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Abstract The paper investigates reproducing the effects of
confining pressure on the behaviour of scaled railway ballast
in triaxial tests in discrete element models (DEM). Previous
DEM work, using a standard Hertzian elastic contact law
with an elastic–perfectly plastic tangential slip model, has
been unable to replicate the behaviour observed in laboratory
tests across a range of confining pressures without altering
both the material stiffness and the inter-particle friction. A
new contact law modelling damage at the contacts between
particles is introduced. Particle contact is via spherically-
capped conical asperities, which reduce in height if over-
stressed. This introduces plasticity to the behaviour normal
to the contact surface. In addition, the inter-particle friction
angle is varied as a function of normalized contact normal
force. At relatively low normal forces the friction angle must
be increased for peak mobilized friction angles to match the
laboratory data, an effect that is attributed to interlocking at
the scale of surface roughness. Simulation results show close
agreement with laboratory data.

Keywords DEM · Confining pressure · Triaxial test ·
Railway ballast · Contact damage

1 Introduction

Triaxial test results on railway ballast and other granular
materials (e.g., [3,9,13,17,20,25]) have shown that, when
other factors are held constant, the peak mobilized strength
and volumetric strain are strongly influenced by the con-
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fining cell pressure applied. In particular, at low confining
pressure the peak mobilised shear strength is significantly
greater. This has particular relevance in the context of rail-
way ballast. Railway ballast is placed as a near surface layer
and operates entirely within a low horizontal confining stress
regime, and is required to perform acceptably over a large
range of vertical to horizontal stress ratios.

Prior discrete element modelling (DEM) studies have
modelled the effects of confining pressure on the behaviour
of granular matter in different ways. Grain crushing has been
modelled explicitly by various means (see, for example [4]).
Other studies have modelled pressure effects without mod-
elling crushing (see [19,28] for sands, [15,22] for direct shear
tests of railway ballast and [26] for a qualitative study) by
using constant-stiffness linear (rather than Hertzian) contact
laws, which allow greater particle overlap at higher confin-
ing pressures and hence a softer behaviour. In this paper, it
is demonstrated that for triaxial tests on a scaled granite bal-
last material, although no particle breakage was observed in
the laboratory, some contact damage must be taking place
with increasing confining pressure. This is consistent with
anecdotal experimental evidence of ballast attrition observed
in the laboratory. Furthermore, it is shown that the observed
behaviour, including the correct loading/unloading response,
cannot be modelled using a standard elastic contact law and
a new model is proposed to address this need.

Ahmed et al. [2] presented discrete element simulations of
railway ballast that showed close agreement with monotonic
laboratory triaxial tests carried out by Aingaran [3], on one-
third scale ballast. The experimental test rig is shown in
Fig. 1. The numerical model used a Hertzian contact law
with elastic behaviour normal to the contact plane and elas-
tic/perfectly plastic behaviour in the tangential direction.
The ballast was tested at confining cell pressures of 15 and
30 kPa; example results for a cell pressure of 15 kPa are
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Fig. 1 Photo of one-third scale ballast specimen of height = 300 mm
and diameter = 150 mm in a GDS Instruments [10] triaxial apparatus.
The triaxial cell was mounted within a reaction frame and bolted to a
pedestal seated by self-weight onto a bottom–up mechanical drive unit
used to apply axial strain or stress

Fig. 2 Laboratory and simulated results for triaxial test at 15 kPa

shown in Fig. 2. However, if we now extend and apply the
same DEM model to test an identical numerical specimen
at 200 kPa, a significant difference between laboratory and
DEM results can be seen, as shown in Fig. 3. In comparison
with results at 15 kPa, the real ballast exhibits much more
volumetric compression and a slower rise to a lower peak
strength. In contrast, the simulated response at 200 kPa is

Fig. 3 Laboratory and simulated results for triaxial test at 200 kPa

Table 1 Summary of laboratory and simulated results for triaxial tests

Lab Model Lab Model
15 kPa 15 kPa 200 kPa 200 kPa

φpeak (◦) 47 47 45 51

εa at onset of dilation (%) 0.3 0.3 3.2 0.3

Peak εvol (%) 0 0 1 0.1

generally similar to that at 15 kPa, except for a slight increase
in volumetric compression and, perhaps surprisingly, in peak
strength. These results are summarized in Table 1. Accord-
ing to established soil mechanics principles, for tests on soil
samples with the same initial void ratio, increased confining
pressure will lead to a reduction in both the peak strength
(unless the peak strength coincides with the critical state)
and the specific volume at the critical state.

There are two main possible causes of the difference in
stiffness between the laboratory and simulated tests:

1. The model is too stiff or is otherwise incorrectly cal-
ibrated. Contacts between real ballast particles are not
Hertzian, as the particles have rough, non-spherical sur-
faces, so there is some scope for uncertainty in the
choice of stiffness magnitude. However, the 10 GPa shear
modulus used for the Hertzian contact stiffness in the sim-
ulation is already considerably less than that of granite,
which is in the region of 17–29 GPa [12] (based on a
Poisson’s ratio of 0.2).

2. The ballast in the laboratory is experiencing some sort
of damage that increases with cell pressure. Visual and
sieve analysis before and after triaxial testing revealed no
discernible particle breakage and no measurable change
in particle size distribution. This was also observed in
tests on full scale ballast [1]. Therefore, if damage is
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Table 2 Particle size distribution used in simulation

% Passing by weight (net-
work rail specification)

Sieve size
(mm)

One-third scale
sieve size (mm)

100 62.5 20.83

85 50 16.67

17.5 40 13.33

12.5 31.5 10.5

1.5 22.4 7.47

For the one-third scale particles, D50 = 13.5 mm

occurring to the material used in these tests, it must take
the form of very small-scale crushing or abrasion of con-
tacting asperities, perhaps reducing the effective surface
roughness.

Other factors, such as approximations in the modelling of
the triaxial test itself are discussed by Ahmed et al. [2].

First, the possibility is explored that variation of the model
parameters could improve the fit to the laboratory data over
the range of cell pressures 15–200 kPa. The main model para-
meters that can be adjusted are:

1. Particle shape and size distribution (PSD).
2. Initial void ratio.
3. Particle contact stiffness.
4. Inter-particle friction angle.

The particles were chosen so that the distribution of particle
forms and PSD (shown in Table 2) matched the real ballast
[2,18], and the void ratio at the start of the test was the same
as the void ratio measured in the laboratory. Furthermore,
approximately the same number of particles (2800) were used
in the real and simulated tests. The D50 for the one third-scale
ballast was 13.5 mm.

The same initial specimen of particles was used for all
of the numerical studies presented in this paper (see Fig. 4).
The simulated particle shapes are approximations, which will
potentially give rise to some errors both in the simulated
behaviour and in the measurement of void ratios in com-
parison with the real ballast. However, for the purposes of
this study, the particle size distribution and initial void ratio
are considered to be fixed. This leaves only the inter-particle
friction angle and stiffness as variables.

The effects of varying the inter-particle friction angle, for
a constant shear modulus of 10 GPa and a constant confining
pressure of 200 kPa, are shown in Fig. 5. These results were
obtained using the discrete element model and the specimen
of potential particles [11] presented in [2]. Reducing the inter-
particle friction angle has little effect on the initial response,
which remains stiffer than the laboratory test. Also, the crit-
ical state strength is not significantly altered, with all three
simulations being slightly weaker than the laboratory test.

Fig. 4 Image of numerical triaxial specimen, showing potential parti-
cle representation of railway ballast

Fig. 5 Laboratory and simulated results with varied friction angle for
triaxial test at 200 kPa. Hertzian shear modulus G = 10 GPa

However, the peak strength increases with increasing inter-
particle friction angle and is accompanied by an increase in
the rate of dilation. Thus it is clear that a change of interparti-
cle friction angle alone cannot correct the fit to the laboratory
data at the higher confining pressure of 200 kPa (it would also
spoil the fit at lower confining pressures).
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Figure 6 shows the effects of varying the Hertzian shear
modulus, G, for a constant inter-particle friction angle of
40◦. With a value of G = 1 GPa, the initial stiffness of
the response is much improved. However, the peak strength,
rather than reducing as desired, has increased along with the
dilation rate. At G = 100 MPa the peak mobilized friction
angle is reduced, but the initial response is too soft. Once
again, it seems that the critical state response is not signifi-
cantly affected.

By altering both the Hertzian shear modulus (G =
0.5 GPa) and the interparticle friction angle (30◦), a reason-
able fit can be obtained at a confining pressure of 200 kPa
(Fig. 7). The response at 15 kPa, using the same low Hertzian

Fig. 6 Laboratory and simulated results with varied stiffness for triax-
ial test at 200 kPa. Inter-particle friction angle φ = 40◦

Fig. 7 Laboratory and simulated results with stiffness G = 0.5 GPa
for triaxial tests. Inter-particle friction angle was set to 40◦ at 200 kPa
and to 30◦ for the 15 kPa simulation

Fig. 8 Laboratory and simulated cyclic loading tests at 200 kPa

Table 3 Summary of laboratory and simulated results for cyclic loading
tests

Test Residual modulusa

Er (MPa)
Axial strainb

εa

Laboratory 125.3 0.0134

Simulation G = 0.5 GPa 16.0 0.0132

Simulation G = 10 GPa 91.9 0.00847

a Residual modulus measured for second unloading cycle
b Axial strain at start of second unloading cycle

shear modulus (G = 0.5 GPa), but retaining the higher inter-
particle friction angle of 40◦, was evaluated and is also
shown. At 15 kPa, the reduction in stiffness has affected the
peak mobilized friction a little, but the volumetric behaviour
and the strength at 200 kPa is quite well matched.

Although this choice of parameters yields quite a close
match for the monotonic tests, universally changing the inter-
particle friction angle to match the data at different confining
pressures is not a workable solution for more general load-
ing cases in which the confining pressure is not held constant.
Furthermore, although there is some room for manoeuvre in
the choice of stiffness (ballast particles are not spherical and
particle contacts are therefore not perfectly Hertzian), the
very low value used (about one fiftieth of the value for gran-
ite) is difficult to justify. This is borne out in a comparison
of cyclic loading tests shown in Fig. 8, for the laboratory and
simulation data. These results are summarized in Table 3.
This shows that a much stiffer model (G of at least 10 GPa)
is required to match the per-cycle deflection observed in the
laboratory scaled triaxial test.

One explanation for the observed behaviour is that plas-
tic damage occurs at contacts as they are loaded. Cavarretta
et al. [5] showed that for coarse grained sand the inter-
particle contact stiffness included an irrecoverable proportion
of deflection beyond which the deflection vs. stress plot
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showed Hertzian contact behaviour. This would make the
contacts appear initially soft in monotonic loading (as the
asperities are crushed), but stiffer as loading progressed and
stiffen cyclic loading behaviour if the model was subse-
quently unloaded and reloaded.

2 Conical damage model

To address the inconsistencies observed between the mea-
sured and simulated specimen stiffness at different confining
pressures, a new contact damage model is proposed. The
basis of the model is an idealized asperity represented by a
cone (Fig. 9). The sides of the cone make an angle α with
the vertical and the cone has a rounded apex with radius of
curvature, R. This asperity contacts an elastic half plane via
a Hertzian contact with the rounded tip. A minimum radius
of curvature Rmin is specified, as shown in Fig. 9a. The max-
imum stress, σ0, for a Hertzian contact (which occurs at the
centre of the contact) can be expressed as a function of the
radius of contact, R, the normal force, P , and the overlap of
the spherical cap with the elastic half plane, δ, as:

σ0 = 3P

2πRδ
(1)

Alternatively, σ0 can be expressed as:

σ0 = 1

π

(
6PE∗2

R2

)1/3

(2)

where:

1

E∗ = 1 − ν1

2G1
+ 1 − ν2

2G2
(3)

and where G1, G2 and ν1, ν2 are, respectively, the shear
moduli and Poisson’s ratios of the two contacting particles.

If the maximum stress exceeds the maximum compressive
strength of the material, σcmax, the contact can no longer
support the load, Pmax. In this case, the radius of curvature
is recalculated such that σ0 is equal to σcmax. Rearranging
Eq. 2 and setting σ0 = σcmax, the new radius R is given by:

R = E∗√6Pmax

(πσcmax)
3/2 (4)

Fig. 9 Conical damage model

The tip of the asperity then vanishes and is replaced with a
new, more rounded, cap, as shown in Fig. 9b. The rate of
recession of the asperity is governed by the cone angle α

together with material strength. If the tangent to the cone is
parallel to the surface of the cap at the point where the cap
and the cone meet, the new offset from the apex of the cone
to the highest point on the cap, δc, may be calculated from
geometry as:

δc = R

(
1 − sin α

sin α

)
(5)

In implementing the model, damage to the contact surface
is calculated incrementally and changes at each new simu-
lation step are assumed to be small. If σcmax is exceeded at
a contact, then the new radius of contact, R, and offset, δc,
are calculated. The new normal force, P , is calculated on the
basis of the new overlap between the two particles, δ, (which
will have reduced as the surface of the asperity has receded)
and the new contact stiffness, kn , which has changed due to
the change of contact radius:

P = knδ (6)

where:

kn = 4

3
E∗√Rδ (7)

The new shear stiffness, ks is given by:

ks = 4

3
knE

∗√R (8)

and the new shear force is calculated incrementally as usual.
This model is relatively simple and can potentially satisfy

the simultaneous requirements of an apparently low initial
stiffness in monotonic loading at high confining pressures
(through crushing of the asperity), while retaining high elas-
tic stiffness for the case of cyclic loading, which is of crucial
importance in modelling railway ballast. Finding the values
of minimum contact radius, Rmin , and cone angle, α, which
are assumed to be the same for all contacts, is addressed in
Sect. 2.1.

2.1 Calibration of the conical damage model

The parameter values for Rmin and α were refined using the
following iterative procedure:

1. Select the elastic shear modulus, G. (Poisson’s ratio, ν,
was set to 0.2 for all simulations).
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Fig. 10 Percentage of contacts that do not crush as a function of contact
radius, R, for shear stiffness, for G = 5 GPa, and a confining pressure
of 15 kPa. As a reference, the D50 of the specimen is 13.5 mm

2. Select Rmin : it was assumed that very little crushing
occurs at a confining pressure of 15 kPa, thus the behav-
iour is dominated by the influence of Rmin on the stiffness
of the contacts.

(a) Using the contact force data at peak strength for the
best fit simulation at a cell pressure of 15 kPa (Fig. 2),
from Eq. 4 calculate the value of the contact radius
required to support the load, based on the elastic mod-
ulus chosen in (1). The proportion of non-crushing
contacts as a function of contact radius, for a shear
modulus of 5 GPa, is shown in Fig. 10.

(b) Choose a value of Rmin so that most of the contacts
will not crush.

3. Select α: with all other parameters held constant, the cone
angle, α, determines the rate of plastic deformation nor-
mal to the contact plane in response to a normal force
increment beyond the elastic limit. An initial estimate
for alpha can be obtained by studying the simulation data
for the best fit at a cell pressure of 200 kPa with purely
elastic behaviour normal to the contact plane (Fig. 7). In
this case, the fit to the laboratory data was obtained by
using a low inter-particle stiffness, resulting in relatively
large particle overlaps. By reapportioning these particle
overlaps between plastic and elastic deformations, a more
realistic material stiffness can be used, and a value of α

may be determined as follows:

(a) At the peak of mobilized friction, examine the contact
forces, P , and particle overlaps, δ.

(b) Calculate the radius of curvature, R, required to sup-
port the force at each of the (non-zero force) contacts,
using Eq. 4.

(c) From Eq. 6, calculate the elastic deformation, δe, that
would result from the application of this force, using
the radius, R, and the shear modulus, G.

Fig. 11 Histogram of cone angle α for shear modulus, G = 5 GPa and
Rmin = 4 mm

(d) Calculate the plastic displacement, δp, that would
give rise to the same overall contact displacement,
δ, as δp = δ − δe. This minimum value of δp is lim-
ited to zero for the purpose of the next calculation.

(e) Use geometry to calculate the angle α for each contact
such that the new contact radius, R, is obtained for a
plastic reduction in height of the asperity, δp, as:

α = arcsin

(
R − Rmin

R − Rmin + δp

)
(9)

A value of alpha can be calculated for each contact. Next,
select a single value that satisfies the largest number of
contacts. For example, in the case of G = 5 GPa and
Rmin = 4 mm, a histogram of values of α for all particle
contacts is shown in Fig. 11, which shows a peak at α ≈
78◦.

4. Run a cyclic loading test and examine the resulting
resilient modulus. Observation of the results for different
parameter values shows that:

(a) The relationship between shear modulus and resilient
modulus is rather non linear.

(b) The resilient modulus is not very sensitive to α or the
interparticle friction angle, φ.

(c) The plastic axial strain is affected by α and φ.

Adjust the shear modulus, by iteration, to obtain the cor-
rect residual modulus and then repeat steps (1)–(4) to
update Rmin , α and G.

Finally, these parameters can be fine-tuned through sim-
ulation of cyclic and monotonic triaxial tests. For σcmax =
200 MPa, G = 5 GPa, Rmin = 4 mm and α = 78◦, a close
match to the residual modulus was obtained and the results of
the monotonic triaxial test simulations are shown in Fig. 12.
At 15 kPa, the results are relatively unaffected by the damage
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Fig. 12 Simulation results for conical damage model at 15 and
200 kPa, with particle φ = 40◦, platen φ = 30◦, shear modulus
G = 5 GPa, Rmin = 4 mm, α = 78◦, σcmax = 200 kPa

model and the simulation is a good fit to the laboratory data.
At 200 kPa, the initial stiffness of the response matches the
data very closely, but the peak strength is much higher than
for the real ballast. This is not all that surprising, as the model
was conceived to address the discrepancy in monotonic and
cyclic stiffness noted in Sect. 1. A variable friction model
is introduced in the next section to address the reduction in
peak strength observed at higher cell pressures.

3 Variable friction model

In Sect. 1 it was shown that at a confining pressure of 200 kPa,
a good fit to the modelling data could be obtained through a
reduction of both the particle contact stiffness (to an unreal-
istically low value) and the inter-particle friction angle. The
stiffness anomaly was addressed through the introduction of
a damage model in Sect. 2.1, but the peak strength remained
too high. Reduction of the inter-particle friction angle would
improve the response at higher confining pressures, but this
is not a viable approach for more general loading conditions.
This section describes the rationale for and implementation
of a per-contact variable friction model to address the reduc-
tion in peak effective strength with confining pressure.

As an alternative to setting the inter-particle friction angle
globally as a function of the confining pressure, determina-
tion on a per-contact basis could provide a more generally
applicable model. Leaving aside for the moment the justi-
fication for such a measure, the interparticle friction angle
would need to be varied with some aspect of the current state
of the contact, for example the normal force. Figure 13 shows
the distributions of normal force at peak mobilized effective

Fig. 13 Superimposed histograms of contact normal force magnitude
|P| for triaxial test simulations at cell pressures of 15 and 200 kPa

Fig. 14 Changing angle of incidence for two particles in contact as
a function of imagined particle wear. a very little wear b, c ends of
asperities become increasingly rounded d surfaces are almost smooth.
Hatched arrows indicate relative movement of particles

strength for the best fit results at confining stresses of 15 and
200 kPa. The degree of overlap between the two curves is
greater than might be expected on the basis of the ratio of
confining pressures (200/15 = 13.3̇), although it is accentu-
ated visually by the logarithmic scale. Owing to the greater
number of contacts per particle at 200 kPa than at 15 kPa
(about 60 % more) and to the slightly lower mean pressure at
peak strength, the ratio of mean normal forces between the
two simulations is about 7. A relationship between interpar-
ticle friction angle and contact force would need to devised
in such a way that most of the contacts at 15 kPa have a value
of around 40◦, reducing to about 30◦ for the 200 kPa case.

A possible justification for a reduction in strength at higher
confining pressures is that asperities can provide some degree
of interlocking between particles at low confining pressures,
but tend to break at higher pressures. Evidence for this type
of polishing is presented by Indraratna and Salim [14] for
ballast subjected to cyclic loading. This process is imagined
in the spirit of the well-known saw-blade analogy for dilation
in Fig. 14, focusing on a change in apparent friction angle
rather than dilation. In Fig. 14a, there is very little wear and
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the contact normal is at an angle β to the vertical. The appar-
ent friction angle is then φs+β, where φs is the friction angle
of the smooth material. As the asperities become more worn
down, as represented by an increasing radius of curvature in
Fig. 14b–d, β tends to zero as the contact normal nears verti-
cal. Thus the apparent friction angle approaches the smooth
limit, φs . The concept proposed by Pöschel and Herrmann
[24] in the context of earthquake modelling, in which fric-
tion reduces with increasing sliding velocity, offers a possible
precedent.

3.1 Variable friction model: a first attempt

Consider a pair of contacting particles with a single break-
able asperity as shown in Fig. 15a. In this idealized case,
before sliding can occur the magnitude of the shear force
must exceed the sum of the asperity strength and the frictional
limit, which is proportional to the magnitude of the normal
force. This limiting shear force is indicated by the solid line
in Fig. 15b. If this limit is exceeded, the asperity breaks and
the limiting shear force would then be purely frictional, as
indicated by the dotted line in Fig. 15b. Trial simulations with
this model demonstrated that a very modest asperity strength
of about 1 Newton combined with a residual friction angle
of about 28◦ provided a close fit to the data at confining pres-
sures of both 15 and 200 kPa. At 200 kPa, the asperity strength
has very little effect. However, between these values, it was
found that the triaxial strength fell away too quickly with
increased confining pressure. To address this, a power law
relationship is proposed for the shear force limit of the form:

Qlim = max
{
a‖P‖1/b, tan(φresidual)‖P‖

}
(10)

where Qlim is the shear force limit, φresidual is the residual
friction angle and a and b are constants.

The coefficient of friction, μ, can then be written as:

μ = tan(φ) = max
{
a‖P‖1/b−1, tan(φresidual)

}
(11)

Fig. 15 a Two particles in contact; the lower particle has a nominally
flat upper surface but includes an asperity that must break before the
particles can slide. Arrows indicate the relative forces on the particles.
b Shear force limit as a function of normal force magnitude for single
asperity case

The results of monotonic triaxial test simulations using
the conical damage model in combination with the power-
law friction model are shown in Figs. 16, 17, 18 and 19. The
parameters for the simulation are summarized in Table 4 and
were obtained as follows:

1. The residual friction angle, φresidual was set to 28◦. The
coefficients α and Rmin were set to the values obtained
in Sect. 2.1.

2. The magnitude of the normal force above which the fric-
tion coefficient is constant was set to 80 N (see Fig. 16).
This results in most of the contacts at a confining pres-
sure of 15 kPa having an increased friction coefficient,
and many of the higher-load carrying contacts at 200 kPa
the residual value (see Fig. 13).

3. A trial value for b was chosen. The parameter a was cal-
culated from Eq. 11 with P = 80 N (from step 2) and

Fig. 16 Coefficient of friction as a function of normal force magnitude

Fig. 17 Simulation results with combined variable friction and conical
damage model compared with laboratory test data for triaxial simula-
tions at cell pressures of 15 kPa
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Fig. 18 Simulation results with combined variable friction and conical
damage model compared with laboratory test data for triaxial simula-
tions at cell pressures of 30 kPa

Fig. 19 Simulation results with combined variable friction and conical
damage model compared with laboratory test data for triaxial simula-
tions at cell pressures of 200 kPa

μ = tan(φresidual). Simulations at confining pressures
of 15 and 200 kPa were then carried out. This step was
repeated, adjusting b, to obtain the best fit to the experi-
mental data.

In all cases, the agreement in the mobilized friction
response is excellent and in the volumetric response at least
acceptable. Apart from the improved fit to the data, one piece
of circumstantial evidence of increased effective interparti-
cle friction at low normal forces is that the mobilized friction
response is more similar in nature to the laboratory data with
smaller fluctuations (for example, compare Fig. 17 with the

Table 4 Parameters for power
law friction simulation

Parameter Value

α 78◦

Rmin 4 mm

φresidual 28◦

a 1.1037

b 1.2

G 5 GPa

β ′, γ ′ and φresidual refer to Eq. 11

responses at a confining pressure of 15 kPa in Figs. 3 or 12).
This suggests that the specimen is stabilized (exhibiting less
erratic stick–slip behaviour) by lightly-loaded contacts which
have increased tangential strength due to surface interlocking
between particles.

3.2 A damage-dependent friction model

The friction model proposed in Sect. 3.1 relates the inter-
particle friction angle to normal force at the contact. Although
the simulation results offer a good fit to the data, there are
two deficiencies with the model:

1. The normal force should be expressed in a non-dimensio-
nal form so that the model can be applied at different
scales.

2. There is no link between the state of damage and the
inter-particle friction angle.

As a first step in addressing these issues, consider the
model for the inception of sliding of a spherical contact on
a plane, proposed by Kogut and Etsion [16]. In this model,
rather than assuming a friction angle at which sliding will
occur, the area in contact is assumed to be fused and slid-
ing only takes place if the material itself fails. This leads to
an increase in the apparent friction coefficient at lower nor-
mal force magnitudes. Based on a fit to results from a finite
element model of a sphere contacting a plane, Kogut and
Etsion propose a relationship for the friction coefficient, μ,
as a function of the normal force, P , normalized by the crit-
ical force, Pc, i.e. the value of normal force at which plastic
deformation will occur for a given sphere radius and set of
elastic properties:

μ = 0.516

(
P

Pc

)−0.345

(12)

valid in the range 0 ≤ P ≤ Pc, where:
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Pc = (πK H)3

6

(
R

E∗

)2

(13)

where R is the radius of the sphere, K is a hardness coefficient
related to the Poisson’s ratio of the material by K = 0.454+
0.41ν and H = 2.8Y , according to [27], where Y is the yield
strength of the material.

Note that Eq. 13 is very similar to Eq. 2, which can be
rearranged to give a slightly different expression for the crit-
ical force, Pc, as:

Pc = (πσcmax)
3

6

(
R

E∗

)2

(14)

The difference is due to the fact that the maximum shear
stress occurs below the surface for a spherical indenter acting
on a plane [6]. Also, note that the form of Eq. 12 is similar
to the power law relationship in 3.1 (Eq. 11). The main dif-
ferences are the normalization of the normal force in Eq. 12,
and the lack of a lower limit on the friction coefficient, μ.

Kogut and Etsion were studying the behaviour of metals
and their approach may not be directly applicable to rock
contacts. However, several authors have reported increased
friction with rough surfaces (see for example [7,8,23]). In the
case of railway ballast, it is possible to imagine that surface
roughness, on a smaller scale than the asperities considered in
this paper, could provide a resistance to lateral movements
through interlocking. At low normal forces, the interlock-
ing effect would dominate, becoming less significant with
increasing normal force. However, the lateral strength of
the interlocked region depends on the contact area, which
in the case of nominally Hertzian contacts is a function of
the effective radius of contact. For constant surface rough-
ness and normal load, an increase in the nominal radius of
contact will increase the area of contact and could generate a
greater degree of interlocking. This provides a possible link
between the conical damage model (see Sect. 2), which alters
the effective contact radius, and the frictional behaviour.

Building on Kogut and Etsion, the conical damage model
can be combined with a friction law of the form given by
Eq. 12, by using the radius of contact from the conical damage
model (Eq. 4) to calculate the critical force, Pc. The proposed
model for μ is given by:

μ = β

(
P

Pc

)γ

(15)

where β > 0, γ < 0 and Pc is defined by Eq. 14, using the
value for R calculated in Eq. 4. It is important to note that
the normal force, P can never exceed the critical force Pc,
as this would result in damage to the cone, an increase in the
contact radius and, consequently, in the critical force, Pc. As

a result, the friction coefficient, μ, has a lower limit given by
μ = β.

3.2.1 Model calibration

The parameters β and γ were derived from the values of
residual friction, φresidual , and the exponent, 1/b − 1 (see
Eq. 11) determined in Sect. 3.1. Thus, β = tan(28◦) and γ =
1/1.2 − 1 = −0.16̇. The cone angle, α, and shear modulus,
G were initially set to the values obtained in Sect. 2.1.

By studying the distribution of contact normal force mag-
nitudes shown in Fig. 13, and making the assumption that
most of the contacts do not crush at a confining pressure
of 15 kPa, the load at which previously unloaded contacts
begin to crush, P0

c , was initialized to 80 N (from step 2 in
Sect. 3.1). The minimum radius, Rmin was then calculated
by rearranging Eq. 14 to give:

Rmin = E∗
√

6P0
c

(πσcmax)3 (16)

where E∗ is given by Eq. 3.
Note that the rate of plastic deformation normal to the

contact plane for a monotonically increasing load, Pmax, is
determined by both the cone angle, α, and the stiffness, E∗.
Thus, to maintain similar plastic behaviour when changing
the stiffness, α must also be changed. This can be seen by
substituting for the cap radius, R, from Eq. 4 into 5 to give a
relationship between the normal force and the plastic settle-
ment, δc, as:

Pmax = Aδ2
c (17)

where

A = (πσcmax)
3

6E∗2

(
sin α

1 − sin α

)2

(18)

is a constant.
Cyclic and monotonic loading simulations were then car-

ried out. The stiffness, G, was then adjusted to obtain a good
fit to the resilient modulus measured from the laboratory
cyclic loading data. At each stiffness, Rmin was recalculated
using Eq. 16 and α was adjusted to maintain a constant value
of A in Eq. 18. Finally, small trial-and-error adjustments were
made to Rmin and α to obtain the correct monotonic loading
response across the range of confining pressures.

The best fit parameters are presented in Table 5 and the
results for this model are shown in Figs. 20, 21 and 22,
which show good agreement with the laboratory results.
The results for corresponding cyclic loading test simulations
are shown in Fig. 23; these show excellent agreement for
both the resilient modulus and the initial axial strain. After
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Table 5 Parameters for
damage-dependent friction
simulation

Parameter Value

α 81◦

Rmin 12 mm

β 0.53171

γ −0.16667

G 8 GPa

β and γ refer to Eq. 15

Fig. 20 Simulation results with conical damage model and damage-
dependent friction compared with laboratory test data for triaxial
simulations at a cell pressure of 15 kPa

Fig. 21 Simulation results with conical damage model and damage-
dependent friction compared with laboratory test data for triaxial
simulations at a cell pressure of 30 kPa

several cycles the rate of axial strain in the simulation is
larger than in the laboratory test; this needs further investi-
gation.

Fig. 22 Simulation results with conical damage model and damage-
dependent friction compared with laboratory test data for triaxial
simulations at a cell pressure of 200 kPa

Fig. 23 Comparison of cyclic loading results at a cell pressure of
55 kPa for a laboratory test (top) and a simulation (bottom). The sim-
ulation was carried out using the damage-dependent friction model
combined with the conical damage model

4 Summary and conclusions

A discrete element contact law has been proposed to model
the behaviour observed in laboratory triaxial tests of scaled
railway ballast at a range of confining pressures from 15
to 200 kPa. It was shown not to be possible to match the
laboratory behaviour using the standard Hertzian elastic
contact law with an elastic-perfectly plastic tangential slip
model, presented in [2]. This suggests that some damage
must be occurring at particle contacts. A new contact model
was proposed, based on the supposition that particles con-
tact at asperities. The asperity contact was modelled by a
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spherically-capped cone. In an elastic regime, the contact is
Hertzian with a radius defined by the cap radius. If the yield
stress is exceeded the cap is crushed and forms a lower cap
with a larger radius, able to support the load. This model
was shown to provide good agreement with the initial load-
ing behaviour in monotonic laboratory tests for the different
confining pressures tested and also satisfies the requirement
for a stiffer unloading response. However, the damage model
did not significantly alter the peak strength, which reduces
with confining pressure in the laboratory tests. Therefore a
supplementary model was proposed that varies the inter-
particle friction coefficient as a function of a normalized
load, which is the contact normal force divided by the criti-
cal force, Pc (the load at which plastic failure will start). For
contact normal loads less than Pc, the friction is increased;
an effect attributed to interlocking at the surface roughness
scale. For virgin monotonic loading of a contact, the friction
will decrease until the load is equal to Pc and the friction
coefficient reaches a constant minimum value. A continued
increase in loading will result in plastic damage and a con-
sequent increase in Pc to the current load value. Subsequent
unloading results in an increase in friction coefficient.

Simulation results show excellent agreement with the lab-
oratory data for all monotonic triaxial tests. Good agreement
was obtained with cyclic loading data over the first few
cycles, in terms of both the resilient response and the axial
strain. In later cycles, the simulation displays larger plastic
axial strain than the laboratory results and this remains a
subject for further investigation.
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