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ABSTRACT

Ecosystem scientists will increasingly be called on

to inform forecasts and define uncertainty about

how changing planet conditions affect human well-

being. We should be prepared to leverage the best

tools available, including big data. Use of the term

‘big data’ implies an approach that includes

capacity to aggregate, search, cross-reference, and

mine large volumes of data to generate new

understanding that can inform decision-making

about emergent properties of complex systems.

Although big-data approaches are not a panacea,

there are large-scale environmental questions for

which big data are well suited, even necessary.

Ecosystems are complex biophysical systems that

are not easily defined by any one data type, loca-

tion, or time. Understanding complex ecosystem

properties is data intensive along axes of volume

(size of data), velocity (frequency of data), and

variety (diversity of data types). Ecosystem scien-

tists have employed impressive technology for

generating high-frequency, large-volume data

streams. Yet important challenges remain in both

theoretical and infrastructural development to

support visualization and analysis of large and di-

verse data. The way forward includes greater sup-

port for network science approaches, and for

development of big-data infrastructure that in-

cludes capacity for visualization and analysis of

integrated data products. Likewise, a new paradigm

of cross-disciplinary training and professional

evaluation is needed to increase the human capital

to fully exploit big-data analytics in a way that is

sustainable and adaptable to emerging disciplinary

needs.

Key words: network science; eco-analytics; fore-

cast; scale; data mining; prediction.

INTRODUCTION

Big data touches increasingly personal aspects of

each of our lives, from health to shopping and

entertainment preferences. Ecosystem scientists

curate very little of the types of social media, con-

sumer-based, and medical data that have motivated

much of the technological and analytical develop-

ment in informatics (Chang and others 2014;

Tirunillai and Tellis 2014; Han and others 2015;

Hoegh and others 2015; Culotta and Cutler 2016;

Flechet and others 2016). This is reflected in the

fact that more than 70% of the published articles

from the past ten years in Web of Science that refer

to big data are from computer science, engineering,

telecommunication, and business research fields.

Yet there is a growing core of ecosystem work that

is persistently expanding the scope for how our

field defines, handles, and exploits big-data prod-

ucts and approaches. This is evidenced by publica-

tions from data-driven networks like GLEON

(Global Lake Observatory Network, http://gleon.
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org), FLUXNET (http://fluxnet.ornl.gov), and by

ventures like the U.S. National Science Founda-

tion’s $400 million support for a National Ecologi-

cal Observatory Network (NEON) (Wilson and

others 2002; Baldocchi 2003; Michener and others

2012; Weathers and others 2013; McDowell 2015;

Hanson and others 2016). Likewise, eco-informat-

ics platforms like DataONE (Data Observation

Network for Earth, www.dataone.org) have sub-

stantially advanced ‘discoverability’ of these big-

data products (Michener and others 2012). Despite

this progress, we identify a growing need for the-

oretical development and infrastructure support to

better manage and integrate cross-scale data (for

example, at different organizational levels). These

advances must address key challenges that include

real-time prediction of ecosystem properties and

the need for probabilistic forecasts to better

understand how ecosystem function might be al-

tered under global change scenarios.

For much of the past decade, big data has been

used to indicate data volumes over a terabyte—a

storage capacity that was only made available on

personal computers in 2007. However, volume is

not the only dimension of value for big data (Fig-

ure 1), which also encompasses data variety,

velocity, and, in some literature, veracity (Kwon

and others 2014; Lovelace and others 2016). Vari-

ety, or structural heterogeneity, generally refers to

data that integrate tabular (numeric) data with

images, text, or other unstructured sources. We

extend this to also encompass data from different

scales and/or organizational (for example, taxo-

nomic) levels. Velocity captures the speed at which

data are generated, with the expectation that data

collected at high velocities can inform real-time (or

near-time) analytics. Veracity acknowledges the

importance of identifying data reliability and might

best be evaluated via ground-truthing and cross-

validation across different data types (Lovelace and

others 2016). Specific definitions vary in both time

and disciplinary space—as what is ‘big’ gets rede-

fined with each technological and analytical ad-

vance that is adopted. However, volume is a key

dimension across fields and for all involved, big

data is notable for being bigger than the standard

data that are collected and analyzed with conven-

tional methods. The broadest definitions incorpo-

rate a hope and expectation that big data ultimately

represents an evolving capacity to search, aggre-

gate, and cross-reference large datasets to inform

decision-making and to generate new understand-

ing about emergent properties of complex systems

(Evans and others 2013; Tinati and others 2014). In

this sense, big data is not exclusively generated to

address a specific hypothesis but is inclusive of

opportunity for addressing many yet-to-be-defined

hypotheses and for generating predictive inference.

Below we provide a brief synthesis of how

understanding and use of big data has developed in

ecosystem research over the past ten years. We also

highlight current technological and cultural chal-

lenges limiting our field from exploiting big-data

approaches. Finally, we describe a vision for the

next decade of big data in ecosystem science that

will redefine the scope of what is currently con-

sidered big, as our capacity for managing and ana-

lyzing large datasets continues to grow. We

anticipate that the field will further develop and

support network and team science that can effec-

tively integrate diverse data sources and generate

cross-scale inference with clear and quantitative

definitions of uncertainty. Further, we expect that

Figure 1. The next decade will demand advances driven

by integration across multiple scales and sources of data

to address critical questions about how ecosystems

function and change. Each of the bubbles, scaled by

relative Volume, represents an individual data product

that by itself might be considered ‘big’ by axes of Volume,

Velocity, or Variety. Height on this figure is arbitrary for

purposes of visualization. Measures of CO2 flux from a

single tower can generate great volume due to the high

velocity of measurement records. The volume is further

increased if multiple tower sites are considered, although

variety remains low because the data are all the same

type of measurement. Likewise, even a single organism

can generate high-volume genetic sequence data. Com-

munity ecology data, including biodiversity metrics and

biotic interactions, are often ‘smaller’ data, although

measuring biodiversity can require multiple types of data

(high variety). Ecosystem function is a complex process

that should be informed by many data types from mul-

tiple scales.
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ecosystem scientists will increasingly employ big-

data approaches to understand how a growing

human population and global climate change

influence ecosystem function and stability. The

next decade will certainly see growing demand for

forecasts driven by big data that are aimed to guide

policy and management needs, and ecosystem sci-

entists will increasingly need to evaluate how re-

search can concurrently support both theoretical

understanding and forecasting needs.

UNDERSTANDING ECOSYSTEMS WITH BIG

DATA

Ecologists and ecosystem scientists in particular

have a long history with big-data concepts. A

number of recent publications illustrate the chal-

lenges and opportunities attributed to big data

(Michener and Jones 2012; Hampton and others

2013; Raffaelli and others 2014; Han and others

2015; Weathers and others 2016); each describes

persistent challenges, including the standardization

of metadata, units, and protocols, data ‘discover-

ability,’ and ease of visualization and analysis

within or between connected cyberinfrastructure

and analysis platforms (for example, DataONE and

statistical software). While ecosystem scientists

have engaged in and leveraged big-data ap-

proaches, ecosystem science is still largely a disci-

pline that explains pattern and process rather than

one adept at predicting them (Dietze and others

2013; Niu and others 2014). This is in part because

there is still so much about pattern and process that

requires explaining.

Ecosystem scientists strive to understand bio-

physical processes, as well as the complex applica-

tions and implications of those processes (for

example, ecosystem function, stability, and ser-

vices). Big data could substantially advance

understanding and forecasting capacity for ecosys-

tem science over the next decade. Although data

quality and keen researcher insights will remain

critical in any analysis, engaging big-data tech-

nologies and philosophies can provide robust ap-

proaches and tools to make inroads towards

answering some complex questions in ecosystem

science, such as how ecosystem function is affected

by changing climate across local to regional scales,

how stability of ecosystem processes is supported by

biodiversity, and others. Furthermore, the clear

connections between big data and network science

approaches denote a potential shift towards a fu-

ture where early career faculty are expected both to

develop collaborations and are rewarded for doing

them well.

Individual research in ecosystem science often

generates smaller data but, even so, requires inte-

gration of information across space, time, and types

of data to address fundamental questions about

how earth’s biophysical systems function (Fig-

ure 1). Assembling and curating measurements

and metadata from across spatially distinct sites,

such as the GLEON model (Box 1), is a network

science approach—where individual and/or col-

laborative groups of researchers build a database

that, as a whole, can generate inference and pre-

dictions more effectively than any single data

component could by itself. Network science

Figure 2. The global lakes ecological observatory network (GLEON) integrates buoy sensor data from more than 80 lakes

in 51 countries across 6 continents.
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engages multiple investigators in data collection,

validation, curation, and, in some cases, synthesis

processes. This requires collaborative, open data

sharing and documentation (Hampton and Parker

2011; Stokstad 2011; Wallis and others 2013;

Hampton and others 2015; Laney and others 2015).

Examples include the following: networks that

prescribe and support experimental, processing

and/or data entry protocols (that is, FLUXNET,

NEON); those that are more loosely organized

around use of shared technology and protocols

(GLEON); or a network of independent research

programs that shares intent and a common data

repository (for example, NSF’s LTER program,

Box 2). These networks provide big data, although

the current infrastructure and analytics support

often fall short of facilitating big-data analytics (see

Boxes 1 and 2).

Box 1. The global lake ecological observatory network (GLEON)

Big data is at the core of the grassroots, Global Ecological Observatory Network’s (GLEON, www.gleon.org) science, outreach,

and educational activities (Weathers and others 2013; Hanson and others 2016). GLEON is really three networks: a

network of lakes (80), a network of people (over 550), and a network of data (approximately 1 million data records, est.;

Weathers and others 2013; Hanson and others in press). GLEON’s first mission, when it was established in 2005, was to

build and grow a scalable (meaning expandable to other places), persistent network of lake ecological observatories.

Early activities included not only encouraging the installation of buoys around the world (Figure 2), but building a

centralized database and the cyberinfrastructure to support sharing and discovery of GLEON’s complex, high- and low-

frequency data on lake and reservoir ecosystems. However, GLEON abandoned the creation of its own data infras-

tructure management program approximately five years into its existence; it was too expensive and not feasible as part

of the research project. The data were too complex and heterogeneous, the task too big, and the database and infras-

tructure were ultimately unsustainable by a grassroots effort. GLEON then began to explore partnerships with groups

focused on develop the tools to receive harmonized sensor data, as well as other data and metadata from scientific and

citizen science efforts from around the world. The GLEON network is a member node in the DataONE platform, with 17

unique data streams currently maintained and 266 data downloads since 2014. Streamlining protocols for visualization

and summary analyses of buoy data from multiple sites in real-time remains a goal, although no easy solution appears

on the immediate horizon.

In 2013, GLEON’s mission was reformulated to better capture its scientific foci: GLEON conducts innovative science by

sharing and interpreting high-resolution sensor data to understand, predict, and communicate the role and response of

lakes in a changing global environment. Some of the new insights and products that have resulted from GLEON analyses

of big data include the variable response (in time and space) of lakes to extreme events (Jennings and others 2012; Klug

and others 2012), new insights into basic ecological principles such as the role of temperature dependence as a driver of

lake respiration (Yvon-Durocher and others 2012), and lake temperature responses to global climate change. Further,

GLEON’s data have been used to create open-source ecosystem models (Hamilton and others 2015). Although papers,

theses, and products attributed to GLEON are now close to 200, and data records from GLEON sites are likely to number

over 200 million, scientific discovery and data visualization could be much faster and more diverse if streaming data from

GLEON lake ecosystems could be accessed, harmonized, and shared around the world. GLEON has built a collaborative

culture that is quintessentially poised to use big data to understand lake and reservoir ecosystems (Hanson and others

2016); the lack of cyberinfrastructure to handle high-frequency data streams from diverse sources, metadata standards,

and controlled vocabulary in addition to the (political and regulatory) challenge of sharing some data across institutions

and cultures remains a primary limitation to scientific discovery within GLEON, and elsewhere.

Box 2. Long-term ecological research and sharing big data across space and time

The United States’ federally funded long-term ecological research (LTER) sites were first established in 1980, and over 20

sites collect long-term site-based data. Each site must collect long-term data in 5 core areas (primary production,

population studies, movement of organic matter, movement of inorganic matter, and disturbance patterns). As a result,

LTER data at any one site have relatively high variety (multiple data types), and although developed to address site-

specific questions, each site generates similar types of data. The LTER network was an early adopter of data availability,

and support for network information managers to develop a common system-motivated development of the PASTA

(Provenance Aware Synthesis Tracking Architecture) infrastructure to promote sharing and synthesis of data from across

sites. PASTA is a data portal that was first implemented in 2013. Data entered into PASTA must meet criteria for

metadata quality to ensure consistency among datasets in the system. In addition, the LTER network has developed a

data use policy (http://www.lternet.edu/policies/data-access) and has DOI for all datasets to allow for appropriate

citation of LTER data. The LTER program is also a member node of the DataONE platform, with 235,767 data streams

from across the 27 U.S.-based sites and 959 data downloads as of August 2016
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Generating and curating data to conform to a

particular network platform can mean relinquish-

ing investigator control to a wider community. This

could be a daunting prospect for many scientists,

especially early in their career. The academic te-

nure process, for example, continues to undervalue

an individual’s contribution to publications with

many authors, or to network science more gener-

ally (Uriarte and others 2007; Goring and others

2014). Likewise, the growth of a big-data network

that integrates across multiple sources of data takes

time and requires sustained support—beyond the

traditional 3- to 5-year funding cycle (Ruegg and

others 2014). The development of the global

FLUXNET program is funded by multiple, interna-

tional agencies and is one example of ecosystem

data networks that have advanced capability for

modeling global carbon cycles, developing new

mechanistic hypotheses, and exploring predictive

capacity (Baldocchi 2003; Xiao and others 2014;

Rao and others 2015). The level of infrastructure

support that has made FLUXNET successful, for

example, has only recently gained prominence in

the mission of funding agencies. A majority of

funding has historically prioritized the generation

of new data, and the technological infrastructure

and curation required for synthesis and analytics

remains a significant limitation for ecosystem sci-

entists, especially those who do not focus on ter-

restrial carbon or climate research.

Detailed experimental and site-specific studies

can deepen our understanding of how ecosystem

processes work, but greater theoretical and infor-

matics developments are still needed to guide data

integration to effectively predict ecosystem func-

tion. Cross-scale inference in space or time re-

mains a challenge for developing predictive

capacity in ecosystem science (Soranno and others

2014; Mouquet and others 2015; Petchey and

others 2015; Price and Schmitz 2016). Recent

ecological examples highlighting the utility of big

data for answering questions at relevant spatial

scales include a study that examined species dis-

tributions and habitat boundaries through high-

resolution, large-scale, long-term cloud cover data

using remote sensing (Wilson and Jetz 2016).

Combining this data product with existing

knowledge about the role of cloud cover in key life

history characteristics of animal species (for

example, growth, reproduction, and behavior)

offers a way to combine high-frequency, high-

volume data of high veracity to better estimate

habitat transitions and species distributions across

a large spatial extent. Although these and other

recent studies in terrestrial ecosystems demon-

strate how big-data products across organizational

levels can help scale up inference in space (Xiao

and others 2014), developing the technological

and analytical infrastructure for integrating di-

verse data sources remains a primary challenge for

ecosystem science. Investing in these develop-

ments will pay off in the near term through the

immediate use of currently available big data to

generate new hypotheses, and will pay dividends

in the future as macroecological insights arising

from cross-scale analyses contribute to the devel-

opment of ecosystem theory.

BIG-DATA APPROACHES FOR ECOSYSTEM

SCIENCE

Big-data approaches open up unprecedented

opportunities to generate new knowledge in

ecosystem science. Ecologists are trained to develop

hypotheses through observation of the natural

world. However, formal training is often directed

more toward placing our observations (data) within

the context of literature rather than in conducting

synthesis or meta-analysis, and even less toward

eco-informatics approaches needed to create and

use big data (Michener and Jones 2012; Touchon

and McCoy 2016). The computational advances

offered by machine learning (Peters and others

2014) and data mining (Hochachka and others

2007) tools, for example, enable analyses to sub-

sume ecological heterogeneity and common data

caveats rather than ‘controlling’ them. Thus, big

data offers a quantitative departure from the con-

straints of a reductionist approach in ecosystem

science, whose questions are often at much larger

scales than other subdisciplines in ecology. Suc-

cessfully exploiting big-data approaches will re-

quire scientific exchange between controlled

experimental design and big-data products.

Broadening the scope of ecological questions can

mean giving up some of the control that we have

been trained to consider as a gold standard of

empirical research, although individual data still

derive from many well-controlled studies. In ex-

change, using big-data approaches can reveal

important contours to the ecosystem that will re-

main invisible to us as long as our scope of view

remains fixed on questions that are conducive to

manipulation (statistical or otherwise). Shifting our

perspective offers us an opportunity to identify

unforeseen answers to old questions, and new

hypotheses that might be tested in empirically

tractable, controlled settings (Stephens and others

2016).
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Data collation A predominant task in any big-data

approach is collating existing data. Most ecological

datasets do not adhere to common standards or

methods of access (Parsons and others 2011). Fol-

lowing pre-processing, validation, and quality

control, data (and/or their metadata) can be ar-

chived as standalone synthetic products through a

number of online repositories (for example, Eco-

logical Archives (http://esapubs.org/archive/),

Knowledge Network for Biocomplexity (KNB,

https://knb.ecoinformatics.org/), and others). Al-

though these online data products are becoming

more commonplace in ecological research, the

majority of the workflow is still largely developed

on an individual basis, in part because the data

products are individually unique (Michener and

others 2012; Michener 2015). Finding and using

existing datasets can be a time-consuming and er-

ror-prone process (Roche and others 2015).

Developing a more standardized and streamlined

process for data science in ecology is increasingly

necessary, and the DataONE platform has greatly

advanced this goal (Michener and others 2012).

The DataONE platform (www.dataone.org) repre-

sents an important advance in big-data cyberin-

frastructure and practice in ecosystem science

(Michener and others 2012; Michener 2015). This

platform is an organizational nexus for discovering

data from across member nodes and a resource for

training in data sharing, ethics, and informatics.

There are currently 36 member nodes, including

the U.S. and European LTER programs, NEON,

GLEON, and USGS data repositories. The site has

recorded 348,243 data downloads (of the 404,097

datasets uploaded) as of September 2016. Software

such as the EcoData Retriever have been developed

to automate the tasks of finding, downloading, and

reformatting ecological data files, streamlining the

process to get from data discovery to analysis

(Morris and White 2013). The popularization of

data and software carpentry workshops (http://

software-carpentry.org//index.html, http://www.

datacarpentry.org/) also points to greater move-

ment in this direction. Still, the efficacy of any

current platform to search, acquire, and support

visualization or summary analyses across the U.S.

government-funded datasets, for example, has yet

to be proven. This is at least partly because pro-

ductivity that results from platform use is difficult

to track. Both funding agencies and individual

journals are increasingly requiring that data are

made available using online resources, which is a

marked improvement, although much work re-

mains if we are to achieve the ultimate goal of

maximizing future utility of these archived data: a

recent study showed that 56% of archived data in

ecology and evolution are incomplete, and the

archiving methods for 64% of datasets effectively

prevent their reuse (Roche and others 2015).

Rooting out unreliable values and aligning scale

and unit across data types can be difficult to auto-

mate. Critical next steps will be to invest in

improving the accessibility and therefore the utility

of these data products.

Data Analysis Although many big-data products

already drive ecosystem models of global carbon

and nutrient cycles, for example, (Melillo and

others 2002; McCarthy and others 2010; Xiao and

others 2014), they are perhaps less appreciated for

their value in the development of theory and

driving the discovery of new hypotheses. There are

two general analytical approaches to drawing

inference from big data. If there is sufficient

understanding to define a model, statistical

regression-based methods are used to estimate

parameters and evaluate hypotheses. Hierarchical

(often Bayesian) statistics are adept at integrating

diverse data sources to inform understanding of

more complex ecosystem processes (Niu and others

2014; Hartig and others 2012).

However, when a priori understanding is insuf-

ficient to describe a process model, data mining

approaches can reveal robust, multivariate pat-

terns, identify important drivers, and generate

predictions from the data themselves (Hochachka

and others 2007). In ecology, exploratory ap-

proaches have historically meant making keen

observations of our environment to identify eco-

logical relationships and generate testable hy-

potheses. Data visualization and mining

approaches have also been used as a step towards

confirmatory (statistical inference) approaches.

More formally, data mining refers to examining

large, multivariate datasets to identify robust data

patterns (for example, clusters of data points,

anomalous signatures in data, or dependencies

among variables) that are worth following up

through focal hypothesis testing (confirmatory

analysis). The use of computational algorithms,

including ensemble regression and classification

trees (Breiman 2001; Elith and others 2008) or

association rule mining (Faust and Raes 2012),

circumvents our limited ability to assign interac-

tions and statistical distributions a priori to (possibly

very) large numbers of variables. Such approaches

are increasingly needed to draw insights across

systems that are highly complex, or where repli-

cation is intractable, but this approach requires

some reorientation in our thinking about data

analysis (Breiman 2001).
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LOOKING FORWARD: THE NEXT 10 YEARS

In an epoch of global change, determining our

condition relative to the ‘‘safe operating space’’ of

Earth’s planetary boundaries is of paramount

importance (Rockstrom and others 2009; Steffen

and others 2015). To do this, ecosystem scientists

will be called upon to generate predictions and to

identify solutions (Evans and others 2013). Indeed,

a current focus for ecosystem scientists is to quan-

titatively predict how complex drivers interact to

influence ecosystem change (Weathers and others

2016). Beyond the generation of new knowledge

and insight, big-data products should help guide

theoretical development for understanding how

ecosystems function across spatial scales and how

stable these functions are across time. Likewise,

there is also still much to be learned about what

ecosystem properties are actually predictable and at

what scale (Evans and others 2013; Mouquet and

others 2015; Petchey and others 2015).

There are multiple sources of uncertainty in big-

data products and in the models that use them

(Schaefer and others 2012; Raczka and others

2013; Xiao and others 2014), and ecosystem sci-

entists will continue to define and understand

uncertainty in data, models, and prediction.

Veracity is often listed as one of the V’s defining big

data (Lovelace and others 2016). Although veracity

is critical for defining the boundaries of how to use

and interpret big data, our focus on veracity goes

beyond the traditional definition of measurement

error and detection limits. Ecosystem management

decisions that are based on big-data analytics will

depend critically on data reliability across different

spatial and temporal scales. Eddy covariance mea-

sures, for example, from a single tower have

veracity defined by sensor technology, gap filling

accuracy, and understanding of plant physiology

and soil properties within the tower footprint

(Falge and others 2001; Moffat and others 2007).

However, the same data are less reliable for inter-

preting or predicting carbon dynamics at scales

beyond that tower’s footprint. Concretely defining

uncertainty in big data and incorporating this

explicitly into big-data analytics is a current focus

of ecosystem research that will ultimately deter-

mine the forecast horizon (Dietze and others 2013;

Petchey and others 2015).

Ecosystem science as a discipline must forecast

how changes at local to planetary scales affect hu-

man well-being. Scientific research has generated

an incredible amount of data (Boose and others

2007; Dietze and others 2013). Although mecha-

nistic studies will remain the hallmark for

hypothesis testing, network science approaches are

increasingly important for deepening our under-

standing of variability, stochasticity, and uncer-

tainty in large-scale ecosystem processes. The

utility of data networks has been recognized

through infrastructure funding by the U.S. gov-

ernment for NEON (McDowell 2015) and FLUX-

NET networks. Even with these and other large

investments in infrastructure, there remains a sig-

nificant lag in usage of this infrastructure (for

example, DataONE) by most ecosystem scientists to

access and curate big data. This usage lag is repre-

sentative of a growing need for greater technolog-

ical capacity and workforce training to facilitate the

visualization and analysis of diverse data. For

example, technological infrastructure must find

and bring together existing disjointed datasets, and

there needs to be support to maintain and update

these platforms. Additionally, the transfer of big

data from a repository to a separate analytical

platform is a non-trivial technical hurdle that im-

pedes wider capacity for data exploration. Devel-

oping tools that can be executed within the data

discoverability platform is critical for increasing

community use (Michener and others 2012).

Funding sustained infrastructure to make data

discoverable and usable will increase the returns on

the investments already made in ecosystem science

through the near-term production of ecological

insights (both through testing of outstanding

hypotheses and the generation of new hypotheses,

as suggested through analysis of synthetic data),

and by building the predictive capacity of ecosys-

tem science.

Even with the best infrastructure, motivating a

greater focus on big-data approaches will still re-

quire a shift in the way academia values scientific

products that arise from big data in ecosystem

ecology; for example, by generating metrics that

value the contribution of data products in addition

to metrics designed to measure the impact of peer-

reviewed publications, as well as recognizing that

analyses that generate novel hypotheses from big

data are as valuable as analyses designed to test a

focused hypothesis—in fact, these two approaches

should go hand in hand. Valuing the collaborative

efforts and skill set needed to contribute to and

analyze big-data products as potentially equivalent

to the design of novel, data-generating experiments

to test a particular hypothesis will require a mental

shift that may be unfamiliar to many and even

uncomfortable for some (Breiman 2001). However,

the scientific benefits and opportunities are clear.

Scientific innovation has consistently been
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demonstrated to scale with the size and diversity of

research teams (Wuchty and others 2007; Jones

and others 2008; Cheruvelil and others 2014; Read

and others 2016). Those who have access to big

data (integrating across Vs in Figure 1) and can

synthesize those data to generate new hypotheses

and models are well positioned to derive inference

at scales necessary to understand ecosystem func-

tion, as well as to generate forecasts that can inform

management and promote stability in a changing

global environment.
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