
ORIGINALARBEITEN/ORIGINALS

https://doi.org/10.1007/s10010-021-00475-w
Forsch Ingenieurwes (2021) 85:385–394

Weight-scheduling for linear time-variant model predictive wind
turbine control toward field testing

ThorbenWintermeyer-Kallen1 · Sebastian Dickler1 · János Zierath2 · Thomas Konrad1 · Dirk Abel1

Received: 2 December 2020 / Accepted: 10 March 2021 / Published online: 1 April 2021
© The Author(s) 2021

Abstract
Modern multi-megawatt wind turbines require powerful control algorithms which consider several control objectives at the
same time and respect process constraints. Model predictive control (MPC) is a promising control method and has been
a research topic for years. So far, very few studies evaluated MPC algorithms in field tests. This work aims to prepare
a real-time MPC system for a full-scale field test in a 3MW wind turbine. To this end, we introduce a weight-scheduling
scheme for a linear time-variant MPC in order to ensure control operation over the entire operating range from the partial
to the full load range. We use a rapid control prototyping process, in particular with comprehensive software-in-the-loop
(SiL) tests, in order to design and validate the MPC system for the field test.
In this contribution, we present the implementation of the linear time-variant MPC with weight-scheduling to be tested in
the field test. With the weight-scheduling for the optimization problem inside the MPC, we achieved good performance over
the entire operating range of the wind turbine. In the SiL tests, the proposed MPC algorithm achieved loads, comparable to
the baseline controller of the wind turbine and improved the reference tracking of the power output and the rotational speed.
The proposed linear time-variant MPC with weight-scheduling is fully validated in the presented software-in-the-loop tests
and is ready for full-scale field test in the 3MW wind turbine. We present the experimental field test results of the introduced
MPC system in a separated contribution.

1 Introduction

In the last decades, wind turbines (WTs) have been steadily
growing in size. This results in more flexible components
that are increasingly sensitive to loads. Active load reduc-
tion already became a major control objective in WT con-
trollers [1]. With larger wind turbines, also the complexity
of the dynamic behavior increases, leading also to a more
difficult control behavior [1–3]. Therefore, multi objective
control methods, like model predictive wind turbine con-
trol, have been studied throughout the past to further im-
prove the control performance for new WT prototypes. Up
to now, the focus of studies about MPC for WTs was rather
on simulation studies than on experimental tests [1]. In con-
trast to previously conducted research, this paper will show
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the design of a real-time implementation of an MPC which
has been tested in the field on a 3MWWT in July 2020. The
structural and functional integration of the control strategy
into the wind turbine’s automation system is shown in [4]
and the associated results of the full-scale field test are
presented in our companion paper [5].

1.1 Research context and objectives

To meet the challenge of larger WTs and their increas-
ing complexity of control objectives, many modern control
methodologies were investigated. Due to its ability to intrin-
sically handle multi objective control tasks and constraints,
MPC has been investigated [1]. For linear MPC, the oper-
ation in partial load region (region II) and full load region
(region III), and especially the transition between partial
and full load region is challenging [1]. In various simu-
lation studies up to wind tunnel tests [6], the advantage
of MPC over state of the art control (SC) concepts was
demonstrated [1]. To the author’s knowledge only [7] de-
scribes a full-scale field test of trailing edge flaps on a Ves-
tas V27 WT with a frequency weighted MPC. However, the

K

https://doi.org/10.1007/s10010-021-00475-w
http://crossmark.crossref.org/dialog/?doi=10.1007/s10010-021-00475-w&domain=pdf
http://orcid.org/0000-0001-8808-4330
http://orcid.org/0000-0002-2596-3909
http://orcid.org/0000-0001-5185-9649
http://orcid.org/0000-0002-4516-7387
http://orcid.org/0000-0003-0286-3654


386 Forsch Ingenieurwes (2021) 85:385–394

rated power of this WT with 225kW is much lower than
the multi-MW dimensions of most state of the art WTs.

One major issue in field tests is the performance of the
control method in all operating points. Besides the full load
region, the control algorithm has to work properly below
rated wind speed in the partial load region as well as in the
transition range between the partial and full load region.
For linear MPC for WTs there has to be taken some effort
to operate not only on above rated wind speeds only [1].
Because wind conditions in (onshore) sites are barely found
exclusively in this range, the controller must operate theWT
with high performance, also when the wind speed drops
below rated.

Based upon the authors’ studies, one major issue that sig-
nificantly affects MPC operation over the entire operating
range is that the dynamical behavior and the sensitivity of
the control actions significantly change when transitioning
from the partial to the full load region.

Nonlinear MPC (NMPC) can face this problem by means
of nonlinear models and constraints, which allow the con-
troller to be aware of the varying behavior [1–3]. However,
the computational burden of these control algorithms can
vary between control steps and guaranteeing convexity of
the optimization problem is challanging [2, 8], which is
an obstacle performing these algorithms on programmable
logic controllers (PLC). To circumvent these obstacles, we
investigate how a linear time-variant (LTV) MPC [4] can
be extended, to be suitable in all operational conditions.

1.2 Research questions

When operating a WT with linear MPC, the prediction
model is adapted to the operating point [9]. With this adap-
tion, the sensitivities of the control objectives to the control
actions vary. The wider the operating range of the controller
is the greater this variation becomes. Usually, these sensi-
tivities vary too much so that an adaption of the prediction
model is required for robust performance. This leads to the
first research question:

1 How can an LTV-MPC operate in both partial and full
load wind conditions with high performance?

Compared to the so-called baseline controller (BC),
a SC, which usually operated the WT, no additional me-
chanical loads should be induced during field tests in order
to prevent any structural damage. Therefore, its perfor-
mance related to the load mitigation of the WT should be
comparable to the BC currently used in the WT. In this case,
the BC is a state of the art single-input single-output PID
controller that the operator of the WT, W2E Wind to En-
ergy GmbH 2 currently uses [10]. The second research
question therefore is:

2 Which different mechanical loads does an LTV-MPC in-
duce compared to a state of the art industrial WT con-
troller?

To answer the first research question, we propose
a weight-scheduling scheme within the MPC algorithm
to cope with the varying sensitivities of the control objec-
tives to the control actions and analyze the loads occuring
in the wind conditions in the partial and full load range.
The aim of this publication is to show that the proposed
weight-scheduling approach ensures an MPC operation in
the entire operating range and enables field testing of the
MPC in the real WT.

The paper is organized as follows. Sect. 2 introduces the
proposed MPC structure with its reduced order prediction
model, the optimization problem and the weight-schedul-
ing approach. In Sect. 3, we describe the WT used in the
field tests and the simulation setup for the presented results.
In Sects. 4 and 5, we describe and discuss the simulation
results. Sect. 6 concludes the paper and explains potential
future research questions.

2 Model predictive control with weight-
scheduling

In modern WT control during power production, there are
two operational regions [8] with different major control ob-
jectives. In the partial load region, the objective is to pro-
duce as much energy as can be extracted from the wind. In
the full load region, when the nominal rotational speed is
reached and the nominal power can be extracted from the
wind, the objective is to keep the rotational speed and the
power output constant at their rated values. During the tran-
sition between the regions, the nominal rotational speed is
reached, but the nominal power is not. In SC, there are dif-
ferent controller parametrizations for these regions present.
Also the control of the pitch usually is not used in the partial
load regions.

The MPC formulation proposed here gives a formula-
tion for the complete operational range by scheduling the
weights (so-called weight-scheduling) depending on the op-
erating point. The MPC uses a reduced order dynamical
model to predict the WT’s behavior and to optimize the
control variables with regard to the control goals. The struc-
ture of the closed loop with the MPC system consisting of
MPC and an Extended Kalman Filter (EKF) is shown in
Fig. 1a. To predict the WT’s behavior, the MPC needs the
WT’s state vector, which cannot be measured. Therefore,
we use an EKF in order to estimate these states.

This section introduces the MPC formulation, starting
with the employed reduced-order WT model and its dis-
cretization. Afterwards, the general formulation of the opti-
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a b

Fig. 1 Structure of the closed loop with MPC, EKF and wind turbine, and overview of the reduced-order model with its components and in- and
outputs. a Controller structure. b Structure of the reduced-order model [11]

mization problem is given, which solves the MPC. Finally,
we specify the formulation for the scheduled weights, to
ensure an MPC operation for all wind speeds. For detailed
information about the EKF, we refer to [9].

2.1 Reduced order predictionmodel

MPC needs a dynamic prediction model of the controlled
process. The process on how to choose the model is ex-
plained in [9] and [11] in detail. The applied structure of
the prediction model with its components, in- and outputs
is shown in Fig. 1b. The submodels are the linear models
of the drive train and the fore-aft dynamic, static maps of
aerodynamic coefficients and the linear actor dynamics. The
state space formulations for the drive train (1) and fore-aft
dynamics (2) are given as follows

Pxdt = Adtxdt + Bdtudt; (1)

Pxfa = Afaxfa + BfaFt : (2)

The state vectors are given by
xdt = .!rot !hub !gen Δ'rh Δ'rh/

T and
xfa = .xt Pxt 'b P'b/T . The drive train inputs are
given as udt = .Trot Tgen/

T —with the aerodynamic torque
Trot and the generator torque Tgen, which act on the rotor
and the generator and accelerate the drive train, respec-
tively. The inertias (Irot, Ihub and Igen; compare Fig. 1b) of
the rotor, hub and generator rotate with the speeds !i . The
twists between the inertias are given by �'rh and �'hg.
The thrust force Ft acts onto the rotor blades and deflects
them by the angle 'b , and the tower by xt . Details how to
derive the state matrices Ai and Bi are given in [9]. With
this formulation, the deviations from an operating point are
given; the names of the absolute value are given in Table 1.
The absolute values of the state variables are denoted by

capital letters. Their deviations from an operating point X 0

are defined by x = X–X 0.
The aerodynamic torque Trot and the thrust force Ft are

derived by (3) and (4) and are calculated using the air den-
sity � and the rotor diameter Rrot. The aerodynamic power
and thrust coefficients, cP and cT , are given by static maps
and depend on the pitch angle � , the rotor speed ˝rot and
the relative wind speed to the rotor vrel.

Trot = 0.5��R2
rotv

3
rel ˝

−1
rotcP .™; ˝rot; vrel/ (3)

Ft = 0.5��R2
rotv

2
rel cT .™; ˝rot; vrel/ : (4)

Due to nonlinear static maps cP and cT , exemplarily
given for cP in Fig. 2, the dynamic model is nonlinear. The
lines of the zero gradients @cP=@� over the pitch angle and
@cP=@� over the tip speed ratio � with œ = .˝rotRrot/ =vrel
show that these gradients particularly change their signs

Fig. 2 Map of cP and lines of zero gradients
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Table 1 Overview of systems states and corresponding symbols [9]

No In X In x Description

1 ˝rot !rot Rotor speed

2 ˝hub !hub Hub speed

3 ˝gen !gen Generator speed

4 ��rh �'rh Twist rotor—hub

5 ��hg �'hg Twist hub—generator

6 Xt xt Tower top position

7 PXt Pxt Tower top velocity

8 �b 'b Blade deflection

9 P�b P'b Blade velocity

10 � # Pitch angle

11 V v Wind speed

depending on the operating point. The controller should
avoid the stall region with small tip speed ratios and pitch
angles. Here, the sensitivity of the power and hence the
rotor torque Trot to the pitch angle � differs significantly
from the desired operating region.

To further use this model in an LTV-MPC, the dynamic
description is set up in state space with the absolute state
vector X given in Table 1, and the inputs U . The input
values are the manipulated variables, the generator torque
Tgen and the pitch angle rate P� .

2.2 Linear time-variant predictionmodel

For setting up the prediction model, we linearize and dis-
cretize the system model introduced in Sect. 2.1. Therefore,
the nonlinear parts of the model are linearized using the first
order Taylor approximation:

Ft Š Ft0 +
@Ft

@˝rot

ˇ
ˇ
ˇ
ˇ
0

P'rot +
@Ft

@�

ˇ
ˇ
ˇ
ˇ
0

# +
@Ft

@vrel

ˇ
ˇ
ˇ
ˇ
0

vrel (5)

Trot Š Trot;0 +
@Trot

@˝rot

ˇ
ˇ
ˇ
ˇ
0

P'rot +
@Trot

@�

ˇ
ˇ
ˇ
ˇ
0

# +
@Trot

@vrel

ˇ
ˇ
ˇ
ˇ
0

vrel: (6)

The WT controller only operates for positive values
of wind speed V , and rotational speed �. Especially for
the power coefficient cP , there are states where its partial
derivative @cP =@� can either be positive or negative or
even be zero. Particularly in the partial load region, the
control objective is to maximize the power output, which
corresponds to cP = cP;max, and thus its derivatives become
zero.

Afterwards, the discrete-time formulation can be derived
in the form of:

xk+1 = Akxk +Bkuk + PXk;OP (7)

yk = C kxk +Dkuk; (8)

with:

y =
�

!gen pel Rxt #
�T Iu =

� P# �gen
�T

: (9)

The values of xk , uk and yk have very different magni-
tudes. To simplify the selection of the weights, the system
matrices Ak , Bk , C k and Dk also include scaling fac-
tors introduced in [9]. This enshures that the states, inputs
and outputs have values of the same magnitude. The inputs
of the system uk are the command values for the actu-
ators which are the pitch angle rate P# and the generator
torque �gen. The output values yk (9) are the controlled
variables, in detail the generator speed !gen, the produced
electrical power output pel and the tower top acceleration Rxt

are the primary control objectives. Furthermore, additional
control objectives become relevant in partial load operation,
so we add the pitch angle # also as controlled variable.

2.3 Cost function and optimization problem

The MPC determines its optimal manipulated variables by
minimizing a cost function in which the control objectives
are weighted against each other.

J = ky .�jk/ − yref .�jk/k2Q.y.k//

+ �
�

k�u .�jk/k2R�u.y.k// + ku .�jk/k2Ru.y.k//

� (10)

with:

u .k + i + 1jk/ = u .k + i jk/ + �u .k + i jk/ (11)

We formulate a reference tracking MPC with the cost
function J (10), which consists of two parts. The first part
of the cost function J is described by the deviations of
the output values y from the references y ref. Additionally,
adjusting the actuators result in energy consumption and
thereby produce costs. This is considered in the second part
of the cost function which penalize the changing command
values �u and the actual command values u (11). So opti-
mally, the MPC tracks the reference and needs a minimum
amount of command energy.

The different control objectives and command values are
weighted against each other by means of the weighting ma-
trices Q and Ri (12)–(13), where both matrices are diag-
onal with entries qi and ri (10), respectively. Additionally,
these matrices depend on the plant’s actual output y as
shown in Sect. 2.2. The weighting parameter � determines
how much the control effort is weighted compared to the
control objectives.

Q .y .k// = diag
�

q1 .y .k// � � � qn .y .k//
�

(12)

Ri .y.k// = diag.ri;1.y.k// � � � ri;m.y.k/// (13)
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With these definitions made, the MPC optimizes the tra-
jectory of control actions. Therefore, the system’s output
trajectory y .�jk/ is predicted based on the actual state
at time step k and the trajectory of controlled variables
�u.�jk/ are optimized to minimize the cost function J with
respect to linear constraints

Δuopt.�jk/ = argmin
Δu.�jk/

J.Δu.�jk// (14)

umin � u � umax (15)

Δumin � Δu � Δumax (16)

An�u .�jk/ − bn � 0. (17)

As there are constraints regarding the inputs and states,
the optimization is subject to Eqs. 15–17 with the constraint
matrices An and bn. Different quadratic program solvers
such as qpOASES can solve the optimization problem [13].

2.4 Weight-scheduling

As shown in Sect. 2.2 for the linearization, the WT dy-
namics vary during operation. Especially in the partial load
region, when operating near the optimal cP = cP;max, the
sensitivity of the system to pitch actions is small. In this
term, to gain even a small effect onto the rotor torque, the
pitch angle has to be actuated strongly. In MPC with fixed
weights, this would finally lead to small pitch actions due
to less additional cost. In full load region, the sensitivity of
the WT to the pitch angle has smaller variations.

Also, the linear MPC only predicts the system’s behav-
ior with a linearized model and is thus not aware of the
sensitivities vary over the outputs yi . When using an LTV-
MPC for wind turbine control, it may be advantageous to
adjust the weights depending on the operating point. To
tackle these problems, we suggest varying the values for
the weights qi depending on the actual values of the con-
trolled variables yj , whose sensitivity is strongly affected
by the operating point. Therefore, for each varying weight
a pair of limits is chosen

qi .y .k// = qi;0 +
�

yj − yj;0

yj;1 − yj;0

�2
�

qi;1 − qi;0
�

: (18)

An exemplary curve of a scheduled weight is given in
Fig. 3. The weights are scheduled within the range defined
by the minimum q0 and the maximum q1. Both correspond
to controlled variables y0 and y1. The quadratic form al-
lows weights of control objectives, which are only active
in certiain operation regions to smoothly increase. This is
especially useful when operating points near the stall region
are reached.

Compared to an LTV-MPC tuned for above rated wind
speed, all scheduled weights have new tuning parame-

Fig. 3 Curve of weight-schedul-
ing

ters. The region of weight-scheduling between the values
.y0; y1/, can be chosen as the region, where the sensitivities
of the model start varying significantly. The first weight qo

is taken from the existing MPC [9] formulation, and the
second weight q1 is tuned for the MPC to perform in the
critical operational regions as well.

An example: The control objectives are tracking the elec-
trical power and the rated WT speed. Both respond to the
generator torque, but in opposite directions. In regions near
the optimal power coefficient, the sensitivity of the power
to a variation in the rotor speed is small. This sensitivity
changes when the rotor speed is changed, but as the pre-
diction model is linear the MPC cannot consider this. Here,
the sensitivity varies with the operating point. To avoid that
the MPC increases the generator torque to track the power
reference and decelerates the WT, the weight of the rotor
speed q! is increased or the weight of the power qp is
decreased. As this effect is minor in full load region, we
suggest adapting this weight depending on the wind speed.

2.5 Avoiding stall region

As shown in Sect. 2.2, the sensitivity of the aerodynamic
torque Trot to the pitch angle � varies over the operation
range. When a gust effects the WT, the stall region can be
reached and even the directions of action of the speed and
pitch angle to the power coefficient reverse. This can result
in an MPC action with the opposite direction of which is
needed to leave the stall region. In the full load region, this
is not as critical as in the partial load region, because the
operating points usually are far from the stall region. In the
partial load region, the WT operates near the optimal cP

and this effect becomes critical.
To avoid that the MPC maneuvers into the stall region,

we suggest to use an additional control objective. This can
ensure that the MPC maneuvers out of the stall region, after
the wind conditions lead into it. Therefore, we added the
pitch angle � as additional controlled variable to the output
vector y (see (9)).

For the pitch angle � , there is a critical value
�Crit .˝rot; vrel/, where @cP=@� � 0 holds. This critical
pitch angle depends on the actual rotor and wind speed.
Thus, we choose the reference �ref > �Crit for the pitch
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angle. This control objective should only be active if
� > �ref .˝rot; vrel/ holds for the pitch angle. Therefore, the
weight of this control objective q�Crit is scheduled between
�ref .˝rot; vrel/ and �min and the weight value should be
chosen so that its impact onto the cost function is greater
than the impact of the pitch angle onto the power.

3 Wind turbinemodel and simulation setup

The WT considered in this study is based on the 3MW
WT “W2E-120/3.0fc”, designed by W2E Wind to Energy
GmbH2, described in [12]. The prototype of this WT has
been built in Kankel, Mecklenburg-Western Pommerania
(Germany) in 2013. It is a variable speed WT generator
with medium speed converter system with collective pitch
control and a rated wind speed of 12.5m/s.

The MPC system consists of the EKF described in [9]
and the proposed MPC. The sample rate of the EKF is set to
100Hz, while the MPC is executed on a slower 10Hz task.
The prediction horizons are set to 50 steps for the prediction
of the outputs and the control horizon is set to 10 steps. The
solver of the optimization problem is the online active set
solver qpOASES [13].

As discibed in [4], the design of the controller is de-
veloped in MATLAB/Simulink. During the design process,
the controller is validated by means of a reduced order
model. Afterwards it is tested in a system simulation using
a multibody model in alaska/Wind, as described in [12].
The design of the WT is tested in the simulation environ-
ment of FLEX5, conforming to the standards of the GL2010
[14]. As the used version of FLEX5 offers no interface to

Fig. 4 Different controller performance for different weight-scheduling

MATLAB or Simulink, we generate a DLL-file of the con-
troller model, which we than include into a software-in-the-
loop (SiL) simulation with FLEX5 as described in [4].

4 Simulation results

There are two steps of simulations. First, we exemplarily
show how the weight-scheduling effects the MPC with re-
sults from the system simulation with the reduced order
model and synthetic wind conditions. Afterwards, we show
the operational regions and some loads of the chosen pa-
rameter set from the SiL simulation.

4.1 Variation of weight-scheduling

Fig. 4 shows different variations of the weight-scheduling
parametrization under synthetically wind conditions. For
synthetic wind conditions, different steps in the wind speed
are chosen for the WT to maneuver through the different
operating points fast. Without weight-scheduling (orange),
only above rated wind speeds are considered, because the
MPC would maneuver the WT into the stall region and
could not reach the operation region, above the curves of
zero gradients again. For partial and full weight-schedul-
ing, the same ranges (y0; y1) are chosen and the scheduled
weights differ from each other.

In the time series, the MPC shows different dynamic be-
havior. For increasing weight-scheduling, the overshoot and
the time until the reference is tracked again decrease. In the
pitch angle, the characteristic of the overshoot strongly dif-
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fers for the different wind speeds. This difference is further
reduced for the full weight-scheduling.

The operational range in the cP -map shows that the un-
scheduled MPC stays above the curve of @cP=@� = 0. But
here, the wind speed was chosen, to achieve this. Regarding
the weight-scheduling, the MPC is able to leave the stall re-
gion, after the wind speed pushed the WT into this region.
With the partial weight-scheduling, the operational range in
the cP -map is greater than for full weight-scheduling.

For stronger weight-scheduling, than the here presented
case, the pitch angle starts oscillating, and the performance
decreases again. The parametrization therefore enables the
MPC to operate in both partial and full load region.

4.2 Operational regions and loads

To analyze the proposed MPC’s capability regarding field
operation, we compare the MPC with a BC, which usually
operates the WT and has been tuned with great effort over
the recent years. Therefore, the WT is simulated in different
turbulent wind conditions, which are used in the standard-
ized design and validation process of WT manufacturers.

The operational region ranges from wind speeds of 3m/s
(cut-in) up to 25m/s (cut-out). Therefore, the controller be-
havior is simulated in 10min simulations each to fill the
turbulent wind condition bins. The mean wind speed is var-
ied in 1m/s steps. Analyzing different turbulence intensities
is necessary, because those vary in the field, too. Therefore,
we used turbulence intensities of 10%, 15% and 20%, as
defined in IEC 61400-1.

As the proposed controller is designed to prove the con-
cept of MPC in the field, it is necessary, that the MPC op-
erates in similar ranges as the BC. To analyze if the MPC
satisfies requirements of a field test, its performance and
stability capabilities must be shown in simulations first.
Furthermore, the operating loads need to maintain inside
the boundaries for the whole operation range. Therefore,

Fig. 5 Statistical values of power Pel, pitch angle � , thrust force Ft, and rotor speed ˝rot from simulations of wind speeds with a turbulence
intensity of 15%. For MPC (blue) and BC (yellow), the mean values (-), with their standard deviations (--) and the maximum/minimum values
(� � � ) are given

we statistically analyze the differences between both con-
trollers by comparing characteristic values.

Therefore, we analyze the power and the rotor speed,
as they are controlled variables of the BC. To achieve the
control objectives, the controller consumes a certain con-
trol effort, which is here shown for the pitch angle (see
Fig. 5). The second command value has a direct impact on
the power, so that the analysis of the power is sufficient. As
stated before, the loads are an important issue in WT con-
trol. One of the main drivers of the WT’s loads is the thrust
force, thus we use this quantity to show the differences in
the loads between the two controllers.

We use two analysis methods to compare both con-
trollers. Firstly, statistical values (mean values, standard de-
viations and maximum/minimum values) give an overview
over the operational range of the controllers. Secondly, we
compare fatigue loads determined in simulations with dam-
age equivalent loads (DEL) in order to analyze how much
critical parts of the WT would be stressed by the field test.
The DELs are defined as follows

DEL =
X

i

M m
i ni

neq

; (19)

with the results of the loads rainflow counting Mi .ni / from
the time series. The equivalent number of load cycles neq is
set to frequency of 1Hz and the Wöhler coefficient is m = 5.
For the comparison of the DELs, we chose values, which
represent loads of different relevant parts of the WT. These
are the generator torque representing the fatigue loads of the
drive train, the pitch load representing the loads of the pitch
actors and the thrust force on the yaw bearing represents
the fore-aft loads on the WT.

Fig. 5 shows the statistical values of the power, the rotor
speed, the pitch angle and the thrust force onto the yaw bear-
ing exemplarily for 15% turbulence intensity. As the results
for the other turbulence intensities are similar, here we only
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discuss the results for 15% turbulence intensity. The mean
values (the solid lines) show, that the power and the thrust
force in the transition region between wind speeds from
7 to 12m/s are slightly increased for the MPC, whereas
the rotor speed and the pitch angle slightly differ in both
directions between the controllers. The standard deviation
(the dashed lines) show that the deviation of the power and
especially the rotor speed is lower for the MPC compared
to the BC. For the pitch and the thrust force, the differences
of the standard deviations are negligible.

The extremum values of the rotor speed and the mini-
mum values of the power are closer to the mean values for
the MPC than for the BC. For the pitch angle and the thrust
force, these values are remarkably similar for both con-
trollers but are slightly increased for the MPC. This shows
the operational range for the MPC is smaller or comparable
to the BC.

The fatigue loads, represented by the DEL of the con-
sidered values, are given for the three different turbulence
intensities in Fig. 6. For rising turbulence intensity, the
DELs increase. The MPC reduces the DEL for the gen-
erator torque, for higher wind speeds by up to the half,
compared to the BC. For wind speeds below 12m/s, the
MPC slightly increases the torque DEL compared to the
BC and this difference increases for rising turbulence in-
tensities.

The DEL of the pitch actors, represented by the pitch
angle rate, is increased for all wind speeds by using the
MPC approximately doubling the values. For wind speeds
under 8m/s, the DEL induced by the BC is nearly zero, as
the BC does not use the pitch actors in this region.

The DEL of thrust forces only slightly differ for both
controllers. The difference is less the 5% between both con-
trollers.

a b c

Fig. 6 Damage equivalent loads of MPC (blue) and BC (orange) for turbulence intensities of 10% (-), 15% (--) and 20% (� � � ), 1Hz equivalent
loads

5 Discussion

With the previously given results, we now discuss the re-
search questions. With the first research question we want
to address is how the LTV-MPC can operate in the entire
operating range from the partial to the full load range. The
results show that by adding scheduled weights, the MPC
shows good performance for all wind conditions. For all
simulations, the MPC’s performance can compete with the
BC as no operating limits were exceeded and the differ-
ences in the DEL’s are not critical to the WT. This proves
that weight-scheduling allows LTV-MPC to operate in all
wind conditions. Until now, results with comparable perfor-
mance could be achieved mainly by using more complex
algorithms like NMPC.

To answer the second research question, we will have
to analyze the mechanical loads induced by the controllers.
The operating regions concerning power and rotor speed
are smaller for the proposed MPC compared to the BC,
which also reduces the DEL’s in the full load region. The
proposed MPC includes hard limits because the optimiza-
tion problem is subject to constraints. The BC achieves
this by choosing more defensive gains to prevent violating
constraints. This results in a more conservative controller
parametrization and thus in wider operational regions (see
Fig. 5). Comparing the limitations of the loads representing
thrust force, both control concepts result in remarkably sim-
ilar extremum loads. As mainly the wind conditions and the
maximum actor dynamics influence those extremum loads,
this was expected.

Regarding the DEL in Fig. 6, the fatigue resulting from
the thrust force (right) are very similar for both controllers.
Therefore, regardless of turbulence intensity or wind speed,
the fore-aft loads do not differ significantly.

For the generator torque (Fig. 6a), we can clearly observe
a different characteristic. Especially for above rated wind
speed over 12m/s, the MPC reduces the DEL up to 50%,
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compared to the BC. For below rated wind speeds, the DEL
of the generator torque is increased by the MPC—the higher
the turbulence intensity rises. This increased DEL reaches
up to 20% for a wind speed of 9m/s, where the loads are
already high. Above rated wind speeds, the reduction of
the loads result from the control algorithm’s underlying
optimization, which is designed to reduce especially the
loads in this region However, the increased loads found in
the simulation are not considered critical for the short time
of the field test. As the present parameters for the partial
load region are the result of a short tuning period, compared
to the BC, the MPC still provides opportunities of parameter
optimization.

The reduction of the DEL above rated wind speed is
achieved by an increased pitch activity (Fig. 6b), which can
be seen in the higher DEL of the pitch angle. Especially
for high wind speeds, where the DELs are already high,
the MPC increases them. For the MPC, the pitch is active
even for small wind speeds, which is a major difference
between both control concepts. Whereas the BC keeps the
pitch constant for small wind speeds, the optimization in
the MPC results in unsteady pitch angles, when the wind
speed changes fast to reach the optimal rotor speed earlier.
In the BC, this is not considered and thus the pitch angle
is kept constant here. The differences thereby can be found
in the rotational load, which are slightly increased in the
partial load region and reduced in the full load region, was
well as in the increased pitch activity.

6 Conclusion

Toward the aim of preparing the control algorithm to be ap-
plied in the field with a full-scale WT of the 3-MW class,
we showed in detail that the weight-scheduled MPC suc-
cessfully performs in the entire operational range and that
the occurring loads found in the simulation are not consid-
ered critical for field tests. The proposed weight-scheduling
algorithm enables an LTV-MPC to operate a state of the art
WT in the full wind speed range, even though the tuning
took a much shorter time, than BC usually does. This MPC
also provides the opportunity to use well-known QP-solvers
to calculate the solution in real-time.

The chosen parametrization results in reduced loads of
the drive train modules for above rated wind speed with the
cost of increased loads in the pitch actors. As this is the pur-
pose of the MPC and the loads inside the design region of
the WT, it is not critical for the field tests. Especially the dif-
ferences in the fore-aft loads between the BC and the MPC
can be neglected. The increased torsional loads only appear
for high turbulence intensities, which only seldom occur.
From comprehensive simulation studies, we can conclude
that this weight-scheduled LTV-MPC helps to reach the

major milestone for applying model predictive controllers
to commercial state of the art WTs in field tests.

Results of an already conducted full-scale field test and
deviations in the behavior of the MPC between the field
and the simulation is shown in the companion paper [5].
In future studies, we investigate the robustification of the
MPC algorithm. With increasing computational power of
the PLCs, we will also include field testing of NMPC al-
gorithms. This will allow the controller to predict the WT
dynamics more accurately. Furthermore, we will investigate
the parametrization of the weight-scheduling in more detail
to also reduce loads below rated wind speed.
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