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Abstract
Regional-scale estimates of groundwater recharge are inherently uncertain, but this uncertainty is rarely quantified. Quantifying
this uncertainty provides an understanding of the limitations of the estimates, and being able to reduce the uncertainty makes the
recharge estimates more useful for water resources management. This paper describes the development of a method to constrain
the uncertainty in upscaled recharge estimates using a rejection sampling procedure for baseflow and remotely sensed evapotrans-
piration data to constrain the lower and upper end of the recharge distribution, respectively. The recharge estimates come from
probabilistic chloride mass-balance estimates from 3,575 points upscaled using regression kriging with rainfall, soils and vegeta-
tion as covariates. The method is successfully demonstrated for the 570,000-km2 Cambrian Limestone Aquifer in northern
Australia. Themethod developed here is able to reduce the uncertainty in the upscaled chloride mass-balance estimates of recharge
by nearly a third using data that are readily available. The difference between the 5th and 95th percentiles of unconstrained recharge
across the aquifer was 31 mm/yr (range 5–36 mm/yr) which was reduced to 22 mm/yr for the constrained case (9–31 mm/yr). The
spatial distribution of recharge was dominated by the spatial distribution of rainfall but was comparatively reduced in areas with
denser vegetation or finer textured soils. Recharge was highest in the north-west in the Daly River catchment with a catchment
average of 101 (61–192) mm/yr and lowest in the south-east Georgina River catchment with 6 (4–12) mm/yr.
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Introduction

Groundwater recharge is one of the most difficult components
of the water balance to estimate as it is impossible to directly
measure and must be inferred from other measurements. It is
often recommended to use multiple methods when estimating
recharge to acknowledge the inherent uncertainty in estimat-
ing something that cannot be measured directly (Scanlon et al.
2002). When multiple methods have been used to estimate
recharge in a field study, it is rarely undertaken as any more

than a comparison of methods (Sibanda et al. 2009; Yin et al.
2011; Walker et al. 2018; Flint et al. 2002).

The chloride mass balance (CMB) method (Anderson
1945) is the most widely used approach for estimating re-
charge, both globally (Scanlon et al. 2006) and in Australia
(Crosbie et al. 2010). It is popular because it is robust over
many climate zones and is cost effective, requiring only anal-
yses of chloride in groundwater and rainfall. It is relatively
insensitive to the mechanism of recharge, whether that be
diffuse recharge through the soil matrix, by-pass flow through
macropores or even captured surface water in sinkholes
(Alcalá et al. 2011; Bazuhair andWood 1996). At its simplest,
recharge is estimated as:

R ¼ 100� D
Clgw

ð1Þ

where R is average annual net recharge (mm/year), D is the
average annual chloride deposition (kg/ha/year), Clgw is the
chloride concentration of the groundwater (mg/L) and the
multiplier of 100 is a unit conversion factor.
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The chloride concentration of groundwater can gener-
ally be measured fairly easily with a high degree of pre-
cision but the chloride deposition due to rainfall is far
more uncertain (Naranjo et al. 2015). There is then more
uncertainty introduced through upscaling from the point
scale to the regional scale. There are few examples in the
literature where the uncertainty in regional recharge esti-
mates using the chloride mass balance have been formally
explored. Some examples include: a linear error propaga-
tion of the standard deviations of each of the input vari-
ables interpolated to a gridded basis across Spain (Alcalá
and Custodio 2014, 2015); Monte Carlo sampling of a
Pearson Type III distribution of chloride deposition with
a log-normal distribution of chloride concentration on a
gridded basis in south-east South Australia (Davies and
Crosbie 2018); and, regression kriging using stochastical-
ly generated chloride deposition, chloride in groundwater,
chloride exported in runoff and the bootstrapping the re-
gression equations across eastern Australia (Crosbie et al.
2018).

Being able to quantify the uncertainty in recharge estimates
is a first step; being able to reduce the uncertainty then be-
comes useful. In modelling, the problem of nonuniqueness in
parameter estimation leads to predictive uncertainty (Beven
1993), which can often be reduced by constraining with dif-
ferent types of observations (Xie et al. 2018, 2017). A similar
idea was used recently to constrain point estimates of recharge
using the water-table fluctuation method using additional ob-
servations in the form of chloride mass balance estimates of
recharge and a water balance using remotely sensed evapo-
transpiration (Crosbie et al. 2019). This same process should
be applicable at a regional scale.

Within a suitably long time period, the groundwater re-
charge will equal the groundwater discharge. The chloride
mass balance estimates of recharge must be greater than the
baseflow of the catchment as the baseflow is not the total
groundwater discharge (which also includes evapotranspira-
tion from the groundwater, extraction and groundwater flow
out of the catchment). Similarly, the excess water (rainfall
minus evapotranspiration) must be greater than the recharge
as the excess water also includes the runoff component of the
water balance. The baseflow and excess water are comple-
mentary measurements that can help constrain the lower and
upper end of the recharge distribution estimated by the chlo-
ride mass balance.

The objectives of this report are to: (1) develop a method
for constraining the upscaled probabilistic estimates of re-
charge from the chloride mass balance using estimates of
baseflow and remotely sensed evapotranspiration; (2) to dem-
onstrate the method over the entirety of the extent of the
Cambrian Limestone Aquifer in northern Australia; and (3)
to thoroughly assess the assumptions in the methodology
and their impact on the uncertainty in the recharge estimates.

Study area

The area chosen for this study is the outline of the contiguous
Cambrian Limestone Aquifer (CLA) modified from the
Hydrogeological Provinces of Australia (Jacobson and Lau
1987). It covers 570,000 km2, straddling the Northern Territory
(NT)–Queensland (Qld) border in northern Australia (Fig. 1b).

The climate in the north of the CLA is tropical grading to
arid in the south. Three main townships within the CLA are
Katherine, Tennant Creek and Boulia. Katherine has an annual
average rainfall of 970 mm with 96% falling in the wet season
between November and April, Tennant Creek has 465 mm/
year of which 90% falls in the wet season and Boulia has
260 mm/year with 76% in the wet season (BoM 2020).
Although there is a regular wet season every year, there is still
substantial interannual variation in the rainfall—Fig. S1 of the
electronic supplementary material (ESM). Potential evapo-
transpiration (FAO56, Allen et al. (1998) exceeds rainfall ev-
erywhere in the study area on an annual basis but in the north
the rainfall is higher during some months of the wet season.

The area has little perennial surface water but contains the
headwaters of the Daly and Victoria rivers that flow east to the
Timor Sea, the Roper, Limmen Bight, Robinson, McArthur,
Calvert and Nicholson rivers that flow to the Gulf of
Carpentaria, and the Georgina River that flows into Lake
Eyre (Fig. 1a). The study area also contains the Wiso and
Barkly internally draining areas (AWRC 1997). The CLA
has discharge points in major spring complexes in the Daly,
Roper and Nicholson catchments that provide perennial flow
downstream. There are also other minor springs over the study
area, some that are sourced from the CLA and others from
older sediments (Fig. 1a).

The CLA comprises the Daly, Wiso and Georgina basins
(Fig. 1d) which are comprised of silicified limestone, dolomitic
siltstone, fine-grained sandstone and dolomite (Randal 1967,
1973). Particularly near areas of outcrop, karstic features are
evident at the surface in the form of sinkholes and caves which
can act as foci for localised recharge (Yin Foo and Matthews
2001). At depth, cavities can act as rapid conduits for groundwa-
ter flow (Karp 2005). Much of the CLA is overlain by the
Cretaceous aged Carpentaria Basin. Although mostly unsaturat-
ed the siltstones of the Carpentaria Basin are thought to impede
recharge to the underlying CLA, particularly when their thick-
ness exceeds 25 m (Tickell and Bruwer 2017). Much of the
surface of the study area is composed of Cenozoic regolith and
Quaternary sandplains and alluvium (Fig. 1c). In some areas the
CLA is absent (particularly the Tennant Creek inlier between the
Wiso and Georgina Basins) and the ProterozoicMcArthur Basin
sediments outcrop (Fig. 1c,d). A thorough review of the hydro-
geology of the area can be found in Evans et al. (2020).

The CLA is the primary water source for the region.
The area is sparsely populated with the major centres of
Katherine and Tennant Creek having populations of 6,303
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and 2,991 respectively and all other towns having a pop-
ulation below 1,000 (ABS 2016). Most of the water use in
the Georgina and Wiso Basins is for stock watering in the
pastoral industry but the Daly Basin is more developed
with demands on the water resource for irrigation
(NRETAS 2010). The motivation for the current study is
the potential for future competition for water resources if
the shale gas resources of the Beetaloo Sub-basin (Fig. 1)
are developed, as the Beetaloo Sub-basin occurs at a
depth of 1–4 km below the CLA (Hall et al. 2020).
Shale gas development requires a water supply for drilling
and fracking (Huddlestone-Holmes et al. 2020) that could
potentially impact upon current users of the water (includ-
ing cultural and environmental) and any future expansion
of more intensive forms of agriculture.

Groundwater recharge has previously been studied across
parts of the CLA; this has involved using several different
methods such as CMB, water-table fluctuations, baseflow
analysis and tracers (Table 1). The application here is an im-
provement from previous work as it covers the footprint of the
CLA in its entirety using a consistent method and includes a
thorough examination of the uncertainty in the recharge esti-
mates. It should be noted that this study is estimating recharge

over the footprint of the CLA, not to the CLA itself. The water
table is spatially variable across the study area, depending
upon the location it can sometimes be hosted in
hydrogeological units either above or below the CLA. There
are also parts of the study area where the CLA is absent.

Methods

The method used here can be simplified down to four steps:

1. Probabilistic estimates of recharge are made using the
chloride mass balance and upscaled to a regular grid using
regression kriging. This is the unconstrained CMB esti-
mate of recharge.

2. Baseflow separation is performed on streamflow data
from selected catchments to provide a lower constraint
on the CMB estimates of recharge.

3. A water balance (rainfall–evapotranspiration) is con-
ducted over selected catchments using remotely
sensed evapotranspiration and gridded rainfall to es-
timate the excess water (recharge + runoff). This

Fig. 1 a Surface elevation and surface-water catchments of the Cambrian Limestone Aquifer (CLA); b location of the CLA within Australia; c surface
geology of the CLA and location of the major lakes; d the three geological basins that make up the CLA
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provides an upper constraint on the CMB estimates
of recharge.

4. The CMB estimates of recharge are constrained using a
rejection sampling procedure to reduce the uncertainty in
the CMB estimates of recharge and create the constrained
estimates of recharge.

The methods and results sections of this report are arranged
around these four steps.

Chloride mass balance

The method applied involves estimating net recharge at a
point scale using the chloride mass balance and then upscaling
the point estimates to a regular grid across the study region
using regression kriging. The upscaling used here is combin-
ing the multiple linear regression approach used in other areas
across northern Australia (Turnadge et al. 2018; Taylor et al.
2018a, b) with the regression kriging approach that was

Table 1 Previous recharge estimates in the study area

Region Reference Summary

Daly catchment (Jolly 1984) Using baseflow analysis of Douglas River (northern Daly catchment), the study found regional
average recharge of 100 mm/year. Using bore hydrographs, recharge of 190 mm/year was found
where there is no Cretaceous cover

Sturt Plateau (Yin Foo and
Matthews 2001)

Recharge estimated as 1–3% of rainfall (6–18 mm/year) using the CMB in the northern and southern
Sturt Plateau (roughly Elliot to Mataranka on Fig. 1). Recharge not estimated in the central Sturt
Plateau where sinkholes are assumed to dominate the recharge

Daly River catchment (Jolly 2002) Using bore hydrographs, in the north (Douglas-Claravale), the study found recharge of 40 mm/year
with Cretaceous cover and 150 mm/year without; in the south (Katherine area), recharge of
50 mm/year under Cretaceous cover, 100 mm/year without. Using differential gauging found an
areal average of 90 mm/year

Daly River catchment (Tickell 2002) Using CMB average, recharge was found to be 40 mm/year to the Oolloo Dolostone (but thought to
be a low estimate)

SE Georgina Basin (Read 2003) Most of the area studied is in the Georgina catchment but the groundwater flows to the Gregory River
and Lawn Hill Creek. Using CMB, recharge was estimated at 2–6 mm/year. Using baseflow in the
Gregory River and Lawn Hill Creek recharge was estimated at 3–4 mm/year

Daly River catchment (Wilson et al. 2006) The study looked at land-use change using a water balance and chloride. Native vegetation.
50–200 mm/year recharge using water balance and 60 mm/year using CMB. Annual pasture
recharge of 300–540 mm/year was found using water balance and 40–200 mm/year using CMB

Daly Basin, Roper
catchment

(Jolly et al. 2004) Recharge estimated from baseflow in the Roper River of 16 mm/year (ET from groundwater was
accounted for). Recharge from CMB further south in the Georgina Basin of 2.8, 5.2 or
13.2 mm/year. Recharge in Wiso Basin from bore hydrographs at Elliot of 5–20 mm/year and
nearby in wet years of 30–70 mm/year

Daly, Roper and SW
Gulf catchments

(Crosbie et al. 2009) Used chloride mass balance over the entire catchments (not just CLA): Daly 65 mm/year with a range
of 14–276 mm/year; Roper 72 (7–168) mm/year; and, SW Gulf catchments 72 (6–170) mm/year.
Numerically modelled recharge using WAVES (Zhang and Dawes 1998): Daly 153 mm/year;
Roper 95 mm/year; and, SW Gulf catchments 54 mm/year

GW to the Daly and
Roper rivers

(Knapton 2009;
Knapton 2010)

Recharge estimated for all the subcatchments (SW & GW) of the Roper and Daly rivers using a
surface-water balance model that fed into a FEFLOW groundwater model

Southern Daly Basin (Bruwer and Tickell
2015)

Used bore hydrographs to estimate recharge as 44 mm/year aroundMataranka and 8 mm/year around
Larrimah

Central and Northern
Georgina Basin

(Tickell and Bruwer
2017)

Study used CMB on an area between Daly Waters and Tennant Creek. Areas with Cretaceous cover
>25 m thickness were assumed to have negligible recharge. Where Anthony Lagoon Fm outcrops
recharge was estimated as 1.9 mm/year. The major recharge areas are assumed to be where the
Gum Ridge Fm outcrops or subcrops: recharge estimated to be 1.9–8.0 mm/year in the west,
0.9–8.0 mm/year in the south and 1.2–12.2 mm/year in the north-east

Beetaloo region (Deslandes et al.
2019)

Using CMB, average recharge was found to be 1.7 mm/year in the south, 5.0 mm/year in the centre
and 7.4 mm/year in the north. The northern part was further split into east and west with 2.0 and
12.8 mm/year respectively.

Using tritium analysis, the recharge was found to be 66, 140 or 190 mm/year depending on the
method used in the NW of the Beetaloo region. This was the recharge rate in sinkholes not an areal
estimate

Entire CLA This study Used probabilistic estimates of recharge from CMB upscaled to the entire CLA on a 2,500-m grid.
The uncertainty in the recharge estimates was constrained using observations of baseflow and
remotely sensed evapotranspiration. This is the first study to estimate recharge over the entirety of
the CLA and to thoroughly consider the uncertainty in the recharge estimates
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successfully used in eastern Australia (Crosbie et al. 2018).
The recharge is estimated probabilistically using 1,000 repli-
cates of the input parameters.

Point-scale estimates of recharge

The chloride mass balance is possible because chloride in
rainfall is excluded from evapotranspired water and so
concentrates in the root zone. This more concentrated wa-
ter then leaches downwards to the water table to become
recharge. If the chloride exported through surface runoff
is taken into account, Eq. (1) becomes (Crosbie et al.
2018):

R ¼ 100� D 1−α � RCð Þ
Clgw

ð2Þ

where RC is the runoff coefficient and is a scalar.

The chloride deposition rate was obtained from a na-
tional dataset (Davies and Crosbie 2014, 2018), which
mapped the chloride deposition (both wet and dry) from
~300 points by fitting to a model relating the chloride de-
position to the distance from the coast (Keywood et al.
1997). The mean (μ), standard deviation (σ) and skewness
(g) from 1,000 replicates are used to provide a Pearson
Type III distribution of chloride deposition at each point
location in the study area (mean is shown in Fig. 2a). The
deposition (D) for the ith location is calculated according
to the Pearson Type III distribution (Pilgrim 1987):

Di ¼ μi þ KY i:σi ð3Þ
where KYi is a frequency factor calculated from gi and a stan-
dard normal deviate (z):

KY i ¼
2

gi
z−
gi
6

� �gi
6
þ 1

n o3
−1

� �
ð4Þ

Fig. 2 Spatial inputs for the chloride mass balance and upscaling
showing a chloride deposition and chloride in groundwater (GW)
observations; b long-term average annual rainfall; c average clay

content of the top 2 m of the soil profile; d long-term average
Normalised Difference Vegetation Index (NDVI); e slope of the
landscape surface; f depth of regolith
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The standard normal deviate is generated stochastically for
each replicate to generate the distribution of chloride deposi-
tion rate for each point location.

Information on the chloride concentration of groundwater is
primarily held by the government agencies responsible for wa-
ter management across the study area, the Northern Territory
Government Department of Environment and Natural re-
sources and the Queensland Government Department of
Natural Resources, Mines and Energy. Additional data have
been sourced from resources companies operating in the area
and Commonwealth Government agencies. This study identi-
fied 4,296 bores within the study area that have been analysed
for the chloride concentration of groundwater at least once, and
of these, 3,575 were used to estimate recharge using the chlo-
ride mass balance (Fig. 1a). The bores that were excluded were
due to some basic quality assurance criteria:

& Bores that had a chloride concentration below 2 mg/L or
above 2,000 mg/L were either unrepresentative or had
their values mistranscribed and so were excluded

& Bores with a drilled depth greater than 150 m were con-
sidered unlikely to be in the water-table aquifer and so
were excluded

& Bores located within surface-water flowlines were exclud-
ed. Flowlines are usually where the water table is
shallowest and potentially subject to evapoconcentration
of the groundwater.

The runoff coefficient in Eq. (2) is as calculated by the
AWRA model over the period 1910–2015 at a national scale
(Vaze et al. 2013) and is extracted for the location of each of
the 3,575 bores. The proportion of chloride exported in sur-
face runoff will be less than the runoff coefficient because it is
only the quickflow component that is relevant, and the
quickflow is generated by the high intensity rainfall events
that generally have a lower-than-average chloride concentra-
tion. The scalar has a stochastically generated value between
0.33 and 0.66 for each replicate to account for the unmeasured
chloride exported in runoff.

Upscaling using regression kriging

The upscaling of the point estimates of recharge using regres-
sion kriging ((Hengl et al. 2004) includes three steps: (1) de-
veloping a regression relationship between the point estimates
of recharge and the covariates to predict recharge across the
study area on a regular grid, in this case 2500 m; (2) kriging
the residuals between the point estimates of recharge and the
regression estimates of recharge to provide a surface of resid-
uals on the same grid; and (3) adding the residual surface to
the regression surface, which provides a spatial estimate of
recharge that is informed locally by point data and away from

point data is dependent upon a global relationship predicted
by covariates. This process is repeated for 1,000 stochastic
replicates to quantify the uncertainty in the recharge.

Previous studies have shown that recharge is better approx-
imated by a log-normal distribution rather than a normal dis-
tribution (Cook et al. 1989; Eriksson 1985), and this extends
to its relationship with rainfall (Petheram et al. 2002).
Recharge estimates are mainly dependent upon rainfall, soil
type and vegetation (Crosbie et al. 2010; Kim and Jackson
2012; Scanlon et al. 2006) and these have been used success-
fully as covariates to upscale modelled point estimates of re-
charge (Crosbie et al. 2013) and are also used here. The rain-
fall used is the long-term annual average over the period
1910–2018 (Jones et al. 2009) shown in Fig. 2b. The average
clay content of the top 2 m of soil has been shown to be an
effective predictor of recharge (Wohling et al. 2012) and so
has been used here (Fig. 2c) as a predictor using the Soil and
Landscape Grid of Australia gridded clay content data
(Grundy et al. 2015). The Normalised Difference Vegetation
Index (NDVI) using AVHRR data (BoM 2019) is used as a
measure of vegetation differences spatially as a long-term av-
erage over the period 1993–2012 and is shown in Fig. 2d.

To reduce the influence of outliers in the dataset,
bootstrapping was used (Efron and Tibshirani 1994) to select
the data points that would be used in the regression equation
for each of the 1,000 replicates. This meant that 3,575 points
were selected with replacements from the full dataset of 3,575
points; in this way each replicate is highly unlikely to include
each point and will include some points multiple times and
other points not at all.

It was found that the recharge was related to the rainfall (P)
through a quadratic equation while a linear relationship was
found to be adequate for the soils (C) and vegetation (V). This
leaves the regression equation to be fitted as:

log Rð Þ ¼ β0 þ β1 � P þ β2 � P2 þ β3 � C þ β4 � V ð5Þ

where β0, β1, β2, β3, and β4, are fitting parameters fitted
through least squares regression.

The topographic slope and the depth of regolith have been
suggested as important factors influencing recharge as they
influence the split from rainfall between infiltration and sur-
face runoff. This was not observed in the data set from the
study area, probably due to a lack of bores drilled on steep
slopes or very shallow regolith. These factors were still includ-
ed in the upscaling through reducing the predicted recharge on
slopes greater than 2% and for depths of regolith less than 2 m.
This is the same process that has previously been used across
northern Australia (Turnadge et al. 2018; Taylor et al. 2018a,
b) and only affects very small parts of the study area (Fig.
2e,f).

The difference in the recharge estimated through the re-
gression equations and through the point-scale chloride mass
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balance were calculated for each replicate. These residuals
were fitted to a spherical semivariogram using gstat
(Pebesma 2004) in R (R Core Team 2016) and then kriged
to a 2,500-m grid to create a residuals surface. The residuals
surface was then added to the recharge surface created from
the regression equations to create 1,000 replicates of the
upscaled chloride mass balance estimates of recharge. These
1,000 replicates are summarised using the 5th, 50th and 95th
percentiles.

Baseflow separation

Separating the hydrograph at a stream gauge into the
quickflow and baseflow components gives a simple method
of investigating groundwater discharge. Baseflow is only one
component of groundwater discharge and so will be less than
the total groundwater discharge. The other common compo-
nents of groundwater discharge are evapotranspiration from
groundwater, extraction of groundwater via pumping or
interaquifer flow. On a suitably long-time frame, recharge will
equal discharge and therefore baseflow must be less than
recharge.

The baseflow separation method used here is the digital
recursive filter suggested by Lynne and Hollick (1979), al-
though it has no physical basis, it is the most commonly ap-
plied method of baseflow separation in Australia (Grayson
et al. 1996). The baseflow separation was undertaken using
the Basejumper program (Murphy et al. 2008) with a filter
parameter of 0.925.

Four catchments were selected that are known to have high
levels of baseflow and drain large parts of the study area
(Drysdale et al. 2002; Yin Foo and Matthews 2001). The
selected gauges were the first gauge downstream of the known
groundwater discharge zones (Fig. 3a): Flora River upstream
of Stoney Creek (G8140205); Roper River at Elsey
Homestead (G9030013); Gregory River at Riversleigh no.2
(912105A); and, Lawn Hill Creek at Lawn Hill no.2
(912103A). The time period chosen for analysis was the peri-
od 2001 to 2018 to be consistent with the available data for the
remotely sensed actual evapotranspiration (see section ‘Water
balance using remotely sensed evapotranspiration’).

To allow the comparison between the baseflow and recharge,
the volumetric baseflow needs to be divided by the area to get an
areal average baseflow. The area of a surface-water catchment is
readily calculated from a digital elevation model (DEM), but in

Fig. 3 a Catchments selected for baseflow separation estimates of
groundwater discharge showing the topographic catchment area (SW
catchment) and the assumed groundwater catchment area (shown in
colour). b Internally draining catchments used to estimate recharge

from a water balance with the proportion of time that standing water is
recorded in Water observations From Space (WoFS) data. Inset shows
location within the study area
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a landscape as flat as the study area, groundwater flow does not
necessarily respect topographic boundaries. Previous work has
created potentiometric surfaces of the study area based on the
sparse observations of groundwater level and interpreted
groundwater flow directions (Tickell 2003; Fulton and
Knapton 2015; Tickell and Bruwer 2017; Knapton 2010); this
work has been used to estimate the groundwater catchment areas
for each gauge shown in Fig. 3a.

The uncertainty on the areal estimates of baseflow has not
been quantified but is necessary for the constraining of the
recharge estimates. The area used as the groundwater catch-
ments may be too large leading to an underestimate of the
baseflow. There are springs in the Victoria River catchment
(Fig. 1) within the study area suggesting that at least some of
the area assumed to be feeding the springs in the Flora River is
actually flowing into the Victoria River, similarly there are
springs in the Calvert, Robinson and McArthur river catch-
ments (Fig. 1) within the study area within the area assumed to
have the groundwater flowing into the Roper catchment. On
the other hand, baseflow separation tends to result in higher
baseflow indices for larger catchments (Petheram et al. 2008)
which may be due to attenuation of the quickflow signal; the
smallest of the catchments used here is over 3,000 km2. A case
can be made for why the estimated baseflow calculated here
could be either over- or under-estimated. This study assumed
that the error could be up to ±30% based on studies in other
regions (Coxon et al. 2015; Petersen-Øverleir et al. 2009).

Water balance using remotely sensed
evapotranspiration

Awater balance using remotely sensed actual evapotranspiration
(AET) can be used to estimate recharge (Szilagyi et al. 2011) but
only where the runoff component of the water balance is insig-
nificant (Crosbie et al. 2015; Swaffer et al. 2020). If the runoff
component cannot be ignored, then rainfall minus AETwill give
an estimate of excess water (EW): runoff plus recharge.

EW ¼ P−AET ð6Þ

The CMRSET algorithm for AET (Guerschman et al.
2011) was used with MODIS data to create an 8-day time
series at a 250-m resolution over the study area. These data
were aggregated to a long-term average for the period 2001–
2018; this was the longest period of complete years that was
available from the MODIS data. The long-term average AET
was subtracted from the long-term average rainfall over the
same period sourced from the Bureau of Meteorology’s
gridded product (Jones et al. 2009) to create a long-term av-
erage excess-water data layer.

The uncertainty in the CMRSET estimates of AET has not
been evaluated for the study area but is necessary for the

constraining of the recharge estimates. Based on an evaluation
of CMRSET water balances against runoff from stream
gauges (King et al. 2011) and reviews of remotely sensed
ET (Kalma et al. 2008; Glenn et al. 2011), an error of up to
±30% has been assumed.

The long-term average excess water was extracted for
the four catchments used for the baseflow separation (Fig.
3a) and for four selected internally draining catchments
(BoM 2012; Fig. 3b). These four catchments can be split
into two groups: the northern catchments have a normal
dendritic drainage pattern that has been captured by a
sinkhole (or sinkholes); and, the southern catchments
have a centripetal drainage pattern and terminate in a to-
pographic depression. The difference between these types
of catchments is immediately obvious in the Water obser-
vations From Space (WoFS) data (Mueller et al. 2016),
the centripetal catchments have standing water for a sig-
nificant amount of time at their lowest point, whereas the
captured dendritic catchments do not (Fig. 3b).

Constraining the CMB recharge

The CMB estimates of net recharge are constrained by the
baseflow and the excess water estimates using a rejection
sampling approach (Tarantola 2005; Von Neumann 1951).
This relies on having a distribution of each of these three
quantities.

The baseflow (BF) has an estimated uncertainty of ±30%.
Assuming that the uncertainty is normally distributed and
using the “six-sigma rule” gives the standard deviation of
the baseflow prediction as 10% of the estimated value. This
can then be used to estimate a probability distribution which
can be randomly sampled from:

BFi ¼ μi þ z � σi ð7Þ

where z is the randomly selected standard normal deviate and μi
and σi are the mean and standard deviation of the baseflow for
the ith catchment. In this way the same standard normal deviate
is used to estimate the baseflow for each of the four catchments
for each repetition of the rejection sampling algorithm.

Similar to the baseflow, the actual evapotranspiration also
has an estimated uncertainty of ±30%. Making the same as-
sumptions as the baseflow the probability distribution of the
excess water is:

EWi ¼ P− μi þ z � σið Þ ð8Þ

where EWi is the excess water for catchment i. Again, a single
standard normal deviate is used to estimate the excess water
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for each of the eight catchments for each repetition of the
rejection sampling algorithm.

The average recharge across the eight catchments has been
extracted from the 1,000 upscaled replicates of the chloride
mass balance. The 1,000 replicates are assumed to represent
the entire population and so a probability distribution has not
been created. This will underestimate the extreme tails of the
distribution, but these are not important as they will be elim-
inated by the rejection sampling procedure. The calculation of
the 5th and 95th percentiles are stable after 1,000 repetitions
meaning that this assumption has no bearing on the final
constrained recharge estimates.

The rejection sampling algorithm was run 10,000 times
with a randomly selected standard normal deviate for the
baseflow distribution, a second randomly selected stan-
dard normal deviate for the excess water distribution and
a randomly selected run number from the 1,000 replicates
of upscaled chloride mass balance recharge. A selection
was retained in the posterior distribution if the following
constraints were met:

1. The upscaled chloride mass balance estimates of recharge
were greater than the baseflow estimates for each of the
four catchments

2. The upscaled chloride mass balance estimates of recharge
were less than the excess water estimates in each of the
eight catchments

Results

Chloride mass balance

Point-scale estimates of recharge

There is an adequate spread of bores geographically that
covers the rainfall gradient and the range of soils and vegeta-
tion (Fig. 2), but it is quite sparse with less than one bore per
100 km2 and particularly sparse in the Wiso Basin (Fig. 1d).

The runoff coefficient is below 0.03 for 50% of the bores
and below 0.1 for 80% of the bores (not shown). It is only the

high rainfall areas in the north of the study area where the runoff
coefficient is above 0.1 and the chloride exported through run-
off can be up to 10% of the total chloride deposition. For the
majority of the study area the chloride exported through runoff
is negligible (but still accounted for in the calculations).

To assess the covariates, the recharge was estimated deter-
ministically from the mean chloride deposition and the chlo-
ride concentration of the groundwater (Eq. 1). Figure 4a
shows that the recharge has a positive correlation with rainfall
that is not a simple linear relationship, a quadratic relationship
is used here. The clay content of the top 2 m of the soil has a
slight negative correlation with the log recharge (Fig. 4b). The
weak relationship with clay content is not surprising as rainfall
is the dominant predictor with such a wide range in values.
The relationship with NDVI appears to be going the wrong
way (Fig. 4c); more dense vegetation should produce lower
recharge. However, the NDVI is correlated with rainfall, caus-
ing the positive correlation with log recharge without taking
the rainfall into account.

When these covariates are used in multiple linear regres-
sion to predict the deterministic estimates of recharge using
Eq. (4), they are all highly statistically significant (p < 0.001)
predictors using a t-test (Table 2). The coefficient for rainfall
is positive indicating that increasing rainfall will increase re-
charge but the coefficient for rainfall squared is negative
which acts to flatten the exponential rise in the curve for high
rainfall which could otherwise extrapolate into infeasible
space (i.e. R > P). The coefficient for clay content is negative

Fig. 4 Point-scale relationships
between log recharge and a
rainfall, b clay content of the soil,
and c NDVI

Table 2 Coefficients fitted to Eq. (4) through multiple linear regression
for the deterministic estimates of recharge from the chloride mass
balance. SE standard error

Coefficient Significance

Estimate SE t value p>|t|)

Intercept (β0) −5.60E-01 6.76E-02 −8.284 2.00E−16
Rain (β1) 3.96E-03 2.18E-04 18.133 2.00E-16

Rain2 (β2) -1.00E-06 1.43E-07 −6.99 3.28E-12

Clay (β3) −6.01E-03 1.06E-03 −5.676 1.49E-08

NDVI (β4) −1.96E+
00

3.61E-01 −5.418 6.42E-08
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indicating that increasing clay content of the soil decreases
recharge. The coefficient for NDVI is negative (in contrast
to Fig. 4c) which indicates that increasing vegetation density
results in a reduction of recharge. The overall p value for the
regression equation is 2.20E-16 with an r2 of 0.66. The regres-
sion equation can only explain 66% of the variance in the
point recharge estimates which means there is 34% of the
variance that cannot be explained by these covariates. If this
variance has some spatial cohesion then regression kriging
will reduce some of this variance and outperform upscaling
using regression alone.

Upscaling using regression kriging

The coefficients fitted to Eq. (4) for each of the 1,000 repli-
cates are shown in Fig. 5a–e in the form of boxplots.
Consistent with the deterministic result, the coefficient for
rainfall is positive and the coefficient for rainfall squared is
negative (other than some outliers). The clay and NDVI coef-
ficients are both negative in agreement with the deterministic
result. The r2 results are closely grouped around 0.59 (Fig. 5f);
this is less than the deterministic result because of the added
stochastic noise due to the treatment of chloride exported in

Fig. 5 Coefficients used in the regression equations for upscaling the
1,000 replicates (a–e), f the r2 for each of the 1,000 replicates, and g
the relative importance of the four covariates for each of the 1,000
replicates. The line in the centre of the box is the median, the box

represents the interquartile range (the 25th–75th percentiles), the
whiskers represent the 10th and 90th percentiles and the dots are any
data points outside of the 10th and 90th percentiles

Fig. 6 a The 50th percentile of the upscaled recharge using regression only and b the 50th percentile of the kriged residuals surface
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runoff and the bootstrapping to reduce the influence of out-
liers. The relative importance (Groemping 2006) of each fac-
tor is the proportion of the variance that each one explains
(Fig. 5g), and it can be seen that the rainfall, rainfall squared
and NDVI have more importance to the regression than the
clay content of the soil which contributes less than 5% of the
variance explained by the regression equation.

The upscaling based on the regression equation only re-
flects the covariates used and their importance. Figure 6a
shows that the dominance of the rainfall gradient on the
distribution of recharge with the highest recharge in the
north-west and the lowest in the south-east. There is some
influence of the spatial patterns from the soil and vegetation
layers (Fig. 2).

The semivariogram fitted to the residuals has three param-
eters: the nugget, sill, and range. The median nugget of 0.05
means that there is still some variance that is not accounted by
the regression or the spatial dependence of the residuals; this
could be due to subgrid scale variation or measurement errors.
The median sill of 0.19 compared to the nugget shows that
there is significant spatial dependence of the residuals over a
large distance shown by the median range of 95 km.

The kriged residuals show landscape-scale correlation in
the recharge estimates that is not being modelled by the re-
gression equation. The spatial distribution of the kriged resid-
uals (Fig. 6b) appears to be random but does have some struc-
ture related to information that the regression equation does
not have. Areas of positive residuals are indicative of recharge
being higher than predicted using the regression equation and
areas of negative residuals have lower recharge than that pre-
dicted. Some areas of preferential recharge appear to be coin-
cident with the internally draining catchments (Fig. 3b), ter-
minal lakes (Fig. 3b) and outcropping Cambrian Limestone
(Fig. 1). As the residuals surface has a spatial average close to
0 (least squares regression has a mean residual of 0), the areas
of preferential recharge are balanced by everywhere else with
a negative residual.

Adding the residual surface to the regression recharge sur-
face results in the regression kriging surface of upscaled chlo-
ride mass balance recharge; the 1,000 replicates are
summarised as the 5th, 50th and 95th percentiles (Fig. 7).
This shows the same dominant trend as the regression surface
shown in Fig. 6a. The recharge generally follows the rainfall
gradient with the highest recharge in the north-west and the

Fig. 7 The 5th, 50th and 95th percentiles of recharge estimated using the chloride mass balance upscaled using regression kriging. The point data is the
50th percentile of the point estimates of recharge using the chloride mass balance
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lowest in the south-east. In contrast to the regression surface,
the upscaled recharge using regression kriging also shows
higher recharge in areas of preferential recharge associated
with the sinkholes, terminal lakes and limestone outcrops.
The spatial average recharge for the 50th percentile is
12 mm/year with the uncertainty represented by the 5th and
95th percentiles at 5 and 36 mm/year respectively.

The upscaled CMB recharge using regression kriging at a
grid cell scale is a good match for the recharge calculated at a
point scale for the 50th percentile (Figs. 7a and 8a). The r2 for
the 1,000 replicates is shown in Fig. 8b with a median of 0.79.
This is a substantial increase from the r2 of 0.59 that was
found for the upscaling based on regression only.

Baseflow separation

For the four catchments selected (Fig. 3), the surface-water
(SW) catchment area was calculated from the topography
(Table 3), but the current conceptual model suggests that the
groundwater (GW) area contributing to the baseflow is much
larger for three of the four catchments. Lawn Hill Creek has

the lowest volumetric baseflow, partly due to having by far the
smallest catchment area but has the highest areal average
baseflow. The neighbouring Gregory River has much higher
volumetric baseflow but lower areal average. The Roper River
catchment is approximately double the size of the Flora River
catchment and this is reflected in the volumetric baseflow, but
they have similar areal average baseflow.

Water balance using remotely sensed
evapotranspiration

The excess water has been calculated on a 250-m grid across
the study area and aggregated to an annual average for the
period 2001–2018 (Fig. 9a). Areas in green have rainfall
greater than actual evapotranspiration and are exporting ex-
cess water either through runoff or recharge. Areas shown in
purple are where actual evapotranspiration is greater than rain-
fall and these areas are receiving excess water either through
surface run-on, groundwater discharge or applied water
through irrigation.

For the four selected internally draining catchments, the
Lake Woods catchment stands out due to the area of Lake
Woods itself having an excess water of over −1,000 mm/year
(Fig. 9b); this is consistent with it being inundated for a sub-
stantial proportion of the time (Fig. 3b). The other three catch-
ments do not have similar large areas of negative excess water.
At the whole of catchment scale, all four catchments have a
positive excess water, indicating that they are recharge fea-
tures in the landscape (Table 4). Similarly, all four catchments
used for the base flow analysis also have a positive excess
water showing that they are exporting water as some combi-
nation of recharge and runoff.

The area around Mataranka is a groundwater discharge
area for the Roper catchment (Fig. 9c). The baseflow
component of the groundwater discharge is easily mea-
sured by the stream gauge downstream of the springs
but the diffuse discharge via evapotranspiration is not so
easily measured. Almost the entire portion of Elsey
National Park south of the Roper River has a negative
excess water (up to −500 mm/year), indicating that

Fig. 8 aA scatterplot of the 50th percentile of the recharge calculated at a
point scale versus the 50th percentile of the regression kriging upscaled
recharge estimate (red line is 1:1 for reference), and b the r2 of all 1,000
replicates for the point estimates of recharge versus the upscaled estimates
of recharge as a boxplot

Table 3 Baseflow calculated for four catchments using the mean
baseflow for the period 2001–2018 using the groundwater catchment
area. The values in brackets represent the assumed ±30% uncertainty on

the areal average baseflow (Lawn Hill Creek gauge closed in 1988 also
uses the period 1968–1988)

Gauge Gauge No. SW catchment
area (km2)

GW catchment
area (km2)

Mean baseflow (m3/s) Baseflow (mm/year)

Gregory River at Riversleigh No. 2 912105A 11,343 71,679 11.4 5.0 (3.5–6.5)

Lawn Hill Creek at Lawn Hill No. 2 912103A 3710 3069 1.4 14.4 (10.1–18.7)

Flora River at U/S Stoney Creek G8140205 6417 69,208 8.6 3.9 (2.8–5.1)

Roper River at Elsey Homestead G9030013 13,787 120,186 21.2 5.6 (3.9–7.3)
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evapotranspiration is greater than rainfall. This includes
the runoff component so the groundwater discharge will
be greater than indicated by the excess water.

Constraining the CMB estimates of recharge

The upscaled CMB estimates of recharge were constrained
using rejection sampling by having to be greater than the
baseflow for all four catchments and less than the excess water
in those same four catchments and an additional four

internally draining catchments. Of the 10,000 samples tested,
1,389 were retained in the posterior distribution.

For each of the eight catchments sampled, the uncertainty of
the net recharge was constrained. The 5th percentile was greater
in the constrained versus unconstrained distribution and the 95th
percentile was reduced (Figs. S2 and S3 of the ESM).
Consequently, the interquartile range was reduced. The median
of the net recharge increased in the constrained case. The
baseflow has been constrained by a small amount with a small
reduction in the magnitude of the distribution. In contrast the

Fig. 9 a Excess water across the Cambrian Limestone Aquifer; b excess water over the four internally draining catchments used for a water balance; c
groundwater discharge in Elsey National Park, both diffuse discharge through ET and localised discharge through springs

Table 4 The spatially averaged
rainfall, actual evapotranspiration
(AET) and excess water for the
four internally draining
catchments and the four
catchments used for baseflow
analysis showing the mean for the
period 2001–2018. The values in
brackets represent the excess
water calculated using the
assumed ±30% uncertainty in the
actual evapotranspiration

Catchment Rainfall (mm/year) AET (mm/year) Excess Water (mm/year)

Internal Catchment E 799 670 130 (−71–331)
Upper Western Creek 863 726 137 (−80–355)
Lake Woods 690 561 129 (−39–298)
Internal Catchment W 760 688 72 (−134–279)
Roper River 666 536 129 (−31–290)
Gregory River 409 326 83 (−15–181)
Lawn Hill Creek 510 400 110 (−10–230)
Flora River 748 618 131 (−55–316)
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Table 5 The 5th, 50th and 95th
percentiles of constrained and
unconstrained recharge for the
geological regions and surface-
water catchments of the study
area. Note: the Beetaloo Sub-
basin does not outcrop and so the
recharge over this area to the CLA
is of interest as a water supply to a
potential future shale gas
industry; it is not recharged to the
Beetaloo Sub-basin itself

Constrained recharge (mm/year) Unconstrained recharge (mm/year)

5th 50th 95th 5th 50th 95th

Geological regions

Daly Basin 49 82 156 26 63 178

Wiso Basin 9 17 31 5 13 37

Georgina Basin 5 9 18 3 7 21

Beetaloo Sub-basin East 7 12 23 4 9 26

Beetaloo Sub-basin West 27 48 92 14 37 106

Surface-water catchments

Roper River 27 49 93 15 38 112

Daly River 61 101 192 31 77 218

Victoria River 29 50 94 15 38 107

Limmen Bight River 9 15 30 4 12 34

McArthur River 19 35 67 10 26 78

Robinson River 11 20 39 5 15 45

Calvert River 7 15 39 4 12 44

Wiso region 6 10 19 3 8 22

Barkly region 5 9 17 3 7 19

Nicholson River 13 28 58 7 20 67

Georgina River 4 6 12 2 5 13

Fig. 10 The 5th, 50th and 95th percentile of recharge estimated using the upscaled chloride mass balance constrained by the baseflow and remotely
sensed ET measurements

1412 Hydrogeol J (2021) 29:1399–1419



constraining process has had a big effect on the excesswater with
a substantial reduction in the range of values, and the negative
values have been eliminated from the posterior distribution.

The spatial average recharge for the 50th percentile is
16 mm/year with the uncertainty represented by the 5th and
95th percentiles at 9 and 31 mm/year, respectively (Fig. 10).
The range between the 5th and 95th percentiles has decreased
from 31 mm/year for the unconstrained case to 22 mm/year
for the constrained case, demonstrating the value in
constraining the upscaled CMB estimates of recharge with
the baseflow and excess water observations. When further
broken down to regions, the recharge (Fig. 10) is following
the rainfall (Fig. 2b), and similar reductions in the range be-
tween the 5th and 95th percentiles are seen for the constrained
case versus the unconstrained case (Table 5). For the geolog-
ical basins the Daly Basin has the highest recharge at 82 (49–
156) mm/year, the Wiso has 17 (9–31) mm/year and the
Georgina has the lowest at 9 (5–18) mm/year (Table 5). For
the surface-water catchments those in the north have the
highest recharge (Daly, Roper and Victoria rivers) and those
in the south have the least (Georgina River and Barkly region).

Discussion

Assessment of the assumptions made in the
methodology

One of the objectives of this study was to thoroughly assess
the assumptions made in the methodology to determine their
impact on the uncertainty of the recharge estimates. Being
transparent about the assumptions made, and the limitations
of the analysis, provides confidence that the recharge esti-
mates are robust (Peeters 2017).

Point estimates of recharge

Wood (1999) listed the assumptions made in estimating re-
charge using CMB as: (1) chloride in groundwater originates
from rainfall on the aquifer and not from flow from underlying
or overlying aquifers; (2) chloride is conservative in the sys-
tem; (3) steady-state conditions are assumed in that the fluxes
of chloride and water have not changed over time; and (4)
there is no recycling of chloride within the aquifer.
Assumptions 1, 2 and 4 can generally be met but assumption
3 is problematic in regional-scale applications of the CMB.

The chloride deposition used here from Davies and Crosbie
et al. (2018) includes the uncertainty in the measurements and
the upscaling but is reliant on the measurements being
representative of the average chloride deposition over
potentially thousands of years. The chloride deposition
measurements used by Davies and Crosbie et al. (2018) were
bulk rainfall samples that include both the wet deposition in

rainfall and the dry deposition of dust fallout. The study area
has a reasonable density of measurements for the chloride de-
position, but repeated sampling has shown the uncertainty in
assuming a long-term average from 1 to 5 years of data. The
chloride deposition at Katherine has been measured in five stud-
ies over the past 60 years with a range from 2.46 to 7.30 kg/ha/
year (Wetselaar and Hutton 1963; Galloway et al. 1982; Likens
et al. 1987; Keywood et al. 1997; Wilson et al. 2006). The dry
deposition of chloride can be problematic for the CMB if there is
a local source of salt in the landscape, e.g. recirculation of salt
from salt lakes. The internally draining catchments in the study
area result in terminal lakes that are recharge features of the
landscape; they are not, however, the salt lakes that are common
across southern Australia that result in local recirculation of
chloride. If the chloride samples of the groundwater were sam-
pled from just below the water table at the top of the water
column, then this would be recently recharged water and are
valid for use in the CMB with recent estimates of the chloride
deposition due to rainfall. If the groundwater samples were well
mixed from the entire water column of the unconfined aquifer,
then the chloride concentration is an average over the residence
time of the water in the aquifer. In high-recharge, short-flow-
path areas in the north of the CLA, the residence timemay be on
the scale of decades to centuries and the assumption of the
chloride deposition being in steady state is reasonable. For the
low-recharge, long-flow-path arid areas in the south of the CLA,
the residence time of the water may be thousands or tens of
thousands of years, and the assumption that measurements of
chloride deposition over the last 60 years are applicable on this
time scale is questionable. The assumption of steady-state chlo-
ride deposition is a source of unquantified uncertainty in the
recharge estimates made here.

Every recharge review has demonstrated that recharge in-
creases with rainfall, is greater in lighter textured soils than
clays and has more recharge with sparse vegetation (Scanlon
et al. 2006; Crosbie et al. 2010; Kim and Jackson 2012). The
regression equation coefficients when fitted to Eq.(5) agree
with the previous work collated by these reviews. The clay
and NDVI coefficients are negative throughout their range
(Fig. 5d,e) indicating that for a given rainfall, recharge de-
creases with increasing clay content or NDVI. The quadratic
relationship fitted to the rainfall is successful in not letting the
relationship extrapolate into an infeasible range (R > P) but
not being a monotonic relationship can lead to problems.
For the deterministic example shown (Fig. 4), the relationship
has a minimum at 175 mm/year of rainfall with 0.59 mm/year
of recharge, and the lowest rainfall point is 154 mm/year with
a slightly higher 0.63mm/year of recharge. The reason for this
contradiction is the position of the inflection point in the fitted
quadratic equation. This difference is negligible in the context
of estimating recharge across the entire CLA but it would be
more conceptually correct to use a monotonically increasing
function to avoid this problem.
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The regression equations were able to explain ~59% of the
variance in the point recharge estimates using three covariates.
If more variables were built into the regression model the
amount of variance explained may be able to be increased.
Fu et al. (2019) evaluated 88 covariates before finding an op-
timum 10-parameter regression model to estimate recharge.
Both Barron et al. (2012) and Fu et al. (2019) found that annual
average rainfall may not be the best predictor of recharge;
seasonal rainfall, rainfall intensity and number of wet days
were all found to be important. Similarly, more nuanced cor-
relations with vegetation may be able to be attained with more
ecohydrologically relevant parameters than NDVI. Some ex-
amples could include: proportion of persistent and recurrent
vegetation as a surrogate for perenniality; vegetation height
as a surrogate of rooting depth; and, proportion of bare ground.
The clay content of the soils was the least influential of the
covariates used in the upscaling (Fig. 5g). More hydrologically
relevant soil parameters could be included such as available
water capacity and hydraulic conductivity. However, as these
would probably be derived from pedotransfer functions, the
percentage of sand, silt and clay may see an improvement over
just the percentage of clay used here.

Adding more parameters into the regression equation may
increase the variance explained by the model for each replicate
but would do little to decrease the uncertainty in the recharge
estimates overall. The difference between the 10th and 90th
percentile of the coefficient for the intercept in the regression
equation (Fig. 5a) is 0.7, this is 70% of an order of magnitude
or a factor of 5. This coefficient is directly related to the stan-
dard normal deviate used to generate the chloride deposition
(Eqs. 3 and 4). This uncertainty in the chloride deposition
transfers linearly to the uncertainty in the recharge estimates
(Eq. 1), the best way to decrease the uncertainty in the re-
charge estimates from the chloride mass balance would be to
have a long-term monitoring program for rainfall chemistry
like in other parts of the world (Lamb and Bowersox 2000).

Upscaling process

The upscaling process using regression kriging allows the
point recharge estimates to be upscaled to a regular grid
allowing recharge estimates to be made across the entirety of
the CLA. However, the uncertainty in the recharge estimates
increases with increasing distance from the point data sources.
This is particularly evident in the difference between the 5th
and 95th percentiles of constrained recharge in the data sparse
region of the southern Wiso Basin (Fig. 10).

The kriging of the residuals (Fig. 6b) showed some spatial
structure indicating information that is present in the point-
scale data that is not captured in the covariates used in the
regression equations. There are areas of positive residuals as-
sociated with the internally draining catchments to the north of
the Beetaloo Sub-basin (Fig. 3b) and the terminal lakes such

as LakeWoods and Tarrabool Lake (Fig. 1b). Other areas with
positive residuals include areas where the surface geology is
of Cambrian age (Fig. 1b).

Yin Foo and Matthews (2001) reported that landholders had
observed sinkholes capturing overland flow during runoff
events to several metres deep, but many only hold water for a
few hours. They considered point recharge through sinkholes to
be the major source of recharge on the Sturt Plateau (Yin Foo
and Matthews 2001). Geological mapping in the 1960s and
1970s identified some sinkholes but it is not known how
extensively they were mapped, Evans et al. (2020) collated the
known areas of extensive sinkhole development around the
Beetaloo Sub-basin (Fig. 3b), but there may be others. The
major regional-scale karstic features are well known (e.g.
Kutta Kutta caves in the Daly catchment or Camooweal Caves
in the Georgina catchment) but the local submetre-scale karstic
features may be important for recharge but not mapped (Jolly
2009). The two catchments used here where streamflow has
been captured by sinkholes are extreme examples on a regional
scale rather than the small-scale features that may occur more
frequently. Catchment areas from a few hectares to a few square
kilometres are responsible for cave formation in the Georgina
Basin via preferential recharge paths (Eberhard 2003). The areas
with positive residuals coinciding with the Cambrian age sur-
face geology is probably an indication of preferential recharge
through karstic features, although this is not exclusive to the
outcropping limestone as sinkholes have developed though
overlying Cretaceous sediments (Randal 1973). The areas
shown in Fig. 6b as having a positive residual and therefore
enhanced recharge are interpolated from the point-scale bore
data without any information related to karstic features, while
the recharge aggregated to catchment scale is probably reason-
able as it will not be correct at the point scale of each sinkhole.

The major terminal lakes such as Lake Woods, Tarrabool
Lake and Sylvester Lake (Fig. 1) have been previously identi-
fied as recharge features in the landscape (Verma and Jolly
1992; Yin Foo and Matthews 2001), but it is only Lake
Woods that has been studied in detail (de Caritat et al. 2019).
The recharge rate through the lake beds has not been quantified
previously and the values shown here (Fig. 10) are spatially
attenuated as the upscaling process does not know where the
lakes are. The positive residuals around the lakes (especially
Lake Woods and Tarrabool Lake, Fig. 6b) have been interpo-
lated from point data at the bores and so do not match the outline
of the lakes themselves. The aggregated recharge calculated
here at the catchment scale is probably reasonable but will be
underestimated at the pixel scale within the lakebed.

Constraining the CMB estimates of recharge

Constraining of the recharge using the baseflow and the re-
motely sensed evapotranspiration resulted in a 29% reduction
in the range between the 5th and 95th percentiles (from 31 to
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22 mm/year). From Fig. S2 of the ESM, it can be seen that the
lower quartile of the recharge has been increased and the up-
per quartile of the baseflow has been reduced. The rejection
sampling method has jointly constrained both the recharge
and the baseflow. Similarly, the upper quartile of the recharge
has been reduced (in most cases) and the lower quartile of the
excess water has increased (Figs. S2 and S3 of the ESM). In
jointly constraining both the recharge and excess water, all the
negative values of excess water have been excluded as all
eight catchments are exporting water either through the
groundwater or surface water.

Of the individual tests used in the rejection sampling, the
baseflow in the Flora River provided no constraint as all
10,000 samples passed. The other catchments ranged from
5,402 samples passed in the Roper River to 6,386 passed in
the Gregory River. This could be an indication that the area
assumed for the Flora River’s groundwater catchment is too
large or that the baseflow is too small for the area it is applied
to. The springs in the Victoria River catchment (Fig. 1a)
would suggest that at least part of the groundwater flow as-
sumed to discharge to the Flora River is actually discharging
to the Victoria River, thus the area is too big (Fig. 3). It is also
conceivable that some of the groundwater flow could flow
under the Flora River and discharge to springs further down
the Daly River (Fig. 1a).

Comparison to previous recharge estimates

Previous recharge estimates are quite similar to those pro-
duced here (Table 1 and cf. Table 5) and generally follow
the rainfall gradient with higher recharge in the north and
lower in the south. The previous recharge estimates have used
a variety of techniques in a variety of different ways. No
attempt has been made to assess the validity of the previous
recharge estimates.

In the Daly catchment, Jolly (1984) found an average re-
charge rate of 100 mm/year and later 90 mm/year (Jolly 2002)
which compares well to the 101 (61–192) mm/year found
here. In areas with Cretaceous cover the recharge could be
half of this catchment average (40–50 mm/year) and up to
double in areas without Cretaceous cover (100–190 mm/year;
Jolly 1984, 2002). At a grid cell scale for the 50th percentile,
the range found here was <1 to >300 mm/year which is com-
parable to the range identified in local scale studies (Wilson
et al. 2006).

In the Roper catchment, Bruwer and Tickell (2015) found
recharge to be 44 mm/year near Mataranka which is similar to
the catchment average found here of 49 (27–93) mm/year. The
recharge found by Crosbie et al. (2009) is considerably higher
as it encompasses the entire Roper catchment which includes
higher-rainfall areas outside of the CLA.

Yin Foo and Matthews (2001) found that recharge was in
the range of 6–18 mm/year in the lower-recharge areas of the

Sturt Plateau, similar to the 3–13mm/year found by Jolly et al.
(2004) in the northernWiso Basin and the 2–8 mm/year found
by Deslandes et al. (2019) for the same area. These studies are
in similar areas to the Beetaloo Sub-basin East used here, that
was found to have an average recharge of 12 (7–23) mm/year.
The western part of the Beetaloo Sub-basin was found to have
a higher average recharge of 48 (27–92) mm/year in this study
which is a similar trend to the higher point recharge estimates
of 5–70 mm/year (Jolly et al. 2004) and 66–190 (Deslandes
et al. 2019) found previously.

In the Barkly region, Tickell and Bruwer (2017) assumed
that recharge was negligible where there was Cretaceous
cover and up to 12 mm/year where the Gum Ridge Fm out-
crops. The recharge estimated here is also higher in the three
areas that Tickell and Bruwer (2017) identified as recharge
areas but the recharge under the black soil plains (high clay
content on Fig. 2c) was found to be in the range 1–3 mm/year
rather than being negligible. Overall, the recharge found here
for the Barkly region was 9 (5–17) mm/year.

In the north of the Georgina catchment, Read (2003) esti-
mated the recharge as 2–6 mm/year which is not dissimilar to
the 6 (4–12) mm/year estimated in this study for the entire
catchment. There have not been previous estimates of re-
charge in the southern half of the Wiso Basin, the south-
west of the Georgina Basin in NT or the Qld portion of the
Georgina Basin. The previous recharge estimates in the
Limmen Bight, McArthur, Robinson, Calvert and Nicholson
River catchments have been made at the whole of catchment
scale (Crosbie et al. 2009) and so are higher than those pro-
duced here, as the rainfall increases toward the coast outside of
the CLA; they are not directly comparable to the recharge
estimates made here.

Conclusions

The uncertainty in the recharge estimates using the
CMB are largely due to the uncertainty in the chloride
deposition, and it is difficult to measure this over ap-
propriate time scales with the spatial resolution needed.
While better input data would be nice to have, this
report presented an alternate way of reducing the uncer-
tainty in the recharge estimates from the chloride mass
balance by developing a method to constrain the uncer-
tain recharge estimates using complementary data
sources that are much easier to obtain. Streamflow is
routinely monitored in many places and baseflow can
be extracted from the streamflow hydrograph by many
different methods. Similarly, remotely sensed evapo-
transpiration is available globally at a variety of spatial
and temporal resolutions that are appropriate for use in
estimating recharge. The rejection sampling method was
successful in reducing the uncertainty in the recharge
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estimates by nearly one third for the application used here
across northern Australia (with the uncertainty quantified as
the difference between the 5th and 95th percentiles).

The method was successfully applied to the entirety of the
Cambrian Limestone aquifer across northern Australia. The
average recharge across the 570,000 km2 was found to be
16 mm/year for the median case with a 5th percentile of
9 mm/year and a 95th percentile of 31 mm/year. The recharge
largely followed the rainfall gradient with the highest recharge
in the Daly catchment in the north-west with a catchment
average of 101 (61–192) mm/year and the lowest in the
Georgina catchment in the south-east with 6 (4–12) mm/year.
The spatial distribution had considerable heterogeneity, relat-
ed to soils, vegetation, surface geology and also focused
sources of recharge related to terminal lakes and karstic
features.

The recharge estimates produced here are appropriate for
regional-scale water resources assessment but do not identify
local point sources of recharge that require protection from
contamination. If this region is to be further developed (for
instance for the gas industry or more intensive agricultural
activities), then consideration should be given to identifying
areas such as sinkholes that act as preferential recharge
sources, and determining appropriate strategies to manage po-
tential contamination sources at the surface. The input
datasets, code and outputs associated with this report are avail-
able from (Geological and Bioregional Assessment Program
2020).

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s10040-021-02323-1.
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