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Abstract The extended Stokes parameters for arbitrary

cylindrically polarized beams are newly introduced to

evaluate their quality. A set of the parameters, expressing a

cylindrically polarized state, permits the definition of the

degree of polarization that indicates the purity of the spatial

symmetry of polarization of a light beam. In addition, the

Pancharatnam–Berry phase related to the cylindrically

polarized states is described by the new Stokes parameters.
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Cylindrically polarized (CP) beams [1] are laser mode

beams whose polarization distributions have symmetry of

rotation about the beam axis. These beams, including ax-

isymmetrically polarized beams (such as a radially polar-

ized beam) and anti-vortex beams, are promising mode for

vector-vortex-mode-division multiplexing in optical com-

munications [2, 3]. They have been consequently generated

in a lot of studies [4, 5] so far. For establishing vector-

vortex-mode-division multiplexing technology, quantita-

tive evaluation of the CP beams is significantly important.

Earlier researches have introduced the high-order [6, 7]

and the hybrid [8] Stokes parameters to characterize the CP

beams. These parameters, however, cannot be responsible

for the local deviation in the symmetry of CP states, which

often appears in experimental measurements. To overcome

this issue, we have introduced the extended Stokes pa-

rameters (ESPs) for the polarization states with C1 sym-

metry in consideration of the local deviation of the

symmetry [9]; on the other hand, the CP states other than

with C1 symmetry have not yet been covered.

In the present paper, we extend the coverage of the ESPs

so that they describe the CP beams without C1 symmetry.

As a natural extension of the degree of polarization (DOP)

from the ordinary Stokes parameters, we define the spatial

DOP from the introduced ESPs, which represents a mea-

sure in the purity of the symmetry of a CP beam. Fur-

thermore, we discuss the Pancharatnam–Berry geometric

phase [10] for the new ESPs.

We use the following CP basis to define ESPs:

el
r ¼

cosðl/Þ
sinðl/Þ

� �
; el

/ ¼
� sinðl/Þ
cosðl/Þ

� �
; ð1Þ

where l is an integer value to distinguish the CP basis, and

/ is the azimuthal angle arctanðy=xÞ: The CP basis contains

the Cartesian coordinates (l ¼ 0) and the cylindrical coor-

dinates (l ¼ 1). The CP basis for l ¼ 1 and l 6¼ 1 have

respectively C1 and Cjl�1j symmetries. The polarization

states expressed by the former has been reported in the

previous paper [9]; hence, here we describe the polariza-

tion states represented by the latter.

A superposition of lth CP basis can provide circular

polarized optical vortex basis:

el
� ¼

e�il/ffiffiffi
2
p 1

�i

� �
¼

el
r � iel

/ffiffiffi
2
p : ð2Þ

Here, for a paraxial light wave propagating in þz direction,

we decompose its electric field components into the lth

M. Suzuki (&) � K. Yamane � K. Oka � Y. Toda � R. Morita

Department of Applied Physics, Hokkaido University, Kita-13,

Nishi-8, Kita-ku, Sapporo 060-8628, Japan

e-mail: masato_suzuki@eng.hokudai.ac.jp

K. Yamane � Y. Toda � R. Morita

JST, CREST, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628,

Japan

123

Opt Rev (2015) 22:179–183

DOI 10.1007/s10043-015-0023-7



radial component El
r and the lth azimuthal component El

/

in lth CP basis, as expressed by,

E r;/; z; tð Þ ¼ El
r r;/; z; tð Þel

r þ El
/ r;/; z; tð Þel

/

ðr 6¼ 0 where l 6¼ 0Þ:
ð3Þ

It is noted that El
r and El

/ can be described by the sum of l-

topological-charge Laguerre–Gaussian modes with pth ra-

dial index without the phase ramp [1]. A polarization state

is not determined at the point of r ¼ 0 if l 6¼ 0, thus we

exclude the r ¼ 0 point for the decomposition. We define

Stokes parameters (SPs) for CP beams, as natural exten-

sions of the ordinary Stokes parameters [11]:

sl
0 r;/; zð Þ ¼ El

r

�� ��2þ El
/

��� ���2
� �

T

; ð4Þ

sl
1 r;/; zð Þ ¼ El

r

�� ��2� El
/

��� ���2
� �

T

; ð5Þ

sl
2 r;/; zð Þ ¼ El�

r El
/ þ El

rE
l�
/

D E
T
; ð6Þ

sl
3 r;/; zð Þ ¼ �i El�

r El
/ � El

rE
l�
/

D E
T
; ð7Þ

where the symbol h. . .iT represents the time average.

The DOP defined from these parametersffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsl

1Þ
2 þ ðsl

2Þ
2 þ ðsl

3Þ
3

q
=sl

0 has the same meaning of that of

the ordinary (l ¼ 0) Stokes parameters; the purity of po-

larization with respect to time [12]. We refer to this DOP as

PSPs
l defined from lth SPs.

Now we introduce our new ESPs, defined in the

following:

SE
i;lðzÞ ¼

ZZ
A

sl
iðr;/; zÞrdrd/ ði ¼ 0� 3Þ; ð8Þ

which are the integrals of SPs in the beam cross-section.

Their physical significance will be discussed later. The area

A should be large enough to cover the entire beam. Table 1

summarizes the notation of various Stokes parameters.

These parameters are useful for analyzing polarization

distribution of a laser beam in its cross-section. We have

discussed linear and nonlinear propagation of an axisym-

metrically polarized mode with C1 symmetry in a uniaxial

crystal along its optic axis in ref. [9].

Our ESPs define the spatially averaged DOP that takes

into account of the purity of the cylindrical symmetry,

whereas the high-order [6, 7] and the hybrid [8] Stokes

parameters are for the perfectly symmetrical polarization

states. In this part, we describe the coherency matrix con-

sisting of time and space averages of electric field com-

ponents. This coherency matrix gives the new DOP from

the ESPs in the same way that the ordinary coherency

matrix provides the definition of DOP P [12, 13].

The coherency matrix for lth CP basis (hereafter, the lth

coherency matrix) is written by the following equation,

JlðzÞ ¼
Jl

rrðzÞ Jl
r/ðzÞ

Jl
/rðzÞ Jl

//ðzÞ

 !
: ð9Þ

In the manner similar to the conventional coherency ma-

trix, the components of the lth coherency matrix are de-

fined by Jl
ijðzÞ ¼ hEl

iE
l�
j iTSði; j ¼ r;/Þ; where the bracket

h. . .iTS means time and space (ðr;/Þ plane) average:

f ðr;/; z; tÞh iTS¼
ZZ

A

hf ðr;/; z; tÞiTrdrd/
.ZZ

A

rdrd/:

ð10Þ

In the same way that the ordinary DOP is written as P ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4det½J�=ðtr½J�Þ2

q
[12, 13], the DOP from lth ESP (lth

DOP) is consequently defined by

Pl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

det½Jl�
tr½Jl�ð Þ2

s
: ð11Þ

Here, substituting the relationships tr½Jl� ¼ SE
0;l and

4det½Jl� ¼ ðSE
0;lÞ

2 � ðSE
1;lÞ

2 � ðSE
2;lÞ

2 � ðSE
3;lÞ

2
, we obtain

Pl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE
1;l

� 	2

þ SE
2;l

� 	2

þ SE
3;l

� 	2
r .

SE
0;l:

ð12Þ

This is the analogous formula to that for ordinary DOP. In

the same way that the ordinary DOP originating from time

average relates to the purity of polarization with respect to

time [12], the lth DOP relates to that with respect to time

and space. If the electric field exhibits temporally complete

polarization in the ðr;/Þ plane, the lth DOP gives the pu-

rity of polarization with respect to space (Table 2). The lth

DOP, however, contains a temporally unpolarized state

when the beam is not a state with temporally complete

polarization.

Thus, we introduce the lth DOP for the spatial distri-

bution (DOP-SD) Pspace
l as follows: [14]

Pspace
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE

1;l

� 	2

þ SE
2;l

� 	2

þ SE
3;l

� 	2
r .

S
E;ðPÞ
0;l ; ð13Þ

where S
E;ðPÞ
0;l is the integral of the amount proportional to

the time-averaged intensity of light with temporally com-

plete polarization [15]:

Table 1 Notation of various Stokes parameters (i ¼ 0� 3)

s0
i ðr;/; zÞ The ordinary Stokes parameters at ðr;/; zÞ

sl
iðr;/; zÞ The Stokes parameters (SPs) for CP beams at ðr;/; zÞ

SE
i;lðzÞ The extended Stokes parameters (ESPs)
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S
E;ðPÞ
0;l ¼

ZZ
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sl

1


 �2þ sl
2


 �2þ sl
3


 �2
q

rdrd/: ð14Þ

Pspace
l is a measure of spatial polarization uniformity in the

lth CP basis.

The DOP defined from the ESPs is an important value

for both generating and using CP modes, providing the

purity or the quality factor of the polarization distribution.

Poincaré sphere, which is the spherical surface occupied

by completely polarized states in the space of the con-

ventional normalized Stokes vector, is useful for describing

polarization states visually. In analogy to the conventional

DOP, the new DOP Pl from ESPs represents the length of

the normalized extended Stokes vector ð~SE
1;l;

~SE
2;l;

~SE
3;lÞ, of

which components are ~SE
i;l ¼ SE

i;l=SE
0;l ði ¼ 1�3Þ: Figure 1

shows typical CP states on the Poincaré sphere for l ¼ 1

and l ¼ �1 ESPs. Thus, the states with spatially and

temporally complete polarization are only on the surface of

Poincaré sphere for ESPs and partially polarized states with

respect to time or (and) space are inside the surface.

The Pancharatnam–Berry phase [10, 16, 17] is an ad-

ditional phase factor when a quantum (such as a photon and

an electron) traveled along a closed loop in a state space,

which is first discussed by Pancharatnam [10]. Reference

18 has experimentally shown that the Pancharatnam–Berry

phase shift occurs in optical systems using waveplates and

polarizers. A light beam undergoes a phase shift which is

half of the solid angle X subtended to a closed path on the

Poincaré sphere [10, 18].

Here, we discuss the Pancharatnam–Berry phase for the

CP states. We consider an optical system possessing

waveplates and polarizers which are qð¼ lWP)-plates [19]:

JlWP

n ¼
UlWP

hn
eiwF

n elWP
r þ eiwS

n elWP

/

� 	
UlWP

�hn
ðwaveplateÞ;

UlWP

hn
elWP

r UlWP

�hn
ðpolarizerÞ;

8<
:

ð15Þ

where nð� 1Þ is a waveplate or polarizer number, JlWP
n is a

Jones matrix of the nth waveplate or polarizer, wF
n and wS

n

are the phase retardances on the fast and slow axes of the

nth waveplate, and hn is a rotation angle of the nth wave-

plate or polarizer. Ul
h is a rotation matrix defined by

Ul
h ¼

cos h � sin h
sin h cos h

� �
: ð16Þ

After a light beam propagates through the nmax waveplates

and/or polarizers, the electric field vector ~Eðr;/; z ¼ zoutÞ
is

~E r;/; z ¼ zoutð Þ ¼
Ynmax

n¼1

JlWP

nmax�nþ1
~E r;/; z ¼ zinð Þ; ð17Þ

where ~Eðz ¼ zinÞ is the initial electric field vector andQnmax

n¼1 JlWP

nmax�nþ1 ¼ JlWP
nmax

JlWP

nmax�1 � � � J
lWP

1 .

On the assumption that the electric field is monochro-

matic as Eðr;/; z; tÞ ¼ ~Eðr;/; zÞ expðiðkz� xtÞÞ, where x

Table 2 Comparison of DOP

DOP P The purity of polarization with

respect to time

DOP from ESPs Pl The purity of polarization with

respect to time and space

DOP-SD from ESPs Pspace
l

The purity of polarization with

respect to space

DOP from higher order [6, 7] or

hybrid [8] Stokes parameters

Undefinable

(a) (b)

Fig. 1 Poincaré sphere corresponding to the a l ¼ 1 and b l ¼ �1 ESPs, and typical polarization states on blue points (color online).
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and k are respectively the angular frequency and the

propagation constant at x, the DOP PlWP
is conserved

through the propagation of zin	 z	 zout for the light of

which PlWP
is 1 at z ¼ zin.

This means that the symmetry of the polarization dis-

tribution is conserved and the point ð~SE
1;l;

~SE
2;l;

~SE
3;lÞ draws a

trajectory on the surface.

Since the normalized extended Stokes vectors are sub-

jected to the same mathematics as the normalized con-

ventional Stokes vector, the Pancharatnam–Berry phase

/lWP

PBP shift is given by

/lWP

PBP ¼ �
X
2
; ð18Þ

when ~SE
i;lWP
ðzinÞ ¼ ~SE

i;lWP
ðzoutÞ.

Figure 2 shows a typical example of the Pancharatnam–

Berry phase for CP beams. An s¼þ�h; l¼þ�h optical vortex

beam [20] passes through two qð¼�1Þ half-wave plates;

the one for q¼�1; a0¼a1, and the other for q¼�1; a0¼a2

(Fig. 2(a); q and a0 are defined in ref. 19). Conserving the

C2 symmetry of the polarization distribution, the beam

experiences the Pancharatnam–Berry phase /lWP

PBP ¼
2ða1 � a2Þ, which corresponds to the half of the solid angle

subtended to the trajectory of the beam on the Poincaré

sphere for l ¼ �1 ESPs (Fig. 2(b)).

We introduced the ESPs for arbitrary CP beams with Cjl�1j
symmetry in addition to the previous report for those with C1

symmetry. Using the introduced parameters, we defined the

spatial DOP and discussed the Pancharatnam–Berry phase in

the analogy to the conventional Stokes parameters.

The ESPs are of use for evaluating the properties of CP

laser beams. While spatial polarization properties were so

far qualitatively estimated by monitoring the intensity

distribution after passing through a polarizer, measuring

our ESPs and thereby obtaining the spatial DOP, which are

related to the purity of the spatial symmetry of the CP

beams, give the qualitative information of the polarization

distribution. Our ESPs and DOP are crucial for applications

such as laser processing [21] and spectroscopy [22] using

CP modes.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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