biometric systems and deploy-

ments are not passive nor restrictions-free. For the image

based system to work properly, lots of conditions usually

have to be fulfilled. Users are requested to touch devices

(such as plates with pegs in hand and palm state of the art

biometric systems) or stand in certain distance to cameras

in specified lightning conditions. In order to gain large

acceptance, the biometric systems should work in a

seamless way in the unconstrained environment (not

imposing any requirements and limitations on users). For

users, but also for the system integrators and operators, the

cost and usage of widely accepted devices is also crucial.

Contactless biometrics answers postulates of seamless,

unconstrained and low-cost systems. Moreover, contactless

biometrics addresses user needs since they do not like to

touch acquisition devices. Furthermore, the usage of

mobile devices (cellphones, androids, handhelds) for bio-

metrics is interesting both for users and system/service

providers (due to low cost, wide acceptance and penetra-

tion, mobility and user-friendliness).

Our methods can be used in mobile biometrics scenario

since mobile end-terminals portfolio has exploded with

devices providing greater functionality and usability with

more processing power on board. Biometric human iden-

tification using contactless unsupervised images will very

soon become emerging application.

Therefore, hereby we propose palmprint and knuckle

biometric methods designed for contactless biometric

identification using handheld devices and mobile phones

equipped with cameras (sample images are shown in

Fig. 1).

The proposed methods analyze palm and knuckle tex-

ture from images acquired by mobile devices.

The paper is structured as follows: in Sect. 2 the related

work in palmprint and knuckles human identification is

overviewed. In Sect. 3.1 palmprint segmentation method

from photos acquired by mobile phones (with no
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restrictions) is presented. In Sect. 3 palmprint feature

extraction methodology is presented. Feature extraction

method designed for mobile devices is proposed in

Sect. 3.2. In Sect. 4 knuckles feature extraction algorithms

are described. Then results for palmprint and knuckles

biometrics are shown in Sects. 5.1 and 5.2, respectively.

Conclusions are given thereafter.

2 Related work

There are already several palmprint based methods that

showed high accuracy in representing the identity of each

individual [1–3].

Palmprint identification methods can be divided into

three main groups: methods based on texture features, palm

shape features and hybrid engaging both texture and shape

information. Among them the code-based approaches give

promising results.

In [4] authors proved that code-based methods have high

recognition precision while small size of features allowing

for fast feature extraction and matching. Recently, two

coding schemes have been reported as having very good

performance. These are competitive coding [5] and ordinal

coding [6] schemes.

In [5] authors additionally stressed the fact that most of

code-based approaches suffer from lack of multi-scale

characteristics of domain palm lines. Therefore, they pro-

posed to model the problem as spares code learning,

refraining from typical convolution approaches used to

filter coefficients evaluation.

Similar problem is presented in [7], where authors

introduced a novel approach which engages correlation

filters per class, which give sharp peak for instances

belonging to learning class and noisy output otherwise. In

[8] authors aimed at improving hand-geometry-based

approaches by employing discretization of features using

entropy-based heuristics. The results showed that this

approach allows to increase the overall effectiveness.

However, engaging both hand-geometry and texture

features seems a promising strategy as it was proved in [9].

In [10] authors presented methodology for combining

palmprint texture features with palmprint polygonal shape

features that resulted in better identification results than for

texture features only.

Nowadays, most hand and palmprint biometric systems

are supervised and require contact with the acquisition

device. Currently, only few studies have been devoted to

unsupervised, contactless palm images acquisition and

hand pose invariance [11, 12]. In [13] authors proposed a

system that uses color and hand shape information for hand

detection process. Authors also introduced a new approx-

imated string matching techniques for biometric identifi-

cation, obtaining promising EER lower than 1.2%. In [14]

authors proposed sum-difference ordinal filters to extract

discriminative features, which allow to verify the palmprint

identity in less than 200 ms, without losing the high

accuracy. Such fast feature extraction algorithms are ded-

icated for smart phones and other mobile devices.

Hereby, we propose to use palmprint in the contactless

biometric system for mobile devices (unsupervised,

uncontrolled image acquisition by mobile cameras). To

achieve such goal, the proposed methods have to be not

only effective, but also computationally robust to be

applied on mobile devices.

In the proposed palmprint biometric system, we are

using our own palmprint database that contains pictures of

right hands. Each of these images is preliminary processed

to extract the most relevant palmprint features (wrinkles,

valleys, life line). Then the squared palmprint region of

interest is extracted and used to compute properties of the

texture. A set of three-valued functions is created. Each of

those functions is correlated with the palmprint to obtain

the coefficient values. Each coefficient stands for single

element in the final feature vector.

Moreover, for the system to be more effective and

multimodal, we also tested the possibility of using knuckles

for human identification. Knuckles are relatively new and

Fig. 1 Examples of palmprint

images acquired by mobile

phone camera
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emerging biometric modality that could enhance hand-

based biometric systems [15, 16, 19]. We proposed to use

knuckle texture feature extraction methods and we

achieved promising results.

Knuckle is a part of hand, and therefore, is easily

accessible, invariant to emotions and other behavioral

aspects (e.g. tiredness) and most importantly is rich in

texture features which usually are very distinctive. Knuckle

biometrics methods can be used in biometric systems for

contactless and unrestricted access control e.g. for med-

ium-security access control or verification systems dedi-

cated for mobile devices (e.g. smartphones and mobile

telecommunication services).

The sample knuckle image from IIT Delhi Database is

presented in Fig. 2 (http://webold.iitd.ac.in/*biometrics/

knuckle/iitd_knuckle.htm).

Even though knuckle biometrics is relatively unknown

and new modality, there are already some feature extrac-

tion methods and results published. So called Knuckle-

Codes have been proposed and other well known feature

extraction methods such as DCT , PCA, LDA, ICA, ori-

entation phase, Gabor filters have been investigated with

very good identification results [16–22].

Hereby, we propose to use texture feature extraction

methods such as Probabilistic Hough Transform (PHT) and

Speeded Up Robust Features (SURF) and the original

3-step classification methodology [23, 24].

3 Contactless palmprint biometrics

3.1 Palmprint segmentation and extraction

Acquired palmprint images (Fig. 1) need to be pre-pro-

cessed in order to perform successful palmprint extraction

process. Firstly the skin color is detected. This procedure

allows to reduce influence of unwanted elements (such as

reflection) in the background on proper palmprint detection

process. The skin detection is based on the following set of

conditions: (R, G, B) is classified as skin if R [95 and

G [40 and B [20 and max(R, G, B)min (R, G, B) [15

and |R - G| [15 and R [ G and R [ B.

This approach resulted in correct skin detection for all

the images.

After skin detection procedure the image is gently

blurred to obtain softer extracted region’s edges. Then the

image is binarized to separate the palm from the back-

ground and to label palm as 1 and background as 0.

After preliminary processing, we applied the algorithm

to find the most significant points of the palm. Sample

result of palm significant points detection is presented in

Fig. 3.

The P.0 point is the closest pixel of palm region to the

top edge of the image. The next points marked as P.1, P.2,

and P.3 are found by moving along the palm edge, starting

from the point P.0. The criterion to mark these points as

significant is the local minimum of the analyzed pixels

distance to the bottom edge of the picture. The points P.5,

P.6 and P.7 are found by detecting the first background

pixel on line L3, L4, and L2, respectively. The line marked

as L1 is created from points P.1 and P.4, and it is used as a

Fig. 2 Sample knuckle images

from IIT Delhi Database

(http://webold.iitd.ac.in/

*biometrics/knuckle/

iitd_knuckle.htm)

Fig. 3 Palm significant points detection
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reference to find the other lines (L2, L3 and L4). The lines

L2 and L3 are found by rotating the line L1 by 30� and 60�,

respectively, using P.1 as pivot point. The line L4 is found

by rotating the line L1 by 60� using P.4 as pivot point.

Detected significant points mark the area of palmprint

(all the points excluding P.0). To solve a problem of palm

rotation, we implemented the procedure to find the angle of

rotation and to apply new rotation in the opposite direction.

The result of rotation elimination procedure is shown in

Fig. 4.

Such pre-processed image is the input of our palmprint

extraction algorithm. Hereby, we use our original meth-

odology, in which square-shape palm detection is merged

with polygon-shape palm detection. Marked points are

used to extract the palmprint of the polygonal and rectan-

gular shape. The results of our palmprint detection algo-

rithm are presented in Fig. 5.

The rectangular palmprint extraction algorithm is based

on the information gained during the preliminary process-

ing phase (palmprint rotation angle and position of the

points P.1 and P.4) and its result is presented in Figs. 6, 7.

In our previous work, we combined rectangular palm

features with polygon palm shape features [10]. In this

work, designed for mobile phones and handhelds, we use

only rectangular palms as the input for further feature

extraction steps.

Fig. 4 Rotation elimination

procedure

Fig. 5 Polygonal and

rectangular palms
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3.2 Feature extraction method for mobile devices

based on three-valued base functions

Nowadays, most hand and palmprint biometric systems are

supervised and require contact with the acquisition device.

But, hand features, palmprint and knuckles can be used in

passive and contactless biometric system.

In the paper two-dimensional discrete functions are

proposed to construct base of vectors fv1; v2; v3; . . .; vNg
that will be used to project each of palmprint

fp1; p2; p3; . . .; pKg on to the new feature space, where K is

the number of images that build the learning data set, and

N is the number of masks that will be used for the

projection.

In other words, we answer the question how much the

kth plamprint is similar to vk by computing the projection

coefficients akn. This is achieved by computing the dot

product of vn and palmprint pk. The formula is described by

Eq. 1.

akn ¼ ðpk � vnÞ ð1Þ

Each of projection coefficients creates the final feature

vector described by Eq. 2. The wk vector is used to

represent single palmprint image and it is stored in the

database.

wk ¼ ðak1; ak2; ak3; . . .; aKNÞ ð2Þ

The length of each vector wk is constant and strictly

connected to the size of the v vectors set. The two-

dimensional masks are three-valued (-1, 0, 1) functions.

Some examples of these masks are shown in Fig. 8.

The idea of the three-valued masks refers to Haar-like

functions proposed by Viola and Jones [25]. The advantage

of such functions is the fact that those can be computed in

the near real-time thanks to the integral images.

In this paper we decided to use three valued masks

(instead of two-valued Haar-like functions), since we

noticed that palmprint images contain not only very bright

or dark features, but also gray areas where texture varies

very slightly.

Each of the masks, shown in Fig. 8, can be described by

the two-dimensional matrix. The example is shown in

Fig. 9.

3.3 Methods for generating mask functions

The biggest advantage of the three-valued masks is that

those can be computed in near real time using integral

images.

However, the major problem with the proposed

approach, is to choose the appropriate set of masks

describing significant features of the palmprint. The second

problem is to choose the appropriate size of the masks.

It was expected that masks with low resolution (9 9 9

and less) describe low frequency features such as valleys,

while masks with high resolution describe high frequency

properties (wrinkles or position and shape of life line).

Fig. 6 Rectangular palmprint

extraction approach

Fig. 7 Significant points of the palmprint geometry
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To solve the task of choosing the appropriate masks,

three strategies were investigated:

– Masks are generated randomly (3.3.1),

– masks are built by human (3.3.2),

– masks are generated using eigen-palms, that were

achieved after palmprints PCA decomposition (3.3.3).

3.3.1 Random masks

This strategy is the simplest of all the proposed above. It is

based on the following algorithm:

1. Define the upper and lower masks resolution

boundaries.

2. Define the number of masks to be created.

3. Define how many non-zero values the masks should

have.

4. Generate random size of the two-dimensional matrix.

5. Set all the positions in the matrix to zero.

6. Choose (randomly) some position in the matrix and

set it (randomly) to -1,0 or 1.

7. Repeat the step 6 till condition specified in step 3 is

satisfied.

8. Repeat steps from 4 to 7 till the condition specified in

step 2 is satisfied.

9. Generate feature vectors for each palm.

10. Compute FAR, FRR and classification error.

11. Repeat steps 2–10 till satisfactory FAR and FRR are

achieved.

3.3.2 Manually selected features

In this step several people were involved to generate the

feature masks. Each person was asked to label the very

dark area as -1, the bright area as 1, and the rest of the

palmprint area as 0. Each person was also free to decide

about the masks resolutions. The GUI shown in Fig. 10

was created for users convenience.

Each person was responsible for generating at least

50 masks. The process was repeated several times to

achieve several sets. Each set was used to create feature

vectors. Each set of feature vectors was tested against FAR,

FRR and classification error values to choose the best one.

3.3.3 Eigen-palms extraction

In this strategy the principal component analysis (PCA) is

employed to produce the eigen-palms from learning data

set [26].

PCA is a statistical technique that is successfully

adopted to solve such tasks as face recognition, image

compression or finding patterns in data of high dimen-

sionality. In this method, it is assumed that variance

implies importance, what is found useful from our point of

view (we have grayscale palmprints with varying

luminance).

Firstly, the mean palmprint is computed from the

learning data as an essential part needed to build the

covariance matrix of palmprints. Then the matrix is

decomposed to eigenvectors and eigenvalues. The eigen-

vectors are also called eigen-palms. The eigenvalues give

information about how important is the role of each

eigenvector (eigen-palmprint) in the covariance matrix (the

greater the value, the more important is the particular

eigenvector).

Fig. 8 Examples of 5 9 3 three-valued masks

Fig. 9 Representing the mask by 2D matrix
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In Fig. 11, there are shown sample eigen-palms created

by PCA decomposition of the learning data set. The eigen-

palms (with the highest eigenvalue) were chosen as refer-

ence for creating the three-valued masks.

In Fig. 12, there are examples of feature masks created

from the reference eigen-palms. The masks dimensionality

was changed during several experiments to find the relation

between its size and system effectiveness (Fig. 13).

4 Knuckle biometrics methodology

In order to increase system identification robustness, we

propose to use the multimodal approach in which palmprint

texture features are merged with knuckles texture features.

However, due to the lack of palmprint and knuckle

images for the same set of subjects, we decided to use IIT

Delhi Knuckle Database to evaluate our approach [18, 19].

Firstly, the knuckle image is obtained from individuals

requesting access to the system. The knuckle image is

preliminary processed to gain the characteristic features.

The preprocessing includes both edge detection and

thresholding. The image is further analyzed by means of

PHT, which is used both for determining the dominant

orientation and for building the basic feature vector. We

also calculate enhanced feature vector using PHT output

giving the input for final classifier which uses the SURF

texture features. Then the 3-step classification methodol-

ogy is applied (in a broad-narrow manner). For computed

‘‘basic feature vector’’ nearest neighbors yielding the

Fig. 10 The ‘‘mask creator’’

application and the 3D mask

representation

Fig. 11 Examples of eigen-palms with the highest eigenvalue

Pattern Anal Applic (2012) 15:73–85 79

123



shortest Euclidean distance are chosen. For each image in

kNN set the complex feature vectors are compared. The

approach with kNN allows to decrease the complex com-

putations without losing the overall system effectiveness

(as discussed in details in Sect. 5).

4.1 Preprocessing—lines extraction

The most noticeable knuckle texture features are the lines

and wrinkles located on bending area of finger joints (see

the first row in Fig. 17).

Therefore, in our methodology we focused on extracting

those lines. Firstly, the image is binarized using an adaptive

threshold estimated by means of Eq. 3:

T ¼ l� d
6
; ð3Þ

where T indicates the threshold value, l the mean value

and d the standard deviation. Both the mean value and the

standard deviation are computed locally in blocks of 7 9 7

pixels.

The result of adaptive thresholding is shown in Fig. 15b.

It can noticed that such an image is quite noisy, since some

edges suffer from line discontinuities while the background

is filled with small spots. This problem is solved by

adapting the PHT.

PHT is a modification of classical Hough transform

(HT). It was first introduced by Matas et al. [23]. PHT tries

to minimize the computation requirements by repeatedly

selecting a random point (in contrary to classical HT point-

by-point approach) for voting. For each selected pixel the

accumulator is updated. If the value is higher than prede-

fined threshold, then line is searched in corresponding

Fig. 12 Examples of 8 9 8

masks created from eigen-palms

used as reference

Fig. 13 Eigen-palm and its

approximations (mask’s

dimensionality of

4 9 4, 8 9 8, and 12 9 12,

respectively)

Fig. 14 Examples of SURF

points detection for knuckles

images
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direction and pixels are successively removed from input

image. The procedure is repeated until input image is not

empty [27, 28].

Later, we also use PHT to extract the dominant orien-

tation and build the ‘‘basic feature vectors’’.

4.2 Basic features

The basic feature vector describing the knuckle texture is

built using the PHT output information, which contains set

of line descriptors represented by formula 4, where

LDi(N) stands for N-th line descriptor of i-th image, (bx, by)

are the Cartesian coordinates of line starting point, (ex, ey)

are the Cartesian coordinates of line end point, h is the

angle between the line normal and the x-axis, and d is the

particular line length expressed in pixels.

The number of extracted lines (N) depends strictly on

knuckle spatial properties and varies. Therefore, it is not

directly used to build feature vector.

LDiðNÞ ¼ ½bxN ; byN ; exN ; eyN ; hN ; dN � ð4Þ

Due to the fact that the particular knuckle may be

rotated, the dominant orientation based on Hough

transform is extracted using the h angle from the line

descriptors. It is used to rotate the analyzed image in

opposite direction to align the dominant line perpendicular

to y-axis. After that the y position of particular line and its

length is used to build the feature vector. The 30-bins 1D

histogram is adapted as it is shown in Fig. 16. Such

approach is based on the fact that the longest and

characteristic lines of knuckle are concentrated around

one rotation angle (as proved in Fig. 18).

The vectors described in this section were named

‘‘basic’’ since these are relatively short (one row vector of

length 30) and are used for general data set clustering to

decrease the number of computations and comparisons of

complex features vector in further phases of our human

identification system.

4.3 Knuckle line model obtained from PHT

The set of line descriptors (Eq. 4) obtained from Hough

transform is converted to image representation giving input

for matching algorithm as it is shown in Fig. 19.

Both query and template images (chosen from kNN

selected by basic feature classifier) are transformed and

compared using the Euclidean metric. The output of

matching block is the scoring map, which is of size

30 9 30. This size is determined by search ranges. In this

case, the template image is offset in h- 15, 15i range both

in x and y dimension as is it defined by formula 5, where

i and j define the element in scoring map, H and W define

query image width and height, while q and t represent

query and template images, respectively.

scoreði; jÞ ¼
XW

x¼0

XH

y¼0

ðqðx; yÞ � tðxþ i; yþ jÞÞ2 ð5Þ

The lowest score (the shortest distance) is selected. It

gives the information about how the query image is similar

to the template, and allows to handle offsets in knuckle

images. This step is necessary, since the knuckle database

images are acquired using peg-free method (http://webold.

iitd.ac.in/*biometrics/knuckle/iitd_knuckle.htm).

Then five images from kNN set yielding the lowest score

are chosen as the input for SURF-based classifier.

Fig. 15 The knuckle image

example (a), enhanced major

lines after thresholding (b), and

the lines detected by PHT (c)

Fig. 16 The basic feature vector is built using the PHT output and the

1D histogram
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4.4 SURF features

The SURF stands for SURF. It is robust image detector and

descriptor. It was firstly presented by Herbert Bay in 2006

[24]. Nowadays, it is widely used in object recognition and

3D reconstruction.

The key-point of the SURF detector is the determinant

of the Hessian matrix, which is the matrix (Eq. 6) of partial

derivatives of the luminance function.

r2f ðx; yÞ ¼
o2f
ox2

o2f
oxoy

o2f
oxoy

o2f
oy2

" #
ð6Þ

detðr2f ðx; yÞÞ ¼ o2f

ox2

o2f

oy2
� o2f

oxoy

� �2

ð7Þ

The value of the determinant (Eq. 7) is used to classify the

maxima or minima of the luminance function (second order

derivate test). In the case of SURF, the partial derivatives are

calculated by convolution with the second order scale

normalized Gaussian kernel. To make the convolution

operation more efficient, the Haar-like functions are used to

represent the derivate.

If the determinant value is greater than the threshold

(estimated during experiments on learning data set), then it

is considered as fiducial point. The greater the threshold is,

the less points (but strong ones) are detected. For each of

the fiducial points the texture descriptor is calculated.

Fig. 17 Sample knuckle

images and their representation

after applying PHT transform

Fig. 18 Line rotation histogram. The x-axis indicates the line rotation

while the y-axis indicates the cumulative lines length

Fig. 19 During the procedure of PHT models matching a map of

distances is generated and the closest match is chosen
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In our approach, we use the SURF points to find the

closest match (if any) between query image and the tem-

plates selected by PHT-based classifier. Firstly, the points

yielding the Hessian determinant value greater than the

threshold are selected for both query and template images

resulting in two points data set. Basing on texture

descriptors, the matching pairs between those sets are

found and the outliers (points in one data set that do not

have representatives in the second data set) are removed.

Then the matching cost between those sets is estimated

using Eq. 8:

mcost ¼
XN

i¼0

d pi �
1

N

XN

j¼0

pj; qi �
1

N

XN

j¼0

qj

 !
; ð8Þ

where N, d, p and q represent the number of matching

pairs, Euclidean distance, point from template image and

point from query image, respectively. Example of such

mapping is shown in Figure 20.

4.5 Classification

Hereby, we propose classification methodology that con-

sists of 3 steps. Firstly, 50 images are selected on the basis

of the basic feature vector. Then 5 images are selected on

the basis of PHT feature vector. Finally, SURF feature

vector is used to select 1 image.

When basic feature vector is computed for the particular

knuckle image, it is looked up in database to find k nearest

neighbors yielding the nearest Euclidean distance. The

k number was determined empirically as compromise

between system effectiveness and system performance.

Figure 21 shows that the classification error is decreasing

significantly when the number of neighbors (k) is

increased. On the basis of our experiments, we set this

number to 50.

For each object form k nearest neighbors, the PHT-based

method is used to obtain five closest matches. For each of

these images only one is chosen. In case the SURF-based

classifier fails and is unable to find matching template, then

the first nearest neighbor obtained from PHT is returned

with appropriate matching score.

5 Results

The experiments and results of the proposed palmprint and

knuckle feature extraction methods are reported in

Sects. 5.1 and 5.2, respectively.

During experiments the system threshold value was

estimated to provide the lowest false acceptance ratio

(FAR) that would be equal to false rejection ratio (FRR).

5.1 Mask-based palmprint biometrics for mobile

devices

In experiments we used our own database consisting of 252

images (there are 84 individuals, for each individual there

are 3 images of the right hand). Standard mobile devices

have been used (Canon, HTC, Motorola) and the resolution

of images is 640 9 480.

The 10% of individuals in database were used as

impostors, while the remaining 90% of images were used

as genuine samples (one sample for testing and rest for

registration).

The mask-based method effectiveness is evaluated in

Fig. 22. The characteristics show that applying more than

50 masks does not increase the system effectiveness, which

is important from computational overhead point of view.

However, the mask resolution affects the system

robustness more significantly. Increasing three times the

width and height of masks (from 15 9 15 to 45 9 45)

allows to reduce FAR and FRR from 3.4 to 1.7%.

During the experiments the mask extraction method was

also evaluated against the system effectiveness. The results

are shown in Fig. 23.

The experiments showed that humans fail to select more

than 50 masks that will yield satisfactorily low error rates.

Fig. 20 Detected fiducial SURF points for queering image and their

corresponding matches for the template image

Fig. 21 Classification error versus the number of nearest neighbors
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This results might be influenced by the nature of the task

(subjects were not trained) and by task complexity.

Humans had difficulties in proper modeling of the masks.

The method based on randomly crated features masks

yields fairly good results what is probably caused by lack

of additional algorithm that would search for minimum

FAR, FRR and CE errors. We think that employing genetic

algorithm for this task may be sufficient and may give

better results.

After evaluation, we found out that the best results were

achieved by eigen-palms (PCA) approach.

5.2 Knuckle biometrics

In the performed experiments, we set up the following

classification strategy:

1. to select 50 images on the basis of basic vector,

2. to select five images on the basis of PHT feature

vector,

3. to select one closest match using SURF descriptor.

The proposed approach was tested using IIT Delhi

Knuckle Database (http://webold.iitd.ac.in/*biometrics/

knuckle/iitd_knuckle.htm). The knuckle images were

obtained from 158 individuals. Each individual contributed

five image samples which implies 790 images in database.

The database was fully acquired over a period of

11 months.

For efficiency assessment the fivefold method was

applied (the same method as the authors of the database

applied in [20]) and average of experiments results is

presented. The average equal error rate obtained during

experiments is 1.02%.

The Table 1 shows the EER deviation from its mean

value and EER during each of experiments. The FAR and

FRR versus system threshold for one of the experiments is

shown in Fig. 24.

The PHT gave 95.56% classification error while the

SURF gave 85.75%.

The SURF method failed so often due to the fact it was

unable to find match between query knuckle image and the

template. Those fails were covered by PHT. However, the

PHT failed when it came to distinct between two or more

similar knuckles in k nearest neighbors. In this situation

SURF was more accurate.

The experiments show that combination of PHT and

SURF gives better results than each of this method used

separately. The obtained results suggest that the used

Fig. 22 Number of masks versus system effectiveness for different

mask sizes

Fig. 23 FAR and FRR versus system effectiveness for different

masks extraction approaches

Table 1 ERR obtained during experiments

Test 1 2 3 4 5 Avg. EER

EER 0.32 1.30 0.95 1.26 1.26 1.02

STD 0.5

Fig. 24 Knuckle biometrics: FAR versus FRR
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simple and fast line and texture extraction techniques are

promising and give satisfactory results.

6 Conclusions

In this article, our developments in palmprint segmentation

and feature extraction for human identification are pre-

sented. Moreover, we presented new approach to knuckle

biometrics.

We showed that both palmprint and knuckles features

may be considered as very promising biometric modalities

which can be used in contactless human identification

systems. Our goal was to propose efficient algorithm that

can be run on mobile devices.

In this paper we showed the results for palmprint and

knuckles biometrics, but on separate databases. Now we

work on creating multimodal hand–palm–knuckle database

acquired by mobile phones cameras in unrestricted (real-

life) conditions.

Our methods can be used in mobile biometrics scenario

since mobile end-terminals portfolio has exploded with

devices providing greater functionality and usability with

more processing power on board. It is estimated that by

2015 all the sold mobile handsets will be ‘‘smart’’ [29].

We believe that biometric human identification using

contactless unsupervised images will very soon become

important application.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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15. Choraś M (2007) Emerging methods of biometrics human iden-

tification. In: Proc. of ICICIC 2007. IEEE CS Press, Kummamoto

16. Morales A, Ferrer MA, Travieso CM, Alonso JB (2007) A

knuckles texture verification method in a transformed domain. In:

Proc. of 1st Spanish workshop on biometrics (on CD), Girona

17. Kumar A, Ravikanth Ch (2009) Personal authentication using

finger knuckle surface. IEEE Trans Inf Forensics Secur 4(1):

98–110

18. Kumar A, Zhou Y (2009) Human Identification using knuckle

codes. In: Proc. of BTAS

19. Kumar A, Ravikanth Ch (2009) Personal authentication using

finger knuckle surface. IEEE Trans Inf Forensics Secur 4(1):

98–110

20. Kumar A, Zhou Y (2009) Personal identification using finger

knuckle orientation features. Electron Lett 45(20):1023–1025

21. Zhang L, Zhang L, Zhang D, Hailong Zhu H (2010) Online

finger–knuckle–print verification for personal authentication.

Pattern Recognit 43(7):2560–2571

22. Zhang L, Zhang L, Zhang D (2009) Finger–knuckle–print veri-

fication based on band-limited phase-only correlation. In: Pro-

ceedings of the 13th international conference on computer

analysis of images and patterns, pp 141–148

23. Matas J, Galambos C, Kittler JV (2000) Robust detection of lines

using the progressive probabilistic Hough transform. CVIU

78(1):119–137

24. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust

features. In: Proc. of European conference on computer vision,

vol 1, pp 404–417

25. Viola P, Jones M (2001) Rapid object detection using a boosted

cascade of simple features. In: Proc. of computer vision and

pattern recognition, CVPR 2001, vol 1, pp 511–518

26. Kumar A, Shen HC (2003) Recognition of Palmprint using

Eigenpalms. In: Proc. of CVPRIP 2003, Cary (North Carolina)

27. Guo SY, Kong YG, Tang Q, Zhang F (2008) Probabilistic Hough

transform for line detection utilizing surround suppression. In:

Proc. of international conference on machine learning and

cybernetics, 2008, vol 5, pp 2993–2998

28. Galambos C, Kittler J, Matas J (2001) Gradient based progressive

probabilistic Hough transform, vision, image and signal pro-

cessing. IEE Proc 148(3):158–165

29. Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update, 2009–2014, White Paper, 2010

Pattern Anal Applic (2012) 15:73–85 85

123


	Contactless palmprint and knuckle biometrics for mobile devices
	Abstract
	Introduction
	Related work
	Contactless palmprint biometrics
	Palmprint segmentation and extraction
	Feature extraction method for mobile devices based on three-valued base functions
	Methods for generating mask functions
	Random masks
	Manually selected features
	Eigen-palms extraction


	Knuckle biometrics methodology
	Preprocessing---lines extraction
	Basic features
	Knuckle line model obtained from PHT
	SURF features
	Classification

	Results
	Mask-based palmprint biometrics for mobile devices
	Knuckle biometrics

	Conclusions
	Open Access
	References


