Skip to main content
Log in

A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This study focuses on numerical modelling of rockfill material with the discrete element method (DEM). This method was used due to the special features of rockfill material, such as intense particle breakage and high contracting behaviour, which are inherently due to large particle size. Because the DEM models the interaction of separate elements, it is capable of modelling discrete structures of granular materials and particle breakage. The model used in this study uses PFC2D and considers breakable clumps. To validate the presented model for rockfill material, numerical single crushing tests and triaxial tests on the Purulia dam’s material were simulated. Due to the size-dependant crushing strength being involved in the breakage criterion, and also considering particle confinement, size-dependant and stress level-dependant behaviour was successfully simulated on modelled rockfill material. The variation of the sample’s particle grading from before the biaxial tests and after shear failure occurred was reported. The obtained results demonstrate the accuracy of the adopted model and the model’s capability for considering a rockfill material’s strength, deformation and crushing behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varadarajan A., Sharma K.G., Venkatachalam K., Gupta A.K.: Testing and modeling two rockfill materials. J. Geotech. Geoenviron. Eng. 129(3), 206–218 (2003)

    Article  Google Scholar 

  2. Deluzarche A., Cambou B.: Discrete numerical modeling of rockfill dams. Int. J. Numer. Anal. Geomech. 30, 1075–1096 (2006)

    Article  MATH  Google Scholar 

  3. Marsal R.J.: Mechanical properties of rockfill. In: Hirshfield, R.C., Poulos, S.J. (eds.) Embankment-Dam Engineering, Casagrande Volume, pp. 109–200. Wiley, New York (1973)

    Google Scholar 

  4. Itasca Consulting Group Inc.: PFC2D (Particle Flow Code in Two Dimensions), Version 3.0. Itasca Consulting Group Inc.: Minneapolis (2002)

  5. Mahboubi, A., Cambou, B., Fry, J.-J.: Numerical modelling of the mechanical behavior of non spherical, crushable particles. In: Behringer, R.P., Jenkins, J.T. (eds.) Powders and Grains, vol. 97, pp. 139–142. A. A. Balkema, Rotterdam (1997)

  6. Thomas P.A., Bray J.D.: Capturing nonspherical shape of granular media with disk clusters. J. Geotech. Geoenviron. Eng. 125, 169–178 (1999)

    Article  Google Scholar 

  7. Bardet J.P.: Observations on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 18, 159–182 (1994)

    Article  Google Scholar 

  8. Mahboubi, A.: Significance of the particle rotation on the mechanical behaviour of the granular materials. In: Bento, J., Arantes e Oliveira, E.R., Pereira, E. (eds.) EPMESC VII International Conference on Enhancement and Promotion of Computational Methods in Engineering and Science, Vol. 2, pp. 1397–1404. Elsevier (1999)

  9. Mahboubi, A.: Micro and macro effects of particle rotation on shear strength of idealized granular materials. In: Proceeding of the International Symposium on Geomechanics and Geotechnics of Particulate Media. Taylor & Francis, London (2006)

  10. Rothenburg L., Bathurst R.L.: Micromechanical features of granular assemblies with planar elliptical particles. Geotechnique 42(1), 79–95 (1992)

    Article  Google Scholar 

  11. Ting J.M., Meechum L.R., Rowell J.D.: Effect of particle shape on the strength and deformation mechanisms of ellipse-shaped granular assemblages. Eng. Comput. 12, 99–108 (1995)

    Article  Google Scholar 

  12. Sawada, S., Pradhan, T.B.S.: Analysis of anisotropy and particle shape by distinct element method. In: Siriwardane, H. J., Zaman, M. M. (eds.) Proc. 8th Int. Conf. on Computer methods and advancements in geomechanics, pp. 665–670. Balkema, Rotterdam (1994)

  13. Hosseininia E.S., Mirghasemi A.A.: Numerical simulation of breakage of two-dimensional polygon-shaped particles using discrete element method. Powder Technol. 166(2), 100–112 (2006)

    Article  Google Scholar 

  14. Kun F., Herrmann H.J.: A study of fragmentation processes using a discrete element method. Comput. Methods Appl. Mech. Eng. 138, 3 (1996)

    Article  ADS  MATH  Google Scholar 

  15. Kun F., Herrmann H.J.: Fragmentation of colliding discs. Int. J. Modern Phys. C 7, 837 (1996)

    Article  ADS  Google Scholar 

  16. Carmona H.A., Wittel F., Kun F., Herrmann H.J.: Fragmentation processes in impact of spheres. Phys. Rev. E 77, 051302 (2008)

    Article  ADS  Google Scholar 

  17. Behera B., Kun F., McNamara S., Herrmann H.J.: Fragmentation of a circular disc by impact on a frictionless plate. J. Phys. Condens. Matter 17, 2439 (2005)

    Article  ADS  Google Scholar 

  18. D’Addetta G.A., Kun F., Ramm E.: On the application of a discrete model to the fracture process of cohesive granular materials. Granul. Matter 4, 77–90 (2002)

    Article  MATH  Google Scholar 

  19. D’Addetta, G.A., Kun, F., Ramm, E., Herrmann, H.J.: From solids to granulates—discrete element simulations of fracture and fragmentation processes in geomaterials. In: Vermeer, P.A., Diebels, S., Ehlers, W., Herrmann, H.J., Luding, S., Ramm, E. (eds.) Continuous and Discontinuous Modelling of Cohesive Frictional Materials. Lecture Notes in Physics, vol. 568. Springer, Berlin (2001)

  20. Potyondy D.O., Cundall P.A.: A bonded-particle model for rock. Int. J. Rock Mech.Mining Sci. 41(8), 1329–1364 (2004)

    Article  Google Scholar 

  21. Kozicki J., Tejchman J., Mróz Z.: Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granul. Matter 14, 457–468 (2012)

    Article  Google Scholar 

  22. Guerrero S.L., Vallejo L.E.: Discrete element method evaluation of granular crushing under direct shear test conditions. J. Geotech. Geoenviron. Eng. 131, 1295–1300 (2005)

    Article  Google Scholar 

  23. Fragaszy R.J., Voss M.E.: Undrained compression behavior of sand. J. Geotech. Eng. ASCE 112(3), 334–347 (1986)

    Article  Google Scholar 

  24. Feda J.: Notes on the effect of grain crushing on the granular soil behaviour. Eng. Geol. 63(1–2), 93–98 (2002)

    Article  Google Scholar 

  25. Bishop A.W.: The strength of soils as engineering materials. Geotechnique 16, 89–130 (1966)

    Google Scholar 

  26. Miura N., O-Hara S.: Particle-crushing of a decomposed granite soil under shear stresses. Soil Found. 19(3), 1–14 (1979)

    Article  Google Scholar 

  27. Bolton M.D.: The strength and dilatancy of sands. Geotechnique 36(1), 65–78 (1986)

    Article  Google Scholar 

  28. Hardin B.O.: Crushing of soil particles. J. Geotech. Eng. ASCE 111(10), 1177–1192 (1985)

    Article  Google Scholar 

  29. Lade P.V., Yamamuro J.A., Bopp P.A.: Significance of particle crushing in granular materials. J. Geotech. Eng. ASCE 122(4), 309–316 (1996)

    Article  Google Scholar 

  30. McDowell G.R., Bolton M.R., Robertson D.: The fractal crushing of granular materials. J. Mech. Phys. Solids 44(12), 2079–2102 (1996)

    Article  ADS  Google Scholar 

  31. Lee K.L., Farhoomand I.: Compressibility and crushing of granular soil in anisotropic triaxial compression. Can. Geotech. J. 4(1), 68–86 (1967)

    Article  Google Scholar 

  32. Hagerty M.M., Hite D.R., Ullrich C.R., Hagerty D.J.: One dimensional high pressure compression of granular media. J. Geotech. Eng. 119(1), 1–18 (1993)

    Article  Google Scholar 

  33. McDowell G.R.: On the yielding and plastic compression of sand. Soil Found. 42(1), 139–145 (2002)

    Article  MathSciNet  Google Scholar 

  34. Nakata Y., Hyodo M., Hyde A.F.L., Kato Y., Murata H.: Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soil Found. 41(1), 69–82 (2001)

    Article  Google Scholar 

  35. Nakata Y., Kato Y., Hyodo M., Hyde A.F.L., Murata H.: One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soil Found. 41(2), 39–51 (2001)

    Article  Google Scholar 

  36. McDowell G.R., Bolton M.D.: On the micromechanics of crushable aggregates. Geotechnique 48(5), 667–679 (1998)

    Article  Google Scholar 

  37. Tsoungui O., Vallet D., Charmet J.C.: Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol. 105, 190–198 (1999)

    Article  Google Scholar 

  38. Jaeger J.C.: Failure of rocks under tensile conditions. Int. J. Rock Mech. Mining Sci. 4, 219–227 (1967)

    Article  Google Scholar 

  39. Griffith A.A.: The phenomena of rupture and flow in solids. P. Roy. Soc. Lond. A Mat. 221, 163–198 (1921)

    Article  ADS  Google Scholar 

  40. Tsoungui O., Vallet D., Charmet J.C., Roux S.: Size effects in single grain fragmentation. Granul. Matter 2, 19 (1999)

    Article  Google Scholar 

  41. Cheng Y.P., Nakata Y., Bolton M.D.: Discrete element simulation of crushable soil. Geotechnique 53(7), 633–641 (2003)

    Article  Google Scholar 

  42. Marsal R.J.: Large scale testing of rockfill materials. J. Soil Mech. Found. Div. ASCE 93(SM2), 27–43 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Mahboubi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alaei, E., Mahboubi, A. A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon. Granular Matter 14, 707–717 (2012). https://doi.org/10.1007/s10035-012-0367-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0367-7

Keywords

Navigation