
International Journal on Software Tools for Technology Transfer (2021) 23:797–821
https://doi.org/10.1007/s10009-020-00603-x

GENERAL

Special Issue: MeTRID

Verification of randomized consensus algorithms under round-rigid
adversaries

Nathalie Bertrand1 · Igor Konnov2 ·Marijana Lazić3 · Josef Widder2

Accepted: 17 December 2020 / Published online: 2 February 2021
© Springer-Verlag GmbH Germany, part of Springer Nature 2021, corrected publication 2021

Abstract
Randomized fault-tolerant distributed algorithms pose a number of challenges for automated verification: (i) parameterization
in the number of processes and faults, (ii) randomized choices and probabilistic properties, and (iii) an unbounded number of
asynchronous rounds. This combination makes verification hard. Challenge (i) was recently addressed in the framework of
threshold automata. We extend threshold automata to model randomized consensus algorithms that perform an unbounded
number of asynchronous rounds. For non-probabilistic properties, we show that it is necessary and sufficient to verify these
properties under round-rigid schedules, that is, schedules where processes enter round r only after all processes finished round
r − 1. For almost-sure termination, we analyze these algorithms under round-rigid adversaries, that is, fair adversaries that
only generate round-rigid schedules. This allows us to do compositional and inductive reasoning that reduces verification of
the asynchronous multi-round algorithms to model checking of a one-round threshold automaton. We apply this framework
and automatically verify the following classic algorithms: Ben-Or’s and Bracha’s seminal consensus algorithms for crashes
and Byzantine faults, 2-set agreement for crash faults, and RS-Bosco for the Byzantine case.

Keywords Verification · Distributed algorithms · Fault tolerance · Probabilistic · Parameterized

Supported by Interchain Foundation, Switzerland; by the Austrian Sci-
ence Fund (FWF) via the National Research Network RiSE (S11403,
S11405), project PRAVDA (P27722), and Doctoral College Log-
iCS (W1255-N23); by the Vienna Science and Technology Fund
(WWTF) via project APALACHE (ICT15-103); and by the Euro-
pean Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme Under Grant Agreement No.
787367 (PaVeS). Experiments presented in this paper were carried out
using the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER, and others, see www.
grid5000.fr..

This is an extended version of Bertrand et al. [7], which appeared in
the proceedings of CONCUR 2019. In the conference version, we did
not provide proofs. As a result, also the definitions where just
sketched and we omitted preliminary lemmas. In this paper, we
completely develop our theory. Moreover, we give more detailed
discussions and explanation with new figures and diagrams, we add
and extend examples.

B Marijana Lazić
lazic@in.tum.de

Igor Konnov
igor@informal.systems

1 Introduction

Fault-tolerant distributed systems such as Blockchain or
Paxos recently received much attention. Still, these sys-
tems are out of reach with current automated verification
techniques. One problem comes from the scale: These sys-
tems should be verified for a very large (ideally even
an unbounded) number of participants. In addition, many
systems (including Blockchain) provide probabilistic guar-
antees. To check their correctness, one has to reason about
their behavior in a probabilistic setting.We take a step toward
this direction and consider the verification of randomized dis-
tributed algorithms in the parameterized setting.

In this paper, we make first steps toward parameterized
verification of fault-tolerant randomized distributed algo-
rithms. We consider consensus algorithms that follow the
ideas of Ben-Or [4]. Interestingly, these algorithms were

1 University Rennes, Inria, CNRS, IRISA, Rennes, France

2 Informal Systems, Vienna, Austria

3 TU München, Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00603-x&domain=pdf
www.grid5000.fr
www.grid5000.fr

798 N. Bertrand et al.

analyzed in [29,31] where probabilistic reasoning was done
using the probabilistic model checker PRISM [30] for
systems consisting of 10–20 processes, while only safety
was verified in the parameterized setting using Cadence
SMV. From a different perspective, these algorithms extend
asynchronous threshold-guarded distributed algorithms from
Konnov et al. [24,25] with two features (i) a random choice
(coin toss), and (ii) repeated executions of the same algorithm
until it converges (with probability 1).

A prominent example is Ben-Or’s fault-tolerant consensus
algorithm [4] given in Fig. 1. It circumvents the impossibility
of asynchronous consensus [19] by relaxing the termination
requirement to almost-sure termination, i.e., terminationwith
probability 1. Here processes execute an infinite sequence of
asynchronous loop iterations,which are called rounds r . Each
round consists of two stages where they first exchange mes-
sages tagged R, wait until the number of received messages
reaches a certain threshold (given as expression over param-
eters in line 5) and then exchange messages tagged P . In the
code, n is the number of processes, amongwhich atmost t are
Byzantine faulty (which may send conflicting information).

Figure 2 shows an example execution of Ben-Or’s algo-
rithm in the distributed environment of six processes, one
of them being Byzantine. We only depict the time line of
the first couple of steps for the five correct processes. Time
moved downwards, and each line roughly corresponds to a
time step. In each line, the statements of that line are exe-
cuted. When we write, e.g., “≥ n − t messages (R, 1, ∗)”,
we mean that the process has received at least n− t messages
thatmatch the expression (possibly including amessage from
itself), and the corresponding guard in the code evaluates to
true. As the processes are executed asynchronously, theymay
receive messages in different orders. In our example, pro-
cesses 1 and 2 receive two messages of type (P,1,0,D),
whereas processes 3 and 4 receive only one message of
type (P,1,0,D). As a result, the processes follow different
control flows of the algorithm. Nevertheless, the correct pro-
cesses decide in the end of the second round. Also observe
that due to asynchrony, the processes may take steps at dif-
ferent times. As a result, process 1 sets r to 2 and thus enters
the second round before process 5 has started its first round.
Thus, at the same time, processes may be in different rounds.

The algorithm is designed to satisfy the following three
properties:

Agreement: no two correct processes decide on different
values.
Validity: if all correct processes have v as the initial value,
then no process decides 1 − v.
Probabilistic wait-free termination: with probability 1,
every correct process eventually decides.

The correctness of the algorithm should be verified for
all values of the parameters n and t that meet a so-called
resilience condition, e.g., n > 5t . Carefully chosen thresh-
olds (namely n − t , (n + t)/2, and t + 1) on the number of
received messages of a given type ensure agreement. At the
end of a round, if there is no “strong majority” for a value,
i.e., less than (n+ t)/2 messages were received (cf. line 13),
a process picks a new value randomly in line 16. Observe
that if a process decides in line 14, it nevertheless continues
to execute the algorithm for the rounds to follow.

While these non-trivial threshold expressions can be dealt
with using the methods in [24], several challenges remain.
The technique in [24] can be used to verify one iteration of
the round from Fig. 1 only. However, consensus algorithms
should prevent that there are no two rounds r and r ′ such
that a process decides 0 in r and another decides 1 in r ′. This
calls for a compositional approach that allows one to com-
pose verification results for individual rounds. A challenge
in the composition is that distributed algorithms implement
“asynchronous rounds”, i.e., during a run, processes may be
in different rounds at the same time.

The combination of distributed aspects and probabilities
makes reasoning difficult. Quoting Lehmann and Rabin [33],
“proofs of correctness for probabilistic distributed systems
are extremely slippery”. This advocates the development of
automated verification techniques for probabilistic properties
of randomized distributed algorithms in the parameterized
setting.
Contributions. We extend the framework of threshold
automata [24] to round-based algorithms with coin-toss tran-
sitions. For the new framework, we achieve the following:

1. For safety verification, we introduce a method for com-
positional round-based reasoning. This allows us to
invoke a reduction similar to the one in [12,15,17].
We highlight necessary fairness conditions on individ-
ual rounds. This provides us with specifications to be
checked on a one-round automaton.

2. We reduce probabilistic liveness verification to prov-
ing termination with positive probability within a fixed
number of rounds. To do so, we restrict ourselves to
round-rigid adversaries, that is, adversaries that respect
the round ordering. In contrast to existing work that
proves almost-sure termination for fixed number of par-
ticipants [29,31], these are the first parameterized model
checking results for probabilistic properties.

3. Using the tool ByMC [24,26], we automatically check
the specifications that we derive in Points 1. and 2. and
thus verify challenging benchmarks in the parameterized
setting.We verify Ben-Or’s [4] and Bracha’s [11] classic
algorithms, and more recent algorithms such as 2-set
agreement [38], and RS-Bosco [42].

123

Verification of randomized consensus algorithms under round-rigid adversaries 799

Fig. 1 Pseudocode of Ben-Or’s algorithm for Byzantine faults

Fig. 2 Distributed execution of Ben-Or’s algorithm for 5 correct and 1 faulty process (n = 6, t = 1, f = 1). The figure shows the code that is
executed by the correct processes

2 Overview

2.1 Modeling randomized threshold-based
algorithms

We introduce probabilistic threshold automata for themodel-
ing of randomized threshold-based algorithms. An example
of such an automaton is given in Fig. 3. Nodes represent local

states of processes, which move along the labeled edges or
forks. Local states are called locations, while edges and forks
are called rules. The automaton rules are given in Table 1.
When a rule is annotated with a guard ϕ and an update u,
a process can move along the edge only if ϕ evaluates to
true, and this is followed by the update u of shared variables.
Additionally, each tine of a fork is labeled with a number in
the [0, 1] interval, representing the probability of a process

123

800 N. Bertrand et al.

Fig. 3 Ben-Or’s algorithm as a probabilistic threshold automaton with
resilience condition n > 3t ∧ t ≥ f ≥ 0 ∧ t > 0

moving along the fork to end up at the target location of the
tine. If we ignore the dashed arrows in Fig. 3, a threshold
automaton captures the behavior of a process in one round,
that is, a loop iteration in Fig. 1.

While most rules are derived directly from the pseu-
docode, some have to be added for modeling purposes: The
self-loops of rules r13 and r14 model the “wait” statements
in lines 5 and 9. In the standard asynchronous distributed
computing model [19], a process repeatedly performs steps
that include possible reception of messages until the condi-
tion of the “wait” is satisfied. Formally, this results in local
stutter steps (modulo possibly receivedmessages) in the con-
trol locations of lines 5 and 9 which are modeled with the
self-loops. The rules r1 and r2 are the result of introduc-
ing so-called border locations I0 and I1 which, intuitively,
inserts control locations between two loop iterations that do
not belong to any iteration. This is required in our proofs for
a reduction argument that reasons about steps from different
iterations.

The algorithm is parameterized: n is the number of pro-
cesses, t is the assumed number of faults, and f is the actual
number of faults. It should be demonstrated to work under
the resilience condition n > 5t∧ t ≥ f ∧ t > 0. Observe that
the parameters n and t show up in the code of Fig. 1, while f
does not. That is, for a concrete system, the values of n and t
must be fixed a priori and compiled into the executable. The
value f is outside of the control of a designer as it captures
the number of faults in a run, which is determined by an unre-
liable environment (e.g., physical faults in components). In
that, the correctness of fault-tolerant distributed algorithms
is only restricted to runs where f ≤ t , which is captured by
the resilience condition. However, at the level of the thresh-
old automata model, we do not distinguish between fixed
(known) and unknown parameters. From a model checking
perspective, by setting f > t , we can generate executions
that violate certain specification in runs where there are more
faults than expected, which is interestingwhen analyzing and
comparing distributed algorithms.

One round. The code in Fig. 1 refers to numbers of
received messages, and as is typical for distributed algo-
rithms, their relation to sent messages (that is, the semantics
of send and receive) is not explicit in the pseudo code. To for-
malize the behavior, the encoding in the threshold automaton
directly refers to the numbers of sent messages, and they are
encoded in the shared variables xi and yi . For instance, the
locations J0 and J1 capture that a loop is enteredwith v being
0 and 1, respectively. Sending an (R, r , 0) and (R, r , 1)mes-
sage is captured by the increments on the shared variables x0
and x1 in the rules r3 and r4, respectively, e.g., a process that
is in location J0 uses rule r3 to go to location SR (“sent R
message”), and increments x0 in doing so. Waiting for R and
P messages in the lines 5 and 9 is captured by looping in
the locations SR and SP . In line 7, a process sends, e.g.,

Table 1 The rules of the
probabilistic threshold
automaton for the Ben-Or’s
algorithm

Rule Guard Update

r1 true –

r2 true –

r3 true x0++

r4 true x1++

r5 x0+x1 ≥ n−t− f ∧ x0 ≥ (n+t)/2 − f y0++

r6 x0+x1 ≥ n−t− f ∧ x1 ≥ (n+t)/2 − f y1++

r7 x0+x1 ≥ n−t− f ∧ x0 ≥ (n−3t)/2 − f ∧ x1 ≥ (n−3t)/2 − f y?++

r8 y0+y1+y? ≥ n−t− f ∧ y? ≥ (n−3t)/2 − f ∧ y0 ≥ t+1− f –

r9 y0+y1+y? ≥ n−t− f ∧ y0 > (n+t)/2 − f –

r10 y0+y1+y? ≥ n−t− f ∧ y? ≥ (n−3t)/2 − f ∧ y? > n−2t− f −1 –

r11 y0+y1+y? ≥ n−t− f ∧ y1 > (n+t)/2 − f –

r12 y0+y1+y? ≥ n−t− f ∧ y? ≥ (n−3t)/2 − f ∧ y1 ≥ t+1− f –

r13 true –

r14 true –

123

Verification of randomized consensus algorithms under round-rigid adversaries 801

a (P, r , 0, D) message if it has received n−t messages out
of which (n+t)/2 are (R, r , 0) messages. This is captured
in the guard of rule r5 where x0+x1 ≥ n−t− f checks the
number of messages in total, and x0 ≥ (n+t)/2 − f checks
for the specific messages containing 0.

The “− f ” termmodels that in themessage passing seman-
tics underlying Fig. 1, f messages fromByzantine faultsmay
be received in addition to the messages sent by correct pro-
cesses (modeled by shared variables in Fig. 3). The branching
at the end of the loop from lines 10 to 18 is captured by the
rules outgoing of SP . In particular rule, r10 captures the coin
toss in line 16. The non-determinism due to faults and asyn-
chrony is captured by multiple rules being enabled at the
same time.

Recall that behavior of a process in a single round is mod-
eled by the solid edges in Fig. 3. Note that in this case,
threshold guards should be evaluated according to the values
of shared variables, e.g., x0 and x1, in the observed round.

Round switches. The dashed edges, called round-switch
rules, encode how a process, after finishing a round, starts
the next one. The round number r serves as the loop iterator
in Fig. 1, and in each iteration, processes send messages that
carry r . To capture this, each round r maintains independent
copies of the variables x0, x1, y0, y1, which are initialized
with 0. Because there are infinitely many rounds, this means
a priori we have infinitely many variables.

Example 1 Recall the distributed execution ofBen-Or’s algo-
rithm in Fig. 2. We show how to model the pseudocode as a
threshold automaton and the distributed execution as an exe-
cution of a counter system. Consider the threshold automaton
in Fig. 3, and let us fix a system based on this automaton;
for instance, let there be n = 6 processes where f = t = 1
process is Byzantine faulty. Note that in this case, we explic-
itly model only the five correct processes. In this example,
accompanied in Fig. 4, we show a run in such a system; that
is, we only show a prefix as every run is infinitely long.

Assume three correct processes start with value 0 and two
with value 1. This initial configuration is denoted by σ0 and
depicted in the upper left corner of Fig. 4, where three red
circles in location I0 represent three correct processes with
initial value 0, and similarly, two circles in I1 represent two
correct processes with initial value 1.

After applying τ1 = (r1, 1)3(r2, 1)(r3, 1)3(r4, 1) to σ0,
we reach configuration σ1, where 4 processes are in loca-
tion SR and one is still in its initial location. We use a
short notation (r1, 1)3 for (r1, 1)(r1, 1)(r1, 1), where 3 pro-
cesses execute r1 in the first round. After applying τ2 =
(r5, 1)1(r7, 1)3(r2, 1)(r8, 1)2(r10, 1)2 to σ1, we reach σ2
where the four processes from SR reach final location of
the first round, which is depicted in the lower left corner of
Fig. 4.

Next, the four “fast” processes move and start the sec-
ond round by executing τ3 = (rCT0 , 1)(rCT1 , 1)(r2, 2)
(rE0 , 1)

2 and reaching σ3. In order to distinguish pro-
cesses from the first and the second round, we depict those
in the second round as green diamonds. Applying τ4 =
(r4, 1)(r4, 2)(r5, 1)(r8, 1)(r1, 2)3 to σ3 leads to σ4. Here, we
can see that processes move in their own relative speeds, and
at the same time, they might be in different rounds.

Finally, by executing τ5 = (rE0 , 1)(r1, 2)(r3, 2)
4(r5, 2)5

(r9, 2)5 all correct processes decide value 0; that is, they
all reach location D0, depicted in the lower right corner of
Fig. 4. Note that processes do not stop the execution here,
but continue to the following round. It is important to notice
that in the rest of the run, no matter how we extend it, every
correct process will finish every following round in D0; that
is, it will eventually decide 0. ��

Liveness and fairness. Liveness properties of distributed
algorithms typically require fairness constraints, e.g., every
message sent by a correct process to a correct process is even-
tually received. For instance, this implies in Fig. 1 that if n−t
correct processes have sent messages of the form (R, 1, ∗)

and (n+t)/2 correct processes have sent messages of the
form (R, 1, 0), then every correct process should eventu-
ally execute line 7 and proceed to line 9. We capture this
by the following fairness constraint: If x0+x1 ≥ n−t ∧ x0 ≥
(n+t)/2—that is, rule r5 is enabled without the help of the
f faulty processes but by “correct processes alone”—then
the source location of rule r5; namely, SR should eventu-
ally be evacuated; that is, its corresponding counter should
eventually be 0.

Restrictions. The definition of threshold automata in
its general form allows two disturbing features. First, the
updates allow increments and decrements in shared vari-
ables. As was shown in [28], this feature allows us to use
threshold automata to encode two counter machines, for
which the halting problem is undecidable. As a result, with-
out this restriction, parameterized verification of threshold
automata is undecidable. Second, the most general defini-
tion also allows loops (closed paths) that contain rules that
increase shared variables. In [28], it is shown that this leads
to counter systems whose diameter is not bounded. As our
model checker ByMC does bounded model checking, such
threshold automata also cannot be handled. Luckily, none of
these features is needed to encode fault-tolerant distributed
algorithms: First, as increments in shared variables are used
to model the sending of messages, we only need increments,
as one cannot make a message unsent (which would cor-
respond to a decrement). Second, increasing within a loop
would correspond to a process iteratively sending the same
message over and over again. As we use threshold automata
to count messages from distinct processes, this increments
would violate the intended semantics we require to cap-

123

802 N. Bertrand et al.

Fig. 4 A part of a run in the system based on the threshold automaton
from Fig. 3, accompanying Example 1. Red circles represent correct
processes in the first round, and green diamonds represent correct pro-

cesses in the second round. Similarly, red and green transitions are
executed in the first and the second round, respectively

ture for distributed algorithms. Thus, it is convenient to
consider standard—so-called “canonic”—restrictions here,
i.e., increments only of shared variables, and no updates
of shared variables within loops. These restrictions still
allow us to model threshold-based fault-tolerant distributed
algorithms [24]. As a result, threshold automata without
probabilistic forks and round switching rules can be auto-
matically checked for safety and liveness [23,24]. Adding
forks and round switches is required to adequately model
randomized distributed algorithms. Here, we introduce the

restriction1 (met by all our benchmarks) that coin-toss tran-
sitions only appear at the end of a round, e.g., line 16 of Fig. 1.
Intuitively, as discussed in Sect. 1, a coin toss is only neces-
sary if there is no strong majority. Thus, all our benchmarks
have this feature, and we exploit it in Sect. 7.

1 This restriction is needed in Sect. 7.1 and in particular to establish
Lemma 11.

123

Verification of randomized consensus algorithms under round-rigid adversaries 803

2.2 Our approach at a glance

To sum up the above from a verification viewpoint, these
algorithms have two sources of unboundedness: (i) They are
parameterized by the number of participating processes, and
(ii) they run for an infinite number of rounds. This paper is
based on the idea to reduce the analysis of the iterative part
(the rounds) to a fewverification tasks for one-round systems,
thus solving the verification challenge posed by (ii). Then,we
can invoke existingmodel checking techniques fromKonnov
et al. [23,24] that address (i).

To reduce to the verification of one-round systems, we
need to take several steps. First, we introduce the frame-
work of probabilistic threshold automata in Sect. 3 that gives
a precise semantics to the distributed algorithms (that are
typically only described in pseudocode). This allows us in
Sect. 4 to formalize the folklore consensus properties in the
precise semantics provided by threshold automata. We arrive
at temporal logic specifications that speak about multiple
rounds. At this point, we have a precise formal understand-
ing of the verification task: We have an infinite-state model
of the computation of the distributed algorithm, and tempo-
ral logic specifications that contain multiple quantified round
variables that range over an infinite sequence of rounds.

After having formalized all the objects of study, we are in
the position to develop the reduction arguments. We start
by reducing the problem statement, namely the temporal
logic formulas. We show how to transform consensus spec-
ifications into one-round temporal formulas in Sect. 5 by
analyzing the formulas: Consensus specifications often talk
about at least two different rounds. In this case, we need to
use round invariants that imply the specifications. For exam-
ple, if we want to verify agreement, we have to check that
no two processes decide different values, possibly in differ-
ent rounds. We do this in two steps: (i) We check the round
invariant that no process changes its decision from round to
round, and (ii) we check thatwithin a round, no two processes
disagree. It remains the challenge of infinitely many rounds,
which we address in the non-probabilistic setting in Sect. 6.
Here, the main challenge is, as discussed above, that at the
same time, different processes may be in different rounds.
We simplify the verification by exploiting a reduction based
on communication-closed rounds [12,15,17]. We prove that
every execution in which steps are arbitrarily interleaved
can be reduced to an “equivalent” execution where, roughly
speaking, at all times all processes are on the same round. To
do so, we prove that one can reorder transitions of any fair
execution such that in the resulting (reordered) execution,
the round numbers of the transitions are in a non-decreasing
order. The mentioned equivalence is with respect to tem-
poral logic properties. More precisely, the obtained ordered
execution is stutter equivalent with the original one, and
thus, they satisfy the same LTL−X properties over the atomic

propositions describing only one round. In other words, any
interleaved multi-round system that poses the verification
challenge (ii) can be transformed to a sequential composi-
tion of one-round systems, which reduces the verification to
one-round systems, which can be automatically checked by
the model checker ByMC [26].

Verifying almost-sure terminationunder round-rigid adver-
saries calls for distinct arguments. Our methodology follows
the lines of the manual proof of Ben-Or’s consensus algo-
rithmbyAguilera andToueg [1].However, our arguments are
not specific toBen-Or’s algorithmand apply to other random-
ized distributed algorithms (see Sect. 8). Compared to their
paper-and-pencil proof, the threshold automata framework
required us to provide amore formal setting and amore infor-
mative proof, also pinpointing the needed hypotheses that we
discuss in Sect. 7. As in the non-probabilistic case, the crucial
parts of our proof are automatically checked by the model
checkerByMC.Hence, the correctnesswe establish stands on
less slippery ground, addressing the above-mentioned con-
cerns of Lehmann and Rabin.

3 The framework of probabilistic threshold
automata

To start with, we introduce our model of probabilistic thresh-
old automata.

Definition 1 A probabilistic threshold automaton PTA is a
tuple (L,V,R,RC), where

– L is a finite set of locations that contains the following
disjoint subsets:

– initial locations I,
– final locations F, and
– border locations B,

with |B| = |I|;
– V is a set of variables. It is partitioned in two sets:

– Π contains parameter variables, and
– Γ contains shared variables;

– R is a finite set of rules; and
– RC , the resilience condition, is a formula in linear integer
arithmetic over parameter variables.

In the following, we introduce rules in detail and give
syntactic restrictions on rules that model the local transitions
of a distributed algorithm from/to particular locations. The
resilience condition RC only appears in the definition of the
semantics in Sect. 3.1.

123

804 N. Bertrand et al.

A simple guard is an expression of the form

b · x ≥ ā · pᵀ + a0 or b · x < ā · pᵀ + a0,

where x ∈ Γ is a shared variable, ā ∈ Z
|Π | is a vector of

integers, a0, b ∈ Z, and p is the vector of all parameters. The
set of all simple guards is denoted by G. A threshold guard
(or just a guard) is a conjunction of simple guards.

A rule r is a tuple (from, δto, ϕ,u) where from ∈ L is the
source location, δto ∈ Dist(L) is a probability distribution
over the destination locations, ϕ is a conjunction of guards,
and u ∈ N

|Γ |
0 is the update vector.

If r .δto is a Dirac distribution, i.e., there exists � ∈ L
such that r .δto(�) = 1, we call r a Dirac rule and write it
as (from, �, ϕ,u). Destination locations of non-Dirac rules
are in F. (Coin-toss transitions only happen at the end of a
round.) If all rules of PTA are Dirac, then this automaton is
also a threshold automaton [23].

As in [23], we only consider so-called canonic threshold
automata, that is, every rule r that lies on a cycle ensures that
r .u = 0.Moreover, to simplify formalization of fairness con-
straints (tomodel reliable communication between processes
of a distributed algorithm), we will exploit a characteristic of
all our benchmarks, namely that there are no cycles within a
round, except possibly self-loops.

Remark 1 The above condition r .u = 0 for a rule r on a cycle
may seem to be prohibitively restrictive. Note, however, that
we use a shared variable x ∈ Γ to encode the number of
the messages of type x that are sent by all correct processes.
Hence, when constructing a threshold automaton, it is impor-
tant to preserve the following invariant: the automaton may
increase every variable at most once. This invariant allows
us to model sending of a message in the environment with
reliable communication [19] (which still allows for process
failures). In an implementation of a distributed algorithm, a
node would maintain the set of messages that it has received
from other peers, and the node would discard duplicate mes-
sages. If a rule r increased the variable x , and the rule r lied
on a cycle, then thiswouldmodel the situation, inwhich a sin-
gle process broadcasts a message by using several identities.
This is forbidden in the classical fault-tolerant distributed
algorithms.

We have investigated extensions of (non-probabilistic)
threshold automata, including the automata that allow all
rules to increase shared variables [28]. For such automata,
the parameterized model checking problem is still decidable.
However, the reduction-based techniques of ByMC [26] are
not applicable to counter systems of non-canonical threshold
automata. ��

Probabilistic threshold automata model algorithms with
multiple rounds that follow the same code. Informally, a
round happens between border locations and final locations.

The round-switch rules let processes move from final loca-
tions of a given round to border locations of the next round.
From each border location, there is exactly one Dirac rule
to an initial location, and it has a form (�, �′,true, 0)
where � ∈ B and �′ ∈ I. As |B| = |I|, one can think of
border locations as copies of initial locations. It remains to
model from which final locations to which border location
(that is, initial for the next round) processes move. This is
done by round-switch rules. They can be described as Dirac
rules (�, �′,true, 0) with � ∈ F and �′ ∈ B. The set of
round-switch rules is denoted by S ⊆ R.

A location belongs to B if and only if all the incoming
edges are in S. Similarly, a location is in F if and only if
there is only one outgoing edge and it is in S.

Figure 3 depicts a PTAwith border locationsB = {I0, I1},
initial locations I = {J0, J1}, and final locations F =
{E0, E1, D0, D1,CT0,CT1}. The only rule that is not aDirac
rule is r10, and round-switch rules are represented by dashed
arrows.

3.1 Probabilistic counter systems

The semantics of a probabilistic threshold automaton is an
infinite-state Markov decision process (MDP), which we
formally define below. First, we must define admissible
parameters with respect to a given resilience condition.

A resilience condition RC defines the set of admissible
parameters PRC = {p ∈ N

|Π |
0 : p |� RC }. We intro-

duce a function N : PRC → N0 that maps a vector of
admissible parameters to a number of modeled processes
in the system. For instance, for the automaton in Fig. 3,
N is the function (n, t, f)
→ n− f , as we model only
the n− f correct processes explicitly, while the effect of
faulty processes is captured in non-deterministic choices
between different guards as discussed in Sect. 2. Given a PTA
and a function N , we define the semantics, called prob-
abilistic counter system Sys(PTA), to be the infinite-state
MDP (Σ, I ,Act,Δ), where Σ is the set of configurations
for PTA among which I ⊆ Σ are initial, the set of actions is
Act = R × N0, and Δ : Σ × Act → Dist(Σ) is the proba-
bilistic transition function.
Configurations. In a configuration σ = (κ, g,p), the func-
tion σ.κ : L×N0 → N0 describes values of location counters
per round, the function σ.g : Γ × N0 → N0 defines shared
variable values per round, and the vector σ.p ∈ N

|Π |
0 sets

parameter values. We denote the vector (g[x, k])x∈Γ of
shared variables in a round k by g[k], and by κ[k], we denote
the vector (κ[�, k])�∈L of location counters in a round k.

A configuration is initial if all processes are in initial
locations of round 0, and all global variables evaluate to 0.
Formally, σ = (κ, g,p) is initial, if for every x ∈ Γ and
k ∈ N0, we have σ.g[x, k] = 0, if

∑
�∈B σ.κ[�, 0] = N (p),

123

Verification of randomized consensus algorithms under round-rigid adversaries 805

and finally if for every (�, k) ∈ ((L \ B) × {0}) ∪ (L × N),
it holds that σ.κ[�, k] = 0.

A threshold guard evaluates to true in a configuration σ

for a round k, written σ, k |� ϕ, if for all its conjuncts b · x ≥
ā · pᵀ + a0, it holds that b · σ.g[x, k] ≥ ā · (σ.pᵀ) + a0
(and similarly for conjuncts of the other form, i.e., b · x <

ā · pᵀ + a0).
Actions. An actionα = (r , k) ∈ Act stands for the execution
of a rule r in round k (by a single process). We write α.from
for r .from, α.δto for r .δto, etc.

An action α = (r , k) is unlocked in a configuration σ ,
if the guard of its rule evaluates to true in round k, that is,
σ, k |� r .ϕ. An action α = (r , k) is applicable to a con-
figuration σ if α is unlocked in σ , and there is at least one
process in the source location r .from at round k, formally,
σ.κ[r .from, k] ≥ 1. When an action α is applicable to σ , and
when � is a potential destination location for the probabilistic
action α, we write apply(σ, α, �) for the resulting configura-
tion: Parameters are unchanged, shared variables are updated
according to the update vector r .u, and the values of coun-
ters are modified in a natural way: As a process moves from
r .from to � in round k, the counter κ[r .from, k] is decreased
by 1 and counter κ[�, k] is increased by 1. Formally, we
have that apply(α, �, σ) = σ ′ if and only if apply(α, �, σ) is
defined and the following holds:

– The update vector changes the shared variables at
round k, that is, σ ′.g[k] = σ.g[k] + α.u, and σ ′.g[k′] =
σ.g[k′], for every round k′ �= k,

– The parameter values do not change: σ ′.p = σ.p,
– A self-loop within a round does not change the variables:
If r ∈ R \ S and α.from = �, then σ ′.κ = σ.κ ,

– An edge within a round (different from a self-loop)
updates the round variables:
If r ∈ R \ S and α.from �= �, then

– σ ′.κ[α.from, k] = σ.κ[α.from, k] − 1,
– σ ′.κ[�, k] = σ.κ[�, k] + 1,
– ∀� ∈ L \ {α.from, �}, σ ′.κ[�, k] = σ.κ[�, k], and
– σ ′.κ[k′] = σ.κ[k′], for all rounds k′ �= k

– A round-switch edge updates the counters of the rounds k
and k + 1: If r ∈ S, then
– σ ′.κ[α.from, k] = σ.κ[α.from, k] − 1,
– σ ′.κ[�, k + 1] = σ.κ[�, k + 1] + 1, and
– σ ′.κ[�′, k′] = σ.κ[�′, k′], for all (�′, k′) ∈ L × N0 \

{(α.from, k), (�, k + 1)}.

Probabilistic transition function. The probabilistic transi-
tion function Δ is defined such that for every two configu-
rations σ and σ ′ and for every action α applicable to σ , we
have

Δ(σ, α)(σ ′) =
{

α.δto(�) if apply(σ, α, �) = σ ′,
0 otherwise.

A (finite or infinite) path in Sys(PTA) is a sequence
of configurations σ0, σ1, . . ., such that for every σi , i >

0, there exist an action αi and a location �i such that
apply(σi−1, αi , �i) = σi .

3.2 Non-probabilistic counter systems

Non-probabilistic threshold automatawere introduced in [25],
and they can be seen as a special case of probabilistic thresh-
old automata where all rules are Dirac rules. The definition
in [25] did not capture multi-round algorithms; that is, there
are no border and final locations and thus no restrictions on
rules from/to these locations. In this section, we discuss non-
probabilistic counterparts of probabilistic threshold automata
and probabilistic counter systems. Doing so, our objective is
twofold: On the one hand, it is natural to compare PTA with
the formalism they extend; on the other hand, wewill see that
the two natural ways to assign a derandomized semantics to
a PTA coincide (see commutative diagram in Fig. 5.)

With aPTA, one can naturally associate a non-probabilistic
threshold automaton, by replacing probabilities with non-
determinism: Every probabilistic rule r = (from, δto, ϕ,u)

is replaced by non-deterministic rules of the form r� =
(from, �, ϕ,u), for every location � with δto(�) > 0.

Definition 2 Given a PTA = (L,V,R,RC), its induced
(non-probabilistic) threshold automaton is

TAPTA = (L,V,Rnp,RC),

where the set of rulesRnp is defined as

{(from, �, ϕ,u) :
(from, δto, ϕ,u) ∈ R ∧ � ∈ L ∧ δto(�) > 0}.

If the rule (from, δto, ϕ,u) is denoted by r , and a location
� ∈ L has δto(�) > 0, then the obtained rule (from, �, ϕ,u)

is denoted by r�.
We write TA instead of TAPTA when the automaton PTA

is clear from the context. Every rule from Rnp corresponds
to exactly one rule in R, and for every rule in R, there is
at least one corresponding rule in Rnp (and exactly one for
Dirac rules).

If we understand a TA as a PTA where all rules are Dirac
rules, we can define transitions using the partial function
apply in order to obtain an infinite (non-probabilistic) counter
system, which we denote by Sys∞(TA). Moreover, since in
this case R = Rnp, actions of the PTA exactly match tran-
sitions of its TA. We obtain σ ′ by applying t = (r , k) to σ

123

806 N. Bertrand et al.

Fig. 5 Diagram following Proposition 1

and write this as σ ′ = t(σ), if and only if for the destination
location � of r , it holds that apply(σ, t, �) = σ ′.

Also, starting from a PTA, one can define the proba-
bilistic counter system Sys(PTA) and consequently its non-
probabilistic counterpart Sysnp(PTA). As the definitions of
Sysnp(PTA) and Sys∞(TA) are equivalent for a given PTA,
we are free to choose one and always use Sys∞(TA). We
formalize this intuition below.

Definition 3 Given an arbitrary probabilistic counter system
Sys(PTA) = (Σ, I ,Act,Δ), we define its non-probabilistic
version Sysnp(PTA) to be the tuple (Σ, I , R), where R is a
transition relation defined below.

IfAct = R×N0 and ifRnp is defined fromR as inDefini-
tion 2, then transitions are tuples t = (r�, k) ∈ Rnp×N0 such
that α = (r , k) is an action from Act and for � ∈ L holds that
α.δto(�) > 0. Transition t is unlocked in a configuration σ

from Sysnp(PTA) ifα is unlocked in σ in Sys(PTA). Similarly,
we definewhen t is applicable to σ .We obtain σ ′ by applying
an applicable transition t to σ , written t(σ) = σ ′, if and only
if there exists a location � ∈ L such that apply(σ, α, �) = σ ′.

Two configurations σ and σ ′ are in the transition rela-
tion R, i.e., (σ.σ ′) ∈ R, if and only if there exists a transition t
such that σ ′ = t(σ).

Definition 4 Given an arbitrary threshold automaton TA =
(L,V,Rnp,RC), with border, initial, and final location
sets B, I, and F, respectively, we define its infinite counter
system Sys∞(TA) to be the tuple (Σ, I , R). Configurations
from Σ and I are defined as in Sect. 3.1. A transition t is
a tuple (r�, k) ∈ Rnp × N0. Since it coincides with Dirac
actions, we define when a transition is unlocked in a con-
figuration and when it is applicable to a configuration, in the
sameway as for aDirac action in Sect. 3.1.A configurationσ ′
is obtained by applying an applicable transition t = (r�, k)
to σ , written σ ′ = t(σ), if and only if apply(α, �, σ) = σ ′,
for a Dirac action α = (r�, k) and the destination location �

of r .
Now, we have (σ, σ ′) ∈ R, if and only if there exists a

transition t such that σ ′ = t(σ).

Proposition 1 Given a PTA, the non-probabilistic version
Sysnp(PTA) of its counter system coincides with the infinite
counter system Sys∞(TA) of its threshold automaton.

It is easy to see that the diagram fromFig. 5 commutes, and
thus, every PTA yields the unique non-probabilistic counter
system. The two constructions give us possibility to remove
probabilistic reasoning either on the level of a PTA (using
Definition 2) or on the level of a counter system Sys(PTA)

(using Definition 3).
Schedules and paths. A (finite or infinite) sequence of tran-
sitions is called schedule, and it is often denoted by τ . A
schedule τ = t1, t2, . . . , t|τ | is applicable to a configurationσ

if there is a sequence of configurations σ = σ0, σ1, . . . , σ|τ |
such that for every 1 ≤ i ≤ |τ |, we have that ti is appli-
cable to σi−1 and σi = ti (σi−1). A path in Sysnp(PTA) is
an alternating sequence of configurations and transitions, for
example, σ0, t1, σ1, . . . , t|τ |, σ|τ |, such that for every ti , 1 ≤
i ≤ |τ |, in the sequence, we have that ti is applicable to σi−1

and σi = ti (σi−1). Given a configuration σ0 and a sched-
ule τ = t1, t2, . . . , t|τ |, we denote by path(σ0, τ) a path
σ0, t1, σ1, . . . , t|τ |, σ|τ | where ti (σi−1) = σi , 1 ≤ i ≤ |τ |.
Similarly, we define an infinite schedule τ = t1, t2, . . ., and
an infinite path σ0, t1, σ1, . . ., also denoted by path(σ0, τ).

Observation 1 Since every transition in Sys∞(TA) comes
from an action in Sys(PTA), note that every path in Sys∞(TA)

corresponds to a path in Sys(PTA).

An infinite path is fair if no transition is applicable for-
ever from some point on. Equivalently, when a transition is
applicable, eventually either its guard becomes false, or all
processes leave its source location.

Remark 2 We use the above fairness constraint as it is conve-
nient for our proofs. At the same time, it captures the standard
weak fairness constraint of reliable communication for dis-
tributed algorithms: The requirement is that it is always the
case that if there is a message to be received, then a message
reception event will eventually happen [32, Chap. 8.4]. For
the threshold guards that means that if a guard of a rule eval-
uates to true, and a process is at the source location of that
rule, the process should eventually take the transition of the
rule. We consider (i) a finite number of processes in each run
and (ii) acyclic threshold automata, which implies that if a
guard is enabled from some point on forever, its source loca-
tion must eventually be empty forever, which is our fairness
constraint. ��

3.3 Adversaries

The non-determinism in Markov decision processes is tradi-
tionally resolved by a so-called adversary [3, Chap. 10]. Let
Paths be the set of all finite paths in Sys(PTA). An adver-
sary is a function a : Paths → Act, that given a finite
path π of Sys(PTA) selects an action applicable to the last
configuration of π . Given an initial configuration σ0, an
adversary a generates a set paths(σ0,a) of infinite paths

123

Verification of randomized consensus algorithms under round-rigid adversaries 807

σ0, σ1, . . . with the following property: For every i > 0,
there exists a location �i such that σi = apply(σi−1, αi , �i),
where αi = a(σ0, σ1, . . . , σi−1).

As usual, the MDP Sys(PTA) together with an initial con-
figuration σ0 and an adversary a induce a Markov chain,
written Mσ0

a . Precisely, the state space of Mσ0
a is Paths, its

initial state is σ0 (the initial configuration, which is also a
path of length 0), and the probabilistic transition function
δa : Paths → Dist(Paths) is defined for every ht ∈ Paths
starting in σ0 and ending with a transition, and every config-
urations σ, σ ′ ∈ Σ and every transition t by:

(
δa(htσ)

)
(htσ t ′σ ′) = Δ(σ,a(htσ))(σ ′),

where t ′ is the transition (a(htσ), �)with apply(σ,a(htσ), �) =
σ ′. In words, the probability inMσ0

a to move from state htσ
to state htσ t ′σ ′ is nonzero as soon as there exists a transition
t ′ = (r�, k) such that σ ′ = apply((r , k), �, σ). This equals
to the probability that the corresponding process moves to �

if the scheduler a picks action (r , k). We write P
σ0
a for the

probability measure over infinite paths starting at σ0 inMσ0
a .

An adversary a is fair if all paths in paths(σ0,a) are fair.
We call an adversary a round-rigid if it is fair, and if

every sequence of actions it produces can be decomposed to
a concatenation of sequences of actions of the form s1 · s p1 ·
s2 · s p2 ..., where for all k ∈ N, we have that the sequence sk
contains only Dirac actions of round k, and s pk contains only
non-Dirac actions of round k (one per process). We denote
the set of all round-rigid adversaries by AR.

3.4 Atomic propositions and stutter equivalence

The atomic propositions we consider describe the non-
emptiness of a location in a given round, i.e., whether there
is at least one process in location � ∈ L \ B in round k. The
set of all such propositions for a round k ∈ N0 is denoted by

APk = {p(�, k) : � ∈ L \ B} ∪ {g(ϕ, k) : ϕ ∈ G}.

For every k, we define a labeling function λk : Σ → 2APk

such that p(�, k) ∈ λk(σ) iff σ.κ[�, k] > 0, and g(ϕ, k) ∈
λk(σ) iff σ, k |� ϕ. By abusing notation, we write “κ[�, k] >

0” and “κ[�, k] = 0” instead of p(�, k) and ¬p(�, k), resp.
For a path π = σ0, t1, σ1, . . . , tn, σn , n ∈ N, and a

round k, a trace tracek(π) w.r.t. the labeling function λk is
the sequence λk(σ0)λk(σ1) . . . λk(σn). Similarly, if a path
is infinite π = σ0, t1, σ1, t2, σ2, . . ., then tracek(π) =
λk(σ0)λk(σ1)

We say that two finite traces are stutter equivalent w.r.t.
APk , denoted tracek(π1) � tracek(π2), if there is a finite
sequence A0A1 . . . An ∈ (2APk)+, n ∈ N0, such that
both tracek(π1) and tracek(π2) are contained in the language
given by the regular expression A+

0 A+
1 . . . A+

n . If traces of π1

and π2 are infinite, then stutter equivalence tracek(π1) �
tracek(π2) is defined in the standard way [3]: If traces of π1

and π2 are infinite, then we have tracek(π1) � tracek(π2), if
there is an infinite sequence A0A1 . . . with Ai ⊆ APk , and
natural numbers n0, n1, n2, . . .,m0,m1,m2 . . . ≥ 1 such that

tracek(π1) = A0 . . . A0︸ ︷︷ ︸
n0-times

A1 . . . A1︸ ︷︷ ︸
n1-times

A2 . . . A2︸ ︷︷ ︸
n2-times

...

tracek(π2) = A0 . . . A0︸ ︷︷ ︸
m0-times

A1 . . . A1︸ ︷︷ ︸
m1-times

A2 . . . A2︸ ︷︷ ︸
m2-times

...

To simplify notation, we say that paths π1 and π2 are stutter
equivalent w.r.t. APk andwriteπ1 �k π2, instead of referring
to specific path traces.

We denote by π1 �k π2 that the paths π1 and π2 are
stutter equivalent [3] w.r.t. APk . Two counter systems C0

and C1 are stutter equivalent w.r.t. APk , written C0 �k C1,
if for every i ∈ {0, 1} and every path π from Ci , there is a
path π ′ from C1−i such that π �k π ′.

Remark 3 We emphasize that atomic propositions cannot
check emptiness of border locations from the setB. The spec-
ifications cannot observe the moment of transition from one
round to another. An example illustrating why we have this
restriction is given in Remark 4. This allows us to swap tran-
sitions of adjacent rounds in Sect. 6. ��

4 Consensus properties and their verification

In probabilistic (binary) consensus, every correct process has
an initial value from {0, 1}. It consists of safety specifications
and an almost-sure termination requirement, which we con-
sider in its round-rigid variant:

Agreement: no two correct processes decide differently.
Validity: if all correct processes have v as the initial value,
then no process decides 1 − v.
Round-rigid probabilistic termination: for every round-
rigid adversary, with probability 1 every correct process
eventually decides.

Wenowdiscuss the formalization of these specifications in
the context of Ben-Or’s algorithm whose threshold automa-
ton is given in Fig. 3.
Formalization. In order to formulate and analyze the speci-
fications, we partition every set I, B, andF, into two subsets
I0 � I1, B0 � B1, and F0 � F1, respectively. For every
v ∈ {0, 1}, the partitions satisfy the following:

(R1) The processes that are initially in a location � ∈ Iv have
the initial value v.

123

808 N. Bertrand et al.

Table 2 The syntax of
round-based specifications:
pform defines probabilistic
formulas, qform defines
multi-round temporal formulas,
tform defines temporal path
formulas, and sform defines
state formulas

pform:: = P
σ
a(∃r ∈ N0. tform) = 1

qform:: = A tform | ∀r ∈ N0. qform

tform:: = sform | G tform | F tform | tform ∨ tform

sform:: = cform | gform ∧ cform

cform:: = ∨

�∈Locs
κ[�, r] �= 0 | ∧

�∈Locs
κ[�, r] = 0 | cform ∨ cform

gform:: = guard | ¬gform | gform ∧ gform

r :: = name of a round variable, e.g., k or k′

We assume that Locs ⊆ L is a set of locations, guard is a threshold guard, and k ∈ N0 is a round number

(R2) Rules connecting locations from B and I respect the
partitioning, i.e., they connect Bv and Iv . Similarly,
rules connecting locations from F and B respect the
partitioning.

We introduce two subsets Dv ⊆ Fv , for v ∈ {0, 1}. Intu-
itively, a process is inDv in a round k if and only if it decides v

in that round.
The syntax of the specification language is given in

Table 2. We use the universal counterpart of ELTLFT intro-
duced in [24] and extend it with round quantifiers (starting
with qform) and probabilities (starting with pform). While
ELTLFT was initially introduced in [24] as an existential
fragment of LTL in order to check whether there exists an
execution that violates specification, here we directly check
whether all executions satisfy specifications, and therefore,
we use its universal counterpart.

In the following, we give an informal meaning of the for-
mulas in Table 2. The formal semantics of temporal operators
A , F , and G can be found in a textbook on model checking,
e.g., [14]. The rules gform, cform, and sform produce formu-
las over the atomic propositions. The rule gform produces
formulas about threshold guards. It allows one to write a
threshold guard, e.g., the guard x0+x1 ≥ n−t− f , the guard
x0 ≥ (n+ t)/2− f , and Boolean combinations thereof. The
rule cform produces formulas about counters. It allows one to
write that all processes are outside of given locations, that is,∧

�∈Locs κ[�, r] = 0; or that at least one process resides in a
location in a given set, that is,

∨
�∈Locs κ[�, r] �= 0. Note that

the formulas produced by cform are referring to the round
number r , which is a free variable in these formulas. The
round number r is bound by either a universal, or existential
quantifier in the rules pform and qform.

The formulas produced by the rule cform can be con-
joined only by disjunction, whereas the formulas produced
by cform and gform can be conjoined only by conjunction.
These combinations give us formulas that are produced by
the rule sform. Note that these syntactic restrictions on the
propositions were carefully chosen in [24], to ensure decid-
ability of parameterized model checking.

The rule tform allows us to write certain temporal formu-
las: (1) that a proposition holds in the current state, that is,
sform; (2) that a formula holds in the current state and all
successor states along an execution, that is, G tform; (3) that
a formula holds in the current state or in at least one succes-
sor state along an execution, that is, F tform; (4) that at least
one of the temporal formulas holds true in the current state,
that is, tform ∨ tform.

Finally, the rule qform produces temporal formulas over
all executions, that is, A tform, and over all round num-
bers ∀r ∈ N0. qform. The rule pform produces quantitative
formulas, that is, that the probability of a temporal formula
being true for some round is equal to one. In our specifica-
tions, we consider only closed formulas produced by pform
and qform, that is, the formulas, in which all round numbers
are bound with the quantifier ∀r ∈ N0 or with the quantifier
∃r ∈ N0.

Similar to atomic propositions, not every LTL formula can
be turned into the form in Table 2. We have introduced this
specific fragment of LTL to express specifications of round-
based fault-tolerant distributed algorithms. The imposed
constraints allow us to use the model checker ByMC.

Now, we can formalize the consensus specifications as
follows:

Agreement: for both v ∈ {0, 1}, the following holds:

∀k ∈ N0,∀k′ ∈ N0. A
(
F

∨

�∈Dv

κ[�, k] > 0

→ G
∧

�′∈D1−v

κ[�′, k′] = 0
)

(1)

Validity: for both v ∈ {0, 1}, the following holds:

∀k ∈ N0. A
(
G

∧

�∈Iv

κ[�, 0] = 0

→ G
∧

�′∈Dv

κ[�′, k] = 0
)

(2)

Round-rigid probabilistic termination: for every initial
configuration σ and every round-rigid adversary a, the
following holds:

123

Verification of randomized consensus algorithms under round-rigid adversaries 809

P
σ
a

[
∃k ∈ N0.

∨

v∈{0,1} G
∧

�∈F\Dv

κ[�, k] = 0
]

= 1 (3)

Agreement and validity are non-probabilistic proper-
ties and can be analyzed on the non-probabilistic counter
systemSys∞(TA). For verifying round-rigid probabilistic ter-
mination, we make explicit the following assumption that is
present in all our benchmarks: All non-Dirac transitions have
nonzero probability to lead to anFv location, for both values
v ∈ {0, 1}. Indeed, recall that coin tosses are only used when
there is no strong majority and are then used to sample a new
value.

In Sect. 5, we formalize safety specifications and reduce
them to single-round specifications. In Sect. 6, we reduce
verification of multi-round counter systems to verification of
single-round systems. In Sect. 7, we explain our approach to
prove probabilistic termination.

5 Reduction to specifications with one round
quantifier

Let’s have another look at the properties that we formalized
in the previous section. We observe that Agreement contains
two round variables k and k′, and Validity considers rounds 0
and k. Thus, both involve two round numbers. As ByMC can
only analyze systems with a few rounds [24], the properties
are only allowed to use one round number. In this section,
we show how to check formulas (1) and (2) by checking
properties that refer to one round.

To do so, first we introduce two round invariants (4)
and (5). The rest of the section is then devoted to proving
that these round invariants imply the consensus properties
agreement and validity. In more detail, Lemma 1 establishes
a central property for inductive arguments and links prop-
erties over counters of final locations for some round k to
properties of counters of initial locations for round k + 1.
We apply this first to (5) in Lemma 2, which then eventually
allows us to prove Proposition 2 that establishes that to prove
agreement and validity, it is sufficient to check (4) and (5).

We startwith the round invariants. Thefirst round invariant
claims that in every round and in every path, once a pro-
cess decides v in a round, no process ever enters a location
from F1−v in that round. Formally:

∀k ∈ N0. A
(
F

∨

�∈Dv

κ[�, k] > 0

→ G
∧

�′∈F1−v

κ[�′, k] = 0
)

(4)

The second round invariant claims that in every round and
in every path, if no process starts a round with a value v, then
no process terminates that round with value v. Formally:

∀k ∈ N0. A
(
G

∧

�∈Iv

κ[�, k] = 0

→ G
∧

�′∈Fv

κ[�′, k] = 0
)

(5)

The benefit of analyzing these two formulas instead of (1)
and (2) lies in the fact that formulas (4) and (5) describe
properties of only one round in a path. We shall later show
in Theorem 2 that one-round specifications can be checked
in a one-round counter system, instead of an infinite counter
system Sys∞(TA).

Next, we want to prove that formulas (4) and (5) indeed
imply formulas (1) and (2).

Let us first give some useful properties of Sys∞(TA). The
following lemma states that in every round and in every run,
if no process ever enters a final location with value v, then in
the next round, there will be no process in any initial location
with that value v.

Lemma 1 (Round switch)For every Sys∞(TA) and every v ∈
{0, 1}:

∀k ∈ N0. A (G
∧

�∈Fv

κ[�, k] = 0

→ G
∧

�′∈Iv

κ[�′, k + 1] = 0). (6)

Proof By definitions of Fv , Bv and Iv , that is, by restric-
tion (R2), we have that

∀k ∈ N0. A (G
∧

�∈Fv

κ[�, k] = 0

→ G
∧

�′′∈Bv

κ[�′′, k + 1] = 0),

and

∀k ∈ N0. A (G
∧

�′′∈Bv

κ[�′′, k + 1] = 0

→ G
∧

�′∈Iv

κ[�′, k + 1] = 0).

The two formulas together yield the required one for both
values of v. ��

Using the lemma and formula (5), we can show that once
we reach a round in which no process has initial value v,
every future round will have the same property; that is, no
process will ever have initial value v. The following lemma
formalizes that claim.

123

810 N. Bertrand et al.

Lemma 2 For every Sys∞(TA) such that Sys∞(TA) |� (5),
and for every v ∈ {0, 1}, the following holds:

∀k ∈ N0, ∀k′ ∈ N0.
(
k ≤ k′

→ A (G
∧

�∈Iv

κ[�, k] = 0 → G
∧

�′∈Iv

κ[�′, k′] = 0)
)
, (7)

∀k ∈ N0, ∀k′ ∈ N0.
(
k ≤ k′

→ A (G
∧

�∈Fv

κ[�, k] = 0 → G
∧

�′∈Fv

κ[�′, k′] = 0)
)
. (8)

Proof Assume formula (5) holds for the runs of Sys∞(TA).
By combining Lemma 1 together with Eq. (5)—by reasoning
about the locations Fv and Iv —, we conclude that the runs
of Sys∞(TA) satisfy the following formula:

∀k ∈ N0. A (G
∧

�∈Iv

κ[�, k] = 0

→ G
∧

�′∈Iv

κ[�′, k + 1] = 0). (9)

By induction, we obtain the required formula (7). Finally, by
combining formulas (6)–(7) we obtain formula (8). ��

Finally, we can prove our main claim that formulas (4)
and (5) imply formulas (1) and (2).

Proposition 2 If Sys∞(TA) |� (4) ∧ (5), then Sys∞(TA) |�
(1) ∧ (2).

Proof Assume Sys∞(TA) |� (4) ∧ (5).
Let usfirst focus on formula (1) andprove thatSys∞(TA) |�

(1). Assume by contradiction that the formula does not hold
on Sys∞(TA), that is, there exist rounds k, k′ ∈ N0 and a
path π such that:

π |� F
∨

�0∈D0

κ[�0, k] > 0 ∧ F
∨

�1∈D1

κ[�1, k′] > 0. (10)

Since by formula (10) we have π |� F
∨

�0∈D0
κ[�0, k] > 0,

then from formula (4) with v = 0, we obtain that it also holds
π |� G

∧
�∈F1

κ[�, k] = 0. As D1 ⊆ F1, we know that no
process decides 1 in round k.Now, formula (8) fromLemma2
for v = 1 yields that π |� G

∧
�∈F1

κ[�, k1] = 0 for every
k1 ≥ k, i.e., in any round greater than k, no process will ever
decide 1.As by (10),we have thatπ |� F

∨
�1∈D1

κ[�1, k′] >

0, i.e., a process decides 1 in a round k′, thus it must be that
k′ < k.

Now, we consider the other part of formula (10), i.e.,
π |� F

∨
�1∈D1

κ[�1, k′] > 0. By following the analogous
analysis, we conclude that it must be that k < k′. This brings
us to the contradiction with k′ < k, which proves the first
part of the statement that of (4) and (5) implies of (1).

Next, we focus on formula (2) and prove by contradiction
that it must hold. We start by assuming that the formula does
not hold; that is, there exist a round k and a path π such that
no process (ever) has initial value v in the first round of π

and eventually in a round k a process decides v. Formally,

π |� G
∧

�∈Iv

κ[�, 0] = 0 ∧ F
∨

�′∈Dv

κ[�′, k] > 0. (11)

Since we have π |� G
∧

�∈Iv
κ[�, 0] = 0 and also

Sys∞(TA) |� (5), implying that formula (5) holds on π ,
we conclude that π |� G

∧
�′∈Fv

κ[�′, 0] = 0. Then, by
formula (8) we have that for every k ∈ N0 it holds π |�
G

∧
�′∈Fv

κ[�′, k] = 0. By Dv ⊆ Fv , we also have that
π |� G

∧
�′∈Dv

κ[�′, k] = 0. As this contradicts our assump-
tion from (11) that π |� F

∨
�′∈Dv

κ[�′, k] > 0, it proves the
second part of the statement that of (4) and (5) implies of (2).

��
It is important to note that ByMC cannot check sound-

ness of the arguments given in this section. This kind of
compositional reasoning has to be done by the user for the
specific temporal properties. For temporal properties that are
different from (1) to (3), one has to find round invariants sim-
ilar to the ones below. Formalizing the reduction arguments
in a proof system such as TLAPS [47] is out of the scope
of this paper. As complete temporal reasoning in TLAPS is
still under development, it is hard to predict the effort that is
required for mechanization of such proofs.

6 Reduction to single-round counter system

Given a property of one round, our goal is to prove that there
is a counterexample to the property in themulti-round system
iff there is a counterexample in a single-round system. This is
stated in Theorem 2, which is the main result of this section
on page 20. It allows us to use ByMC on a single-round
system.

The proof idea contains two parts. First, in Sect. 6.1 we
prove that one can replace an arbitrary finite schedule with
a round-rigid one, while preserving atomic propositions of a
fixed round. We show that swapping two adjacent transitions
that do not respect the order over round numbers in an exe-
cution gives us a legal stutter equivalent execution, i.e., an
execution satisfying the same LTL−X properties.

Second, in Sect. 6.2 we extend this reasoning to infinite
schedules and lift it from schedules to transition systems.
The main idea is to do inductive and compositional reason-
ing over the rounds. To do so, we need well-defined round
boundaries, which is the case if every round that is started
is also finished, a property we can automatically check for
fair schedules. In more detail, regarding propositions for one

123

Verification of randomized consensus algorithms under round-rigid adversaries 811

round, we show that themulti-round transition system is stut-
ter equivalent to a single-round transition system. This holds
under the assumption that all fair executions of a single-round
transition system terminate, and this can be checked with
ByMC, using the technique from Konnov et al. [24].

Weare interested in stutter equivalence of systemsbecause
of the fundamental result that stutter equivalent systems sat-
isfy the same LTL−X specifications [3, Thm. 7.92]:

Proposition 3 Fix a k ∈ N0. If π1 and π2 are paths such that
π1 �k π2, then for every formula ϕ of LTL−X over APk , we
have π1 |� ϕ if and only if π2 |� ϕ.

This allows us to check the properties of consensus on a
single-round transition system.

6.1 Reduction from arbitrary schedules to
round-rigid schedules

As discussed in Sect. 2, we want to show how an arbitrary
schedule in which steps are arbitrarily interleaved can be
reduced to an “equivalent” schedule where “at all times all
processes are on the same round”. The following defini-
tions are a formalization of the latter requirements within
our framework. It defines a schedule as round-rigid if the
round numbers of transitions are ordered: Intuitively, no pro-
cess is allowed to perform its first round k step before all
other processes have done their final round k − 1 step.

Definition 5 A schedule τ = (r1, k1) ·(r2, k2) · . . . ·(rm, km),
m ∈ N0, is called round-rigid if for every 1 ≤ i < j ≤ m,
we have ki ≤ k j .

In the rest of the section, we will prove that from an arbi-
trary schedule, we can arrive at a round-rigid one that satisfies
the same LTL−X temporal properties. We start with the fol-
lowing technical lemma which gives us the most important
transition invariants that we can use to reason about reorder-
ing transitions in the proof of Lemma 4.

Lemma 3 Let σ be a configuration, and let t = (r , k) be a
transition. If σ ′ = t(σ), then the following holds:

(a) σ ′.g[k′] = σ.g[k′], for every round k′ �= k,
(b) σ ′.κ[k′] = σ.κ[k′], for every k′ ∈ N0 \ {k, k+1},
(c) σ ′.κ[�, k′] = σ.κ[�, k′], for every round k′ �= k and

every location � ∈ L \ B,
(d) σ ′.κ[k + 1] ≥ σ.κ[k + 1],
(e) σ ′, k′ |� ϕ iff σ, k′ |� ϕ, for every round k′ �= k and

every guard ϕ ∈ G.

Proof The first four statements follow directly from the def-
initions of transitions. Finally, for the point (e) note that the
evaluation of the guard ϕ in round k′ depends only on the val-
ues of parameters p that do not change along an execution,

and shared variables g[k′] in round k′ that are unchanged
according to the point (a). ��

The following lemma establishes a central argument for
inductive round-based reasoning: A transition can always
be moved before a transition of a later round. It is proved
using arguments on the commutativity of transitions, similar
to Elrad and Francez [17].

Lemma 4 Let σ be a configuration, and t1 = (r1, k1) and
t2 = (r2, k2) be transitions, such that k1 > k2. If t1 · t2 is
applicable to σ , then t2 · t1 is also applicable to σ .

Proof Let us denote t1(σ) by σ1. As t1 · t2 is applicable to σ ,
this means that t1 is applicable to σ and t2 is applicable to σ1.
By definition of applicability, this means that

σ.κ[r1.from, k1] ≥ 1 and σ1.κ[r2.from, k2] ≥ 1, (12)

and additionally, we have that σ, k1 |� t1.ϕ and σ1, k2 |�
t2.ϕ.

We show that t2 · t1 is applicable to σ by showing that:
(i) t2 is applicable to σ , and (ii) t1 is applicable to t2(σ).

(i) First, we need to show that σ.κ[r2.from, k2] ≥ 1 and
σ, k2 |� t2.ϕ.

As σ1 = t1(σ) and k2 < k1, by Lemma 3(b) we have
σ1.κ[r2.from, k2] = σ.κ[r2.from, k2]. From this and (12) we
get that σ.κ[r2.from, k2] ≥ 1.

Recall that σ1, k2 |� t2.ϕ. By Lemma 3(e), it must be the
case that also σ, k2 |� t2.ϕ. This shows that t2 is applicable
to σ .

(ii) Let σ2 = t2(σ). Next, we show that t1 is applica-
ble to σ2. Using the same reasoning as in (i), we prove that
σ2.κ[r1.from, k1] ≥ 1 and that σ2, k1 |� t1.ϕ.

Because σ2 = t2(σ) and k2 < k1, Lemmas 3(b) and
(d) yield σ2.κ[r1.from, k1] ≥ σ.κ[r1.from, k1]. Together
with (12), we obtain σ2.κ[r1.from, k1] ≥ 1.

To this end, we show that σ2, k1 |� t1.ϕ. Because σ2 =
t2(σ) and k1 > k2, by Lemma 3(a), we know that σ.g[k1] =
σ2.g[k1]. Since by the initial assumption we have σ, k1 |�
t1.ϕ, Lemma 3(e) yields σ2, k1 |� t1.ϕ. ��

We have thus seen that “out of order” transitions can be
swapped such that the resulting sequence of transitions again
is a valid schedule. However, when swapping transitions,
intermediate configurations change: Intuitively, if a process p
moves out a locations before another processqmoves into the
same location, they are never in the location at the same time,
while if q moves first, they are. The following lemma shows
that despite of this, the swapping does not interfere with our
temporal formulas; the original schedule and the reordered
schedule are stutter equivalent with respect to our atomic
propositions. The reason is that we only swap transitions of
different rounds,while our temporal logic fragment talks only
about one round.

123

812 N. Bertrand et al.

Lemma 5 Let σ be a configuration, and let t1 = (r1, k1) and
t2 = (r2, k2) be transitions such that k1 > k2. If t1 · t2 is
applicable to σ , then the following holds:

(a) Both t1 · t2 and t2 · t1 reach the same configuration, i.e.,
t1 · t2(σ) = t2 · t1(σ).

(b) For all k∈N0, we have path(σ, t1·t2) �k path(σ, t2·t1).

Proof Note that since t1 · t2 is applicable to σ , we also have
that t2 · t1 is applicable to σ by Lemma 4, since k1 > k2.

(a) When a transition is applied to a configuration, the
obtained configuration has the same parameter values, and
counters and global variables are increased or decreased
depending on the transition (and independently of the initial
configuration). For any configuration (κ, g,p), we can write
ti (κ, g,p) = (κ +ui , g+vi ,p) for i ∈ {1, 2}, and some vec-
tors u1,u2, v1, v2 of integers. By only using commutativity
of addition and subtraction, we obtain t1 · t2(σ) = (κ +u1 +
u2, g+v1+v2,p) = (κ+u2+u1, g+v2+v1,p) = t2 ·t1(σ).

(b) Let σ1 = t1(σ), σ2 = t2(σ), and σ3 = t1 · t2(σ).
Then, tracek(path(σ, t1 · t2)) = λk(σ)λk(σ1)λk(σ3), and
tracek(path(σ, t2 · t1)) = λk(σ)λk(σ2)λk(σ3). We consider
three cases: (i) k �= k1 and k �= k2, (ii) k = k1, and (iii)
k = k2.
(i) In this case, due to Lemmas 3(c) and (e), we have
λk(σ) = λk(σ1) = λk(σ2) = λk(σ3). Therefore, both traces
are λk(σ)λk(σ)λk(σ), and they are clearly stutter equivalent.
(ii) Since k = k1 > k2, then again by Lemmas 3(c)
and 3(e) we have λk(σ1) = λk(σ3) and λk(σ) = λk(σ2).
Thus, tracek(path(σ, t1 · t2)) = λk(σ)λk(σ3)λk(σ3), and
tracek(path(σ, t2 · t1)) = λk(σ)λk(σ)λk(σ3), and the traces
are stutter equivalent.
(iii) The last case is analogous to the previous one. ��

Remark 4 Let us briefly discuss why it is crucial to introduce
border locations as buffers between two adjacent rounds, but
not to reason about them in specifications, that is, why it is
crucial to exclude atomic propositions checking their empti-
ness.

Note that the proof of Lemma 5 heavily relies on
Lemma 3(c) that holds only when � /∈ B. If we were to
include atomic propositions that refer to the emptiness of
border locations (or if we did not have border locations at
all), Lemma 5 would not hold. Namely, assume the follow-
ing scenario: Let σ be a configuration with one process in
the final location � f of round 3, one process in any non-final
location � of round 4, and let all other processes be in round 5
or higher. Let �b ∈ B be a border location such that r1 ∈ S
is the round-switch rule (� f , �b,true, 0) and t1 = (r1, 3).
Let r2 ∈ R\S be the rule (�, �′, ϕ,u), for some �′ ∈ L, with
ϕ true in σ , and t2 = (r2, 4). Then, the traces corresponding
to path(σ, t1 · t2) and path(σ, t2 · t1) w.r.t. the round 4 are,

respectively (for simplicity, we omit guards),

{p(�, 4)} {p(�b, 4), p(�, 4)} {p(�b, 4), p(�′, 4)}
and {p(�, 4)} {p(�′, 4)} {p(�b, 4), p(�′, 4)}.

Note that these are not stutter equivalent traces, and thus, for
example, formula F (κ[�b, 4] = 0 ∧ κ[�, 4] = 0) is satisfied
only in path(σ, t2 · t1), but not in path(σ, t1 · t2).

If there were no border locations, that is, if round-switch
rules connected final locations with initial ones, we could use
the same counterexample (with �b ∈ I instead of �b ∈ B) to
show that it is not possible to maintain one-round properties
while swapping transitions of different rounds.

Since Lemma 5 is the main building block of our tech-
nique, it is necessary to (i) introduce border locations and
(ii) exclude atomic proposition checking their emptiness. ��

Before proving our central result in Proposition 4 below,
we need one more technical lemma. The following lemma
tells us that adding or removing transitions of a round differ-
ent from k results in a k-stutter equivalent path.

Lemma 6 Let σ be a configuration and let t1 = (r1, k1) and
t2 = (r2, k2) be transitions such that t1t2 is applicable to σ .
Then, the following holds:

(a) path(σ, t1t2) �k path(σ, t1), for every k �= k2, and
(b) path(σ, t1t2) �k path(t1(σ), t2), for every k �= k1.

Proof It follows directly from Lemma 3(c) and (e). ��
The following proposition shows that every finite schedule

can be reordered into a round-rigid one that is stutter equiv-
alent regarding LTL−X formulas over proposition from APk ,
for all rounds k.

Proposition 4 For every configuration σ and every finite
schedule τ applicable to σ , there is a round-rigid schedule τ ′
such that the following holds:

(a) Schedule τ ′ is applicable to configuration σ .
(b) τ ′ and τ reach the same configurationwhen applied to σ ,

i.e., τ ′(σ) = τ(σ).
(c) For every k ∈ N0, we have path(σ, τ) �k path(σ, τ ′).

Proof Since τ is finite, claim (a) follows from Lemma 4, the
second claim follows fromLemma5(a), and the last one from
Lemma 5(b). ��

Thus, instead of reasoning about all finite schedules
of Sys∞(TA), it is sufficient to reason about its round-rigid
schedules. In the following section, we use this to simplify
the verification further, namely to a single-round counter sys-
tem.

123

Verification of randomized consensus algorithms under round-rigid adversaries 813

6.2 From round-rigid schedules to single-round
counter system

The previous section established that every arbitrarily inter-
leaved schedule can be reduced to a sequence of one-round
schedules. But these schedules are still defined with respect
to the threshold automate framework for multiple rounds
from Sect. 3. However, we would like to use the model
checker ByMC [24,25] that works on single-round thresh-
old automata. As a first step, we define in Definition 6 a
specific single-round threshold automaton TArd as a function
of a model from Sect. 3. Roughly speaking, we focus on one
round, but also keep the border locations of the next round,
wherewe add self-loops. Figure 6 represents the single-round
threshold automaton associatedwith the PTA fromFig. 3. For
such a threshold automaton, we then define a counter system
Sysk(TArd), which can be analyzed with ByMC. After some
technical lemmas, we eventually prove Theorem 1 which
established stutter equivalence of Sysk(TArd) to the system of
Sect. 3 with respect to propositions talking about round k. As
final step, Theorem 2 eliminates the round number k which
finally allows us to check specifications for the multi-round
system from Sect. 3 using single-round systems.

On a more technical note, we can prove these theorems
for specific fairness constraints. We restrict ourselves to
fair schedules, that is, those where no transition is appli-
cable forever. We also assume that every fair schedule of a
single-round system terminates, i.e., eventually every process
reaches a location from B′. Under the fairness assumption,
we check the latter assumption with ByMC. Moreover, we
restrict ourselves to non-blocking threshold automata; that
is, we require that in each configuration, each location has at
least one outgoing rule unlocked.AsweuseTAs tomodel dis-
tributed algorithms, this is no restriction: Locations in which
no progress should be made unless certain thresholds are
reached typically have self-loops that are guardedwithtrue
(e.g., SR and SP). Thus, for our benchmarks one can easily
check whether they are non-blocking using SMT. (We have
to check that there is no evaluation of the variables such that
all outgoing rules are disabled.)

We start with the central definition of a single-round
threshold automaton that constitutes the link between our
theory and the model checker ByMC.

Definition 6 Given a PTA = (L,V,R,RC) or its TA =
(L,V,Rnp,RC),wedefine a single-round thresholdautoma-
ton TArd = (L∪B′,V,Rrd,RC), whereB′ = {�′ : � ∈ B} are
copies of border locations, andRrd = (Rnp \S)∪S′ ∪Rloop,
where Rloop = {(�′, �′,true, 0) : �′ ∈ B′} are self-loop
rules at locations from B′ and

S′ = {(from, �′,true, 0) :
(from, �,true, 0) ∈ S with �′ ∈ B′}

consists of modifications of round-switch rules. Initial loca-
tions of TArd are the locations from B ⊆ L.

For a TArd and a k ∈ N0 we define a counter sys-
tem Sysk(TArd) as the tuple (Σk, I k, Rk). A configuration
is a tuple σ = (κ, g,p) ∈ Σk , where σ.κ : D → N0 defines
values of the counters, for D = (L × {k}) ∪ (B′ × {k + 1});
and σ.g : Γ × {k} → N0 defines shared variable values; and
σ.p ∈ N

|Π |
0 is a vector of parameter values.

Note that by usingD in the definition of σ.κ above, every
configuration σ ∈ Sysk(TArd) can be extended to a valid
configuration of Sys∞(TA), by assigning zero to all other
counters and global variables. In the following, we identify a
configuration in Sysk(TArd) with its extension in Sys∞(TA),
since they have the same labeling function λk , for every k ∈
N0.

We define Σk
B ⊆ Σk , for a k ∈ N0, to be the set of

all configurations σ where every process is in a location
from B, and all shared variables are set to zero in k, formally,
σ.g[x, k] = 0 for all x ∈ Γ , and

∑
�∈B σ.κ[�, k] = N (p),

and σ.κ[�, i] = 0 for all (�, i) ∈ D\ (B×{k}). We call these
configurations border configurations for k. The set of initial
configurations I k is a subset of Σk

B.
We define the transition relation R as in Sys∞(TA), i.e.,

two configurations are in the relation Rk if and only if they (or
more precisely, their above described extensions) are in R.

Ifwe do not restrict initial configurations, all these systems
are identical up to renaming, and this is formalized in the
following lemma.

Lemma 7 All systems Sysk(TArd), k ∈ N0, are isomorphic to
each other w.r.t. Σk

B, that is, for every k ∈ N0, if I k = Σk
B,

then we have Sys0(TArd) ∼= Sysk(TArd).

Additional assumptions. Recall that we restrict our atten-
tion to fair schedules, and moreover, we assume that all such
schedules in Sys0(TArd) terminate; that is, they reach a con-
figuration with all processes in B′. Formally, we assume that
for every fair schedule π in the system Sys0(TArd), it holds
that π |� F

∧
�∈L κ[�, 0] = 0.

We can easily check this with ByMC [26] for the first
round and from the following lemma conclude that any other
round also terminates.

Lemma 8 If all fair executions in Sys0(TArd) terminate
w.r.t. Σ0

B, then the same holds for Sysk(TArd) with respect
to Σk

B, for every k ∈ N0.

Proof It follows directly from Lemma 7. ��
In order to relate Sys∞(TA) and Sysk(TArd), k ∈ N0,

we define the set of initial configurations I k of Sysk(TArd)

inductively. First, we define I 0 to be equal to the set I of
initial configurations of the system Sys∞(TA). Next, for any
k ≥ 1, we define I k+1 to be the set of final configurations

123

814 N. Bertrand et al.

Fig. 6 The single-round
threshold automaton TArd

obtained from PTA in Fig. 3

of Sysk(TArd) if we restricted initial configurations of this
system to I k .

From now on, we fix a TA and a TArd, and if not speci-
fied differently, for every Sysk(TArd) we assume the above
definition of I k .

Lemma 9 If all fair executions of Sys0(TArd) w.r.t. Σ0
B ter-

minate, then for every k ∈ N0, we have that the set I k is
well defined and all fair executions of Sysk(TArd) terminate
(w.r.t. I k).

Proof We prove this claim by induction on k ∈ N0. The
set I 0 = I is clearly well defined, and since I 0 ⊆ Σ0

B, by
our assumption we have that all fair executions of Sys0(TArd)

terminate. Since for every k ∈ N0, we have I k ⊆ Σk
B, by

Lemma 8 we have that every fair execution of Sysk(TArd)

terminates, and therefore, I k+1 is well defined. ��
Let usmake here a short digression by giving a property of

every Sys∞(TA), which is necessary for proving Theorem 1.

Lemma 10 Let TA be non-blocking, fix a k ∈ N0, and let σ be
a configuration in Sys∞(TA) with a non-empty border loca-
tion in round k+1, i.e.,

∨
�∈B σ.κ[�, k+1] ≥ 1. Then, for

every configuration σ ′ reachable from σ , there is a transi-
tion t = (r , f , k1) with k1 > k that is applicable to σ ′.

Proof Letσ be a configurationwith a non-empty border loca-
tion in round k+1, and let σ ′ be a configuration reachable
from σ . Assume by contradiction that there is no transi-
tion t = (r , f , k1) with k1 > k that is applicable to σ ′.
Recall that by our assumption, every location has at least one
unlocked outgoing rule. Thus, itmust hold that for every loca-
tion � we have that σ ′.κ[�, k1] = 0, for every k1 > k. This
is a contradiction with the assumption that σ ′ is reachable
from σ and

∨
�∈B σ.κ[�, k+1] ≥ 1. ��

Theorem 1 If TA is non-blocking, and if all fair executions
of Sys0(TArd) w.r.t. Σ0

B terminate, then for every k ∈ N0,
we have Sysk(TArd) �k Sys∞(TA), i.e., the two systems are
stutter equivalent w.r.t. APk .

Proof We prove the statement by induction on k ∈ N0.
Base case. Let us first show that Sys0(TArd) �0

Sys∞(TA).

(⇒)Let π = path(σ, τ) be a path in Sys0(TArd). We need
to find a path π ′ from Sys∞(TA), such that π �k π ′.

If τ = t1t2 . . ., then every transition ti either exists also
inTA, or it is a self-loop at the copyof a border location.Using
this, we construct a schedule τ ′ = t ′1t ′2 . . . in the following
way.

For every i ∈ N, if ti exists in TA, then we define t ′i to
be exactly ti , and if t ′i is a self-loop at an �′ ∈ B′, then
Lemma 10 gives us that there exists a transition t̃i from a
round greater than 0 that is applicable to the current con-
figuration, and we define t ′i = t̃i . Thus, τ ′ = t ′1t ′2 . . . is
obtained from τ by removing certain self-looping transitions
and adding transitions of rounds greater than 0. By Lemma 6,
we have path(σ, τ ′) �0 path(σ, τ).

Now, we have that π ′ = path(σ, τ ′) �0 path(σ, τ) = π .
(⇐) Let now π = path(σ, τ) be a path in Sys∞(TA). We

construct a path π ′ = path(σ ′, τ ′) from Sysk(TArd) such that
π �k π ′. Since I = I 0, we define σ ′ = σ .

Let τ0 be the projection of τ to round 0. There are two
cases to consider. First, if τ and τ0 are either both infinite
or both finite schedules, then by Lemma 6, they yield stutter
equivalent paths starting in σ . Observe that by Lemma 3,
counters κ[�, 0] only change due to transitions for round 0, so
that the applicability of τ0 to σ follows from the applicability
of τ . Thus, in these cases we define τ ′ to be τ0.

Second, we show the construction of τ ′ in the case when τ

is an infinite schedule and τ0 is finite. In this case, we con-
struct τ ′ as infinite extension of τ0 as follows: Note that
since TA is non-blocking, there must exist at least one loca-
tion � ∈ B1 that is non-empty after executing τ0 from σ , i.e.,
τ0(σ).κ[�, 1] ≥ 1. This must also be the case in Sys0(TArd),
with a difference that the non-empty location belongs to B′,
since B′ plays the role of B1. If r is the self-looping rule at �,
then we obtain τ ′ by concatenating infinitely many transi-
tions (r , 1) to τ0, i.e., τ ′ = τ0(r , 1)ω. Transition (r , 1) does
not affect atomic propositions of round 0, and thus, we have
stutter equivalence by Lemma 6.

Induction step. Let us assume that Sysi (TArd) �i

Sys∞(TA) for every 0 ≤ i < k, and let us prove that the
claim holds for k.

(⇒)Let π = path(σ, τ) be a path in Sysk(TArd). We need
to find a path π ′ from Sys∞(TA), such that π �k π ′.

123

Verification of randomized consensus algorithms under round-rigid adversaries 815

Note that σ ∈ I k . By definition of I k , there exist
a configuration σ0 ∈ I 0 and schedules τ1, τ2, . . . , τk−1,
such that every τi contains only transitions of round i ,
and τ1τ2 . . . τk−1(σ0) = σ . Since no transition here is
of round k, it follows from Lemma 6 that we have that
path(σ0, τ1τ2 . . . τk−1) �k path(σ, ε), where ε is the empty
schedule. This path will be a prefix of π ′.

If τ = t1t2 . . ., we use the same strategy as in the base case
to define τ ′ = t ′1t ′2 . . . such that path(σ, τ ′) �k path(σ, τ).

Now, we have that π ′ = path(σ0, τ1τ2 . . . τk−1τ
′) �k

path(σ, ετ) = π .
(⇐) Let now π = path(σ, τ) be a path in Sys∞(TA). We

construct a path π ′ from Sysk(TArd) such that π �k π ′.
As we assume that all fair executions of Sys0(TArd) termi-

nate w.r.t. Σ0
B, by Lemma 9, for 0 ≤ i < k, the set I i is well

defined and all the fair executions of Sysi (TArd) terminate.
By the induction hypothesis, we know that Sysi (TArd) �i

Sys∞(TA). Together, this gives us that all rounds i , with
0 ≤ i < k, terminate in Sys∞(TA). Thus, every execution
of Sys∞(TA) has a finite prefix that contains all its transitions
of rounds less than k.

Let τpre be such a prefix of τ = τpreτsuf. Because τpre
is finite, we may invoke Proposition 4, from which fol-
lows that there exist schedules τ0, τ1, . . . , τk−1, τ≥k such that
every τi , 0 ≤ i < k contains only round i transitions, τ≥k

contains transitions of rounds at least k, and the schedule
τ0τ1 . . . τk−1τ≥k is applicable to σ , leads to τpre(σ) when
applied to σ , and

path(σ, τ0τ1 . . . τk−1τ≥kτsuf) �k path(σ, τpreτsuf). (13)

As σ ∈ I = I 0, the existence of schedules τ0, τ1, . . . ,

τk−1 confirms that σ ′ = τ0τ1 . . . τk−1(σ) is in I k . Next, we
apply the strategy from the base case to construct τ ′ from
τ≥kτsuf, by projecting it to round k, such that

path(σ ′, τ≥kτsuf) �k path(σ ′, τ ′). (14)

By (13) and (14), we get π ′ = path(σ, τ0τ1 . . . τk−1τ
′) �k

path(σ, τpreτsuf) = π . ��
Note that different rounds might have different sets of

initial configurations. Since our goal is to explore all rounds,
we need to consider all possible initial configurations of all
rounds. We do this by projecting them to the first round,
creating their union, and checking the first round w.r.t. that
union. Still, in our benchmarks all rounds have the same set
of initial configurations, so the union coincides with the set
of initial configurations of the first round.

By Lemma 7, for every k ∈ N0 and every σ ∈ Σk
B, there

is a corresponding configuration σ ′ ∈ Σ0
B obtained from σ

by renaming the round k to round 0. Let fk be the renaming
function, i.e., σ ′ = fk(σ). Let us define Σu ⊆ Σ0

B to be the

union of all renamed initial configurations from all rounds,
i.e., { fk(σ) : k ∈ N0, σ ∈ I k}.

The following theorem gives us a method for checking
qform-formulas of Table 2 with one round quantifier, that
is, formulas of the form ∀k ∈ N0.A ϕ[k], where ϕ[k] is a
tform-formula.

Theorem 2 Let TA be non-blocking, and let all fair exe-
cutions of Sys0(TArd) w.r.t. Σ0

B terminate. If ϕ[k] is a
tform-formula over APk for a round variable k ∈ N0, the
following are equivalent:

(A) Sys∞(TA) |� ∀k ∈ N0.Aϕ[k]
(B) Sys0(TArd) |� Aϕ[0] with respect to initial configura-

tions Σu.

Let us first give an intuitive explanation. The theorem is
proved using the following arguments. In statement (A), the
universal quantification over k corresponds to the definition
ofΣu as union, over all rounds, of projections of all reachable
initial configurations of that round.

For the implication (A) → (B), note that an initial config-
uration in Σu is not necessarily initial in round 0, so that one
cannot a priori take k = 0. Let us explain how to extend an
execution of round k into an infinite execution in Sys∞(TA).
By termination, all rounds up to k−1 terminate, so that there
is execution that reaches a configuration where all processes
are in initial locations of round k. The executions or round
k mimics the ones of round 0 (modulo the round number).
Finally, the non-blocking assumption is required to be always
able to extend to infinite executions after round k is termi-
nated.

Implication (B) → (A) exploits the fact that all rounds
are equivalent up to renaming of round numbers (with the
exception of possible initial configurations).

Proof Let us first formally prove that (A) → (B). Assume
by contradiction that (A) holds, but (B) does not, that is,
Sys0(TArd) |� E¬ϕ[0] w.r.t. initial configurations Σu . This
means there is a path π = path(σ, τ) such that σ ∈ Σu

and π |� ¬ϕ[0]. Since σ ∈ Σu , there is a k ∈ N0 and
a σk ∈ I k such that σ = fk(σk). From Lemma 7, we know
that Sys0(TArd) ∼= Sysk(TArd), and thus, there is a sched-
ule τk in Sysk(TArd) such that path(σk, τk) |� ¬ϕ[k]. Now,
by Theorem 1 there must be a path π ′ from Sys∞(TA) such
that path(σk, τk) �k π ′. By Proposition 3, we know that
π ′ |� ¬ϕ[k], and thus, Sys∞(TA) |� ∃k ∈ N0. E¬ϕ[k].
This is in contradiction with our assumption that (A) holds,
which proves one direction of the statement.

Next, we prove the other direction, namely (B) → (A).
Assume again by contradiction that (B) holds, but (A) does
not; that is, there is a k ∈ N0 and a path π = path(σ, τ) in
Sys∞(TA) such that π |� ¬ϕ[k]. By Theorem 1, we know
that there exists a path π ′ = path(σ ′, τ ′) in Sysk(TArd) with

123

816 N. Bertrand et al.

π �k π ′, and thenbyProposition 3 alsoπ ′ |� ¬ϕ[k]. Finally,
by Lemma 7 there is an equivalent path π0 in Sys0(TArd)

starting in fk(σ ′). Then, we have that π0 |� ¬ϕ[0], and since
fk(σ ′) ∈ Σu , we know that Sys0(TArd) |� E¬ϕ[0] w.r.t.
initial configurations Σu . This contradicts the assumption
that (B) holds and therefore concludes the other direction of
the proof. ��

In Sect. 4, we showed how to reduce our specifications to
formulas of the form ∀k ∈ N0. A ϕ[k], where ϕ[k] is a tform-
formula of Table 2. Theorem 2 deals with exactly this type of
formulas, and therefore, it allows us to check specifications
using single-round systems instead of Sys∞(TA).

7 Round-rigid probabilistic termination

We start by defining two conditions that are sufficient to
establish round-rigid probabilistic termination (under round-
rigid adversaries). Condition (C1) states the existence of a
positive probability lower-bound for all processes ending
round k with equal final values. Condition (C2) states that
if all correct processes start round k with the same value,
then they all will decide on that value in that round.

(C1) For every parameters p, there is a bound p ∈ (0, 1],
such that for every round-rigid adversary a, every k ∈
N0, and every configuration σk with parameters p that
is initial for round k, it holds that

P
σk
a

(∨

v∈{0,1} G
(∧

�∈Fv

κ[�, k] = 0
))

≥ p.

(C2) For all v ∈ {0, 1}, ∀k ∈ N0. A
(
G

∧
�∈I1−v

κ[�, k] =
0 → G

∧
�′∈F\Dv

κ[�′, k] = 0
)
.

Combining (C1) and (C2), under every round-rigid adver-
sary, from any initial configuration of round k, the probability
that all correct processes decide before end of round k+1 is at
least p. Thus, the probability not to decide within 2n rounds
is at most (1−p)n , which tends to 0 when n tends to infin-
ity. This reasoning follows the arguments of the hand-written
proof [1]. More generally, such an analysis is standard and
appears in many contexts to prove that an event is almost-
sure (for instance, almost-sure termination of probabilistic
programs [37]), thanks to the so-called zero–one law (see,
e.g., [20]).

Proposition 5 If Sys∞(PTA) |� (C1) and Sys∞(PTA) |�
(C2), then Sys∞(PTA) |� (3).

Proof Fix ap ∈ PRC , an initial configurationσ0, and a round-
rigid adversary a.

Two possible options may occur along a path π ∈
paths(σ0,a): (i) Either round 0 ends with a final configu-
ration in which all processes have the same value, say v, or
(ii) round 0 ends with a final configuration with both values
present.

(i) In this case, we have π |� G (
∧

�∈F1−v
κ[�, 0] = 0),

and by (C1), for k = 0, the probability that this case
happens is at least p. Then, by Lemma 1 we also have
π |� G (

∧
�∈I1−v

κ[�, 1] = 0). Using (C2), in this case all
processes decide value v in round 1.

(ii) The probability that the second case happens is at
most 1−p. In this case, round 1 starts with an initial config-
uration σ1 with both initial values 0 and 1. From σ1 under a,
by the same reasoning as from σ0, at the end on the round 1
we have the analogous two cases, and all processes decide in
round 2 with probability at least p.

Iterating this reasoning, almost surely all processes even-
tually decide. Let us formally explain this iteration. Let σ0 be
an initial configuration, and let a be a round-rigid adversary.
For a k ∈ N, consider the event Ek : From σ0 and under a, not
every process decides in the first k rounds. In particular, at
the end of every round i < k it is not the case that everyone
decides. By the reasoning above, namely case (ii) for round i ,
this happens with probability at most (1−p). Therefore, for k
rounds we have Pσ

a(Ek) ≤ (1−p)k . The limit when k tends
to infinity yields that the probability for not having round-
rigid probabilistic termination is 0. This is equivalent to the
required formula (3). ��

Observe (C2) is a non-probabilistic property of the same
form as (5), so that we can check (C2) using the method of
Sect. 6.

In the rest of this section, we detail how to reduce the ver-
ification of (C1), to a verification task that can be handled by
ByMC. First observe that (C1) contains a single-round vari-
able, and recall that we restrict to round-rigid adversaries, so
that it is sufficient to check them (omitting the round vari-
ables) on the single-round system. We introduce analogous
objects as in the non-probabilistic case: PTArd (analogously
to Definition 6), and its counter system Sys(PTArd).

7.1 Reducing probabilistic to non-probabilistic
specifications

Since probabilistic transitions end in final locations, they can-
not appear on a cycle in PTArd. Thus, in each round, each
process may take at most one coin toss. Recall that N (p)

models the number of processes in the system. Then, for
fixed parameter valuation p, any path contains at most N (p)

probabilistic transitions, and its probability is therefore uni-
formly lower-bounded. As a consequence, writing Ip for the
set of initial configurations with parameter valuation p, we
have:

123

Verification of randomized consensus algorithms under round-rigid adversaries 817

Lemma 11 Let p ∈ PRC be a parameter valuation. In
Sys(PTArd), for every LTL formula ϕ over atomic proposi-
tion AP, the following two statements are equivalent:

(a) ∃p > 0, ∀σ ∈ Ip, ∀a ∈ AR. P
σ
a

(
ϕ
) ≥ p,

(b) ∀σ ∈ Ip, ∀a ∈ AR, ∃π ∈ paths(σ,a). π |� ϕ.

Proof Fix parameters p ∈ PRC .
The implication from top to bottom is trivial: If a probabil-

ity is lower bounded by a positive constant, then there must
be at least a path satisfying that property. It is thus sufficient
to prove the bottom to top implication.

Assume that from every initial configuration σ with
parameter values p, and for all round-rigid adversaries a,
there exists a path π ∈ paths(σ,a) in Sys(PTArd) such that
π |� ϕ. Independently of σ and a, our assumption that non-
Dirac transitions may only happen at the end of PTA yields
that any path contains at most N (p) non-Dirac transitions. If
δ is the smallest probability value appearing on such transi-
tions, the probability of any path in Sys(PTArd) is therefore
lower-bounded by δN (p). Therefore, we can set p = δN (p),
which only depends on PTA and p. ��

7.2 Verifying (C1) on a non-probabilistic TA

Applying Lemma 11, proving (C1) is equivalent to proving
the following property on Sys(PTArd)

∀σ ∈ Ip, ∀a ∈ AR, ∃π ∈ paths(σ,a).

π |�
∨

v∈{0,1} G
(∧

�∈Fv

κ[�] = 0
)

. (15)

In the sequel, we explain how to reduce the verification
of (15) to checking the simpler formula

A
∨

v∈{0,1}
G

⎛

⎝
∧

�∈Fv

κ[�] = 0

⎞

⎠

on a single-round non-probabilistic TA obtained from PTArd.
As in Sect. 6, it is possible to modify PTArd into a

non-probabilistic TA, by replacing probabilistic choices by
non-determinism. Still, the quantifier alternation of (15)
(universal over initial configurations and adversaries vs. exis-
tential on paths) is not in the fragment handled byByMC[26].
Once an initial configuration σ and an adversary a are
fixed, the remaining branching is solely induced by non-
Dirac transitions. By assumption, these transitions lead to
final locations only, to both F0 and F1, and under round-
rigid adversaries, they are the last transitions to be fired. To
prove (15), it is sufficient to prove that all processes that fire
only Dirac transitions will reach final locations of the same
type (F0 or F1). If this is the case, then the existence of a

path corresponds to all non-Dirac transitions being resolved
in the same way. This allows us to remove the non-Dirac
transitions from the model as follows.

Given a PTArd, we now define a threshold automaton TAm

with locations L (without B′) such that for every non-Dirac
rule r = (from, δto, ϕ,u) in PTA, all locations �with δto(�) >

0 are merged into a new location �mrg in TAm. Note that this
location must belong to F. Naturally, instead of a non-Dirac
rule r we obtain a Dirac rule (from, �mrg, ϕ,u). Also, we
add self-loops at all final locations. Figure 7 illustrates the
transformation on our running example from Fig. 3. The new
final location �mrg can be understood as an abstract state that
abstracts the possible coin-toss outcomes; it belongs neither
to F0 nor F1.

Paths in Sys(TAm) correspond to prefixes of paths in
Sys(PTArd). In Sys(TAm), from a configuration σ , an adver-
sary a yields a unique path; that is, paths(σ,a) is a singleton
set. Thus, the existential quantifier from (15) can be replaced
by the universal one.

Lemma 12 Let k ∈ N0, let σ be an initial configuration
of Sysk(PTArd), and let a be a round-rigid adversary. Then,
the following statements are equivalent:

(a) there exists π ∈ paths(σ,a) in Sysk(PTArd) such that

π |� ∨
v∈{0,1} G

(∧
�∈Fv(PTArd) κ[�, k] = 0

)
;

(b) for every π ∈ paths(σ,a) in Sysk(TAm),

π |� ∨
v∈{0,1} G

(∧
�∈Fv(TAm) κ[�, k] = 0

)
.

Proof Paths in Sysk(TAm) are mapped uniquely to prefixes
of paths in Sysk(PTArd). Moreover, since every paths(σ,a)

in Sysk(TAm) is a singleton set, existential and universal
quantifications coincide. ��

By Lemma 12, property (15) on PTArd is equivalent to
A

∨
v∈{0,1} G (

∧
�∈Fv

κ[�] = 0) on Sys(TAm). The latter can
be checked automatically by ByMC, allowing us to prove
(C1).

8 Experiments

We have applied the approach presented in Sects. 4–7 to five
randomized fault-tolerant consensus algorithms.

(The benchmarks and the instructions on running the
experiments are available from: https://forsyte.at/software/
bymc/artifact-rand-cons/)

1. Randomized consensus by Ben-Or [4, Protocol 1], with
two kinds of crashes: clean crashes (ben-or-cc), for which
a process either sends to all processes or none, and dirty
crashes (ben-or-dc), for which a process may send to a

123

https://forsyte.at/software/bymc/artifact-rand-cons/
https://forsyte.at/software/bymc/artifact-rand-cons/

818 N. Bertrand et al.

Fig. 7 A one-round
non-probabilistic threshold
automaton TAm obtained from
the PTA from Fig. 3

subset of processes. This algorithm works correctly when
n > 2t .

2. Randomized Byzantine consensus by Ben-Or [4, Proto-
col 2] (ben-or-byz). This algorithm tolerates t Byzantine
faults when n > 5t .

3. Randomized consensus by Bracha [11, Protocol 2] (rabc-
c). It runs as a high-level algorithm together with a
low-level broadcast algorithm that reduces the impact of
Byzantine faults into “little more than fail-stop (faults)”.
We check only the high-level algorithm for clean crashes.

4. k-set agreement for crash faults by Mostéfaoui et al. [38]
(kset), for k = 2. This algorithm works in the presence
of clean crashes when n > 3t .

5. Randomized Byzantine one-step consensus by Song and
van Renesse [42] (rs-bosco). This algorithm tolerates
Byzantine faults when n > 3t , and it terminates fast when
n > 7t or n > 5t and f = 0.

Following the reduction approach of Sects. 4–7, for each
benchmark, we have encoded two versions of one-round
threshold automata: an N-automaton that models a coin
toss by a non-deterministic choice in a coin-toss location
(similar to TAPTA in our framework) and is used for the non-
probabilistic reasoning, and a P-automaton that never leaves
the coin-toss location and which is used to prove round-rigid
probabilistic termination (similar to TArd in our framework).
Both automata are given as the input to Byzantine Model
Checker (ByMC) [26], which implements the parameterized
model checking techniques for safety [23] and liveness [24]
of counter systems of threshold automata.

Both automata follow the pattern shown in Fig. 3: Pro-
cesses start in one of the initial locations (e.g., J0 or J1),
progress by switching locations and increasing shared vari-
ables and end up in a location that corresponds to a decision
(e.g., D0 or D1), an estimate of a decision (e.g., E0 or E1), or
a coin toss (CT).

Table 3 summarizes the properties that were verified in our
experiments.Given the set of all possible locationsL, a subset
Y = {�1, . . . , �m} ⊆ L of locations, and the distinguished
crashed location CR ∈ L, we use the shorthand notation:

Ex{‘1, . . . , ‘m} for ∨
�∈Y κ[�] �= 0 and All{‘1, . . . , ‘m} for

∧
�∈L\Y (κ[�] = 0∨� = CR). For rs-bosco and kset, instead

of checking S1, we check S1’ and S1”.
Table 4 presents the computational results of our experi-

ments: Column |L| shows the number of automata locations,
column |R| shows the number of automata rules, column |S|
shows the number of SMT queries (which depends on the
structure of the automaton and the specification), and column
time shows the computation times—either in secondsor in the
format HH:MM. As the N-automata have more rules than the
P-automata, column |R| shows the figures for N-automata.
Benchmarks 1–5 need 30–170 MB, whereas rs-bosco needs
up to 1.5 GB per CPU.

The benchmark rs-bosco is a challenge for the technique
of Konnov et al. [24]: Its threshold automaton has 12 thresh-
old guards that can change their values almost in any order.
Additional combinations are produced by the temporal for-
mulas. AlthoughByMC reduces the number of combinations
by analyzing dependencies between the guards, it still pro-
duces between 11! and 14! SMT queries. Hence, we ran the
experiments for rs-bosco on 1024 CPU cores of Grid5000
and gave the wall time results in Table 4. (To find the total
computing time, multiply wall time by 1024.) ByMC timed
out on the property S4 after 1 day (shown as TO).

For all other benchmarks in Table 4, ByMC has reported
that the specifications hold. By changing n > 3t to n > 2t ,
we found that rabc-cr can handle more faults. (The original
n > 3t was needed to implement the underlying communi-
cation structure which we assume given in the experiments.)
In other cases, whenever we changed the parameters, that is,
increased the number of faults beyond the known bound, the
tool reported an expected counterexample.

9 Related work

Initial research on computer-aided verification of non-
randomized fault-tolerant distributed algorithms considered
the verification of such systems in the concrete (that is,
non-parameterized) case, where the number of participating

123

Verification of randomized consensus algorithms under round-rigid adversaries 819

Table 3 Properties verified in our experiments for value 0

Label Name Automaton Formula

S1 agreement_0 N AG (¬Ex{D0}) ∨ G (¬Ex{D1, E1})
S2 validity_0 N AAll{J0} → G (¬Ex{D1, E1})
S3 completeness_0 N AAll{J0} → G (¬Ex{D1, E1})
S4 round-term N A fair → FAll{D0,D1, E0, E1,CT}
S5 decide-or-flip P A fair → F (All{D0, E0,CT} ∨ All{D1, E1,CT})
S1’ sim-agreement N AG (¬Ex{D0, E0} ∨ ¬Ex{D1, E1})
S1” 2-agreement N AG (¬Ex{D0, E0} ∨ ¬Ex{D1, E1} ∨ ¬Ex{D2, E2})

Table 4 The experiments for
first 5 rows were run on a single
computer (Apple MacBook Pro
2018, 16GB)

Automaton S1/S1’/S1” S2 S3 S4 S5
Name |L| |R| |S| Time |S| Time |S| Time |S| Time |S| Time

Ben-or-cc 10 27 9 1 5 0 5 0 5 0 5 0

Ben-or-dc 10 32 9 1 5 1 5 0 5 0 5 1

Ben-or-byz 9 18 3 1 2 0 2 0 2 0 2 1

Rabc-cr 11 31 9 0 5 1 5 1 5 0 5 0

Kset 13 58 65 3 65 17 65 12 65 39 65 40

Rs-bosco 19 48 156M 03:21 156M 03:02 156M 03:21 TO TO 156M 03:43

The experiments for last row (rs-bosco) were run in Grid5000 on 32 nodes (2 CPUs Intel Xeon Gold 6130,
16 cores/CPU, 192GB). Wall times are given

processes is set to a small number (e.g., 4–10), and the cor-
rectness is automatically checked for these small instances,
e.g., [12,22,43,49]. Recently, the parameterized case also
gained much attention: The problem has been addressed by
model checking [24,36,44], deductive verification [5,16,40],
and interactive theorem proving [13,21,51]. These verifica-
tion approaches address the parameterized setting, where the
number of processes is a parameter. Verification for all values
of the parameter is typically undecidable [2,9,18,45]. Dis-
tributed algorithm has also been verified for small systems
(e.g., for 4–10 processes) in, e.g., [12,22,43,48].

For randomized distributed algorithms, the work in [29,
31] does probabilistic reasoning with the probabilistic model
checker PRISM [30] for small systems (10–20 processes).
Verification of safety for any number of processes was done
using Cadence SMV.

Randomizeddistributed algorithmshave alsobeen addressed
in a process algebra approach [46]. Similarly to our work, the
authors exploit the communication-closure property of stan-
dard distributed algorithms, in order to design a purely syn-
tactic partial-order state space reduction. Themethodology is
illustrated on a randomized mutual exclusion algorithm, but,
in contrast to our contribution, no tool support is provided.

A few contributions address automated verification of
probabilistic parameterized systems [6,34,35,41,52]. In con-
trast to these, our processes are not finite state, due to the
round numbers and parameterized guards. The seminal work
by Pnueli and Zuck [41] requires shared variables to be

bounded and cannot use arithmetic thresholds different from
1 and n. Algorithms forwell-structured transition systems [6]
do not directly apply to multi-parameter systems produced
by probabilistic threshold automata. Approaches based on
regular model checking [34,35] cannot handle arithmetic
resilience conditions such as n > 3t , nor unbounded shared
variables. Recently, in [52] an abstraction-based verification
approach has been presented that exploits a reduction of
almost sure properties for a parameterized MDP to model
checking an abstract finite-state system with fairness.

The authors of Nestmann et al. [39] highlight problems on
the notion of rounds in asynchronous distributed algorithms.
The central problem is that the notion of a round provides
some abstraction of time, which might not coincide with the
notion of time that comes from the length of the prefix in
asynchronous interleavings. In this paper, for algorithms that
can be encoded in our iterated model, we show that a reduc-
tion argument ensures that for interesting specifications, we
may focus on the rounds in reasoning about distributed algo-
rithms in a soundway.Weuse reduction ideas similar to Elrad
and Francez [17], Chaouch-Saad et al. [12], and Damian et
al. [15]. Thus, similar to recent approaches that aim at con-
necting asynchrony to synchrony [10,15,27,50], we provide a
precise relation between the asynchronous model and rounds
asked for in [39].

123

820 N. Bertrand et al.

10 Conclusions

We lifted the threshold automata framework to multi-round
randomized consensus algorithms. We proved a reduction
that allows us to check LTL−X specifications over propo-
sitions for one round in a single-round automaton so that
the verification results transfer directly to the multi-round
counter system.Using round-based compositional reasoning,
we have shown that this is sufficient to check specifications
that spanmultiple rounds, e.g., agreement. Round-rigid prob-
abilistic termination relies on a distinct reduction argument.

By experimental evaluation, we showed that the verifi-
cation conditions that came out of our reduction can be
automatically verified for several challenging randomized
consensus algorithms in the parameterized setting. Since we
do not directly check multi-round specifications, but rather
only these one-round verification conditions, incorrect algo-
rithms would lead to a counterexample to such a condition,
which would then require manual inspection in order to
understand the cause of the incorrectness.

Our proof methodology for round-rigid probabilistic ter-
mination applies to round-rigid adversaries only. As future
work, we shall prove that verifying round-rigid probabilistic
termination is sufficient to prove probabilistic termination for
more general adversaries. Transforming an adversary into a
round-rigid one while preserving the probabilistic properties
over the induced paths comes up against the asynchrony in
the system. Asynchrony typically leads to processes being
in different rounds at the same point of the execution. For
instance, a process may have reached round k, while others
are still in round k′ < k. Now, a process may perform a coin
toss in some step at round k, before the other processes have
left round k′. As a result, a priori, an adversary may schedule
the remaining steps for round k′ depending on the outcome
of the earlier coin toss of the higher round k. Reconciling
this with a reduction argument is challenging. As first step
toward this objective, we showed the reduction argument for
weak adversaries [8].

Concerning the probabilistic reasoning, our approach
relies on a zero–one law and only allows one to prove
almost-sure termination (and certainly general qualitative
reachability properties). However, proving quantitative prop-
erties, for instance, on the expected number of rounds before
termination, is currently out of reach of existing techniques.
This long-term objective is definitely on our agenda.

References

1. Aguilera, M., Toueg, S.: The correctness proof of Ben-Or’s
randomized consensus algorithm. Distrib. Comput. 25(5), 1–11
(2012). Online first

2. Apt, K., Kozen, D.: Limits for automatic verification of finite-state
concurrent systems. IPL 15, 307–309 (1986)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press,
Cambridge (2008)

4. Ben-Or, M.: Another advantage of free choice: Completely asyn-
chronous agreement protocols (extended abstract). In: PODC, pp.
27–30 (1983)

5. Berkovits, I., Lazic, M., Losa, G., Padon, O., Shoham, S.: Verifi-
cation of threshold-based distributed algorithms by decomposition
to decidable logics. In: CAV Part II, pp. 245–266 (2019)

6. Bertrand, N., Fournier, P.: Parameterized verification ofmany iden-
tical probabilistic timed processes. In: FSTTCS, volume 24 of
LIPIcs, pp. 501–513 (2013)

7. Bertrand, N., Konnov, I., Lazic, M., Widder, J.: Verification of
randomized consensus algorithms under round-rigid adversaries.
In: CONCUR, volume 140 of LIPIcs, pp. 33:1–33:15. Schloss
Dagstuhl (2019)

8. Bertrand, N., Lazić, M., Widder, J.: A reduction theorem for
randomized distributed algorithms under weak adversaries. In:
VMCAI (2021) (to appear)

9. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith,
H.,Widder, J.:Decidability of ParameterizedVerificationSynthesis
Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, San Rafael (2015)

10. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of
verifying message passing programs under bounded asynchrony.
In: CAV, pp. 372–391 (2018)

11. Bracha, G.: Asynchronous Byzantine agreement protocols. Inf.
Comput. 75(2), 130–143 (1987)

12. Chaouch-Saad, M., Charron-Bost, B., Merz, S.: A reduction theo-
rem for the verification of round-based distributed algorithms. In:
RP, volume 5797 of LNCS, pp. 93–106 (2009)

13. Charron-Bost, B., Merz, S.: Formal verification of a consensus
algorithm in the heard-of model. IJSI 3(2–3), 273–303 (2009)

14. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Hand-
book of Model Checking. Springer, Heidelberg (2018)

15. Damian, A., Drăgoi, C., Militaru, A., Widder, J.: Communication-
closed asynchronous protocols. In: CAV (2), volume 11562 of
Lecture Notes in Computer Science, pp. 344–363. Springer (2019)

16. Drăgoi, C., Henzinger, T.A., Veith, H., Widder, J., Zufferey, D.:
A logic-based framework for verifying consensus algorithms. In:
VMCAI, volume 8318 of LNCS, pp. 161–181 (2014)

17. Elrad, T., Francez, N.: Decomposition of distributed programs into
communication-closed layers. Sci. Comput. Program. 2(3), 155–
173 (1982)

18. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL,
pp. 85–94 (1995)

19. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(2), 374–382
(1985)

20. Grimmet, G.R., Strizaker, D.: Probability and Random Processes,
2nd edn. Oxford Science Publications, Oxford (1992)

21. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B.,
Roberts, M.L., Setty, S., Zill, B.: Ironfleet: proving safety and live-
ness of practical distributed systems. Commun. ACM 60(7), 83–92
(2017)

22. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Towards
modeling andmodel checking fault-tolerant distributed algorithms.
In: SPIN, volume 7976 of LNCS, pp. 209–226 (2013)

23. Konnov, I., Lazic, M., Veith, H., Widder, J.: Para2: parameterized
path reduction, acceleration, and SMT for reachability in threshold-
guarded distributed algorithms. Formal Methods Syst. Des. 51(2),
270–307 (2017)

24. Konnov, I., Lazić, M., Veith, H., Widder, J.: A short counterex-
ample property for safety and liveness verification of fault-tolerant
distributed algorithms. In: POPL, pp. 719–734 (2017)

123

Verification of randomized consensus algorithms under round-rigid adversaries 821

25. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded
model checking for threshold-based distributed algorithms: reach-
ability. Inf. Comput. 252, 95–109 (2017)

26. Konnov, I.,Widder, J.: ByMC: byzantinemodel checker. In: ISoLA
(3), volume 11246 of LNCS, pp. 327–342. Springer (2018)

27. Kragl, B., Qadeer, S., Henzinger, T.A.: Synchronizing the asyn-
chronous. In: CONCUR, pp. 21:1–21:17 (2018)

28. Kukovec, J., Konnov, I., Widder, J.: Reachability in parameterized
systems: all flavors of threshold automata. In: CONCUR, pp. 19:1–
19:17 (2018)

29. Kwiatkowska, M.Z., Norman, G.: Verifying randomized byzantine
agreement. In: FORTE, pp. 194–209 (2002)

30. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: verifi-
cation of probabilistic real-time systems. In: CAV, pp. 585–591
(2011)

31. Kwiatkowska, M.Z., Norman, G., Segala, R.: Automated verifica-
tion of a randomized distributed consensus protocol using Cadence
SMV and PRISM. In: CAV, pp. 194–206 (2001)

32. Lamport, L.: Specifying systems: the TLA+ language and tools for
hardware and software engineers. Addison-Wesley, Boston (2002)

33. Lehmann, Daniel J., Rabin, Michael O.: On the advantages of free
choice: A symmetric and fully distributed solution to the dining
philosophers problem. In: POPL, pp. 133–138 (1981)

34. Lengál, O., Lin, A.W.,Majumdar, R., Rümmer, P.: Fair termination
for parameterized probabilistic concurrent systems. In: TACAS,
volume 10205 of LNCS, pp. 499–517 (2017). https://doi.org/10.
1007/978-3-662-54577-5_29

35. Lin, A.W., Rümmer, P.: Liveness of randomised parameterised sys-
tems under arbitrary schedulers. In CAV, volume 9780 of LNCS,
pp. 112–133. Springer (2016). https://doi.org/10.1007/978-3-319-
41540-6_7

36. Maric, O., Sprenger, C., Basin, D.A.: Cutoff bounds for consensus
algorithms. In: CAV, volume 10427 of LNCS, pp. 217–237 (2017)

37. McIver, A., Morgan, C.: Abstraction, refinement and proof for
probabilistic systems. In: Monographs in Computer Science.
Springer (2005). https://doi.org/10.1007/b138392

38. Mostéfaoui,A.,Moumen,H., Raynal,M.:Randomized k-set agree-
ment in crash-prone and Byzantine asynchronous systems. Theor.
Comput. Sci. 709, 80–97 (2018)

39. Nestmann, U., Fuzzati, R., Merro, M.: Modeling consensus in a
process calculus. In: CONCUR, volume 2761 of LNCS, pp. 393–
407 (2003)

40. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made
EPR: decidable reasoning about distributed protocols. PACMPL
1(OOPSLA), 108:1–108:31 (2017)

41. Pnueli, A., Zuck, L.D.: Verification of multiprocess probabilistic
protocols. Distrib. Comput. 1(1), 53–72 (1986). https://doi.org/10.
1007/BF01843570

42. Song, Y.J., van Renesse, R.: Bosco: one-step Byzantine asyn-
chronous consensus. In:DISC, volume5218ofLNCS, pp. 438–450
(2008)

43. Steiner, W., Rushby, J.M., Sorea, M., Pfeifer, H.: Model check-
ing a fault-tolerant startup algorithm: from design exploration to
exhaustive fault simulation. In: DSN, pp. 189–198 (2004)

44. Stoilkovska, I., Konnov, I., Widder, J., Zuleger, F.: Verifying safety
of synchronous fault-tolerant algorithms boundedmodel checking.
In: TACAS, Part II, volume 11428 of LNCS, pp. 357–374 (2019)

45. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf.
Process. Lett. 28(4), 213–214 (1988)

46. Swaminathan,M.,Katoen, J.-P., Olderog, E.-R.: Layered reasoning
for randomized distributed algorithms. FormalAsp.Comput. 24(4–
6), 477–496 (2012). https://doi.org/10.1007/s00165-012-0231-x

47. TLA+ proof system. https://tla.msr-inria.inria.fr/tlaps/content/
Home.html

48. Tsuchiya, T., Schiper, A.: Using bounded model checking to verify
consensus algorithms. In: Distributed Computing, 22nd Interna-
tional Symposium, DISC 2008, Arcachon, France, September
22–24, 2008, Proceedings, pp. 466–480 (2008)

49. Tsuchiya, T., Schiper, A.: Verification of consensus algorithms
using satisfiability solving. Distrub. Comput. 23(5–6), 341–358
(2011)

50. Gleissenthall, K.V., Kici, R.G., Bakst, A.L., Stefan, D.E., Jhala,
R.A.: Pretend synchrony. PACMPL 3(POPL), 59:1–59:30 (2019)

51. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Ander-
son, T.E.: Planning for change in a formal verification of the RAFT
consensus protocol. In: CPP, pp. 154–165 (2016)

52. Zuck, L.D., McMillan, K.L., Torf, J.: P5: planner-less proofs of
probabilistic parameterized protocols. In: VMCAI, pp. 336–357
(2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-662-54577-5_29
https://doi.org/10.1007/978-3-662-54577-5_29
https://doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1007/b138392
https://doi.org/10.1007/BF01843570
https://doi.org/10.1007/BF01843570
https://doi.org/10.1007/s00165-012-0231-x
https://tla.msr-inria.inria.fr/tlaps/content/Home.html
https://tla.msr-inria.inria.fr/tlaps/content/Home.html

	Verification of randomized consensus algorithms under round-rigid adversaries
	Abstract
	1 Introduction
	2 Overview
	2.1 Modeling randomized threshold-based algorithms
	2.2 Our approach at a glance

	3 The framework of probabilistic threshold automata
	3.1 Probabilistic counter systems
	3.2 Non-probabilistic counter systems
	3.3 Adversaries
	3.4 Atomic propositions and stutter equivalence

	4 Consensus properties and their verification
	5 Reduction to specifications with one round quantifier
	6 Reduction to single-round counter system
	6.1 Reduction from arbitrary schedules to round-rigid schedules
	6.2 From round-rigid schedules to single-round counter system

	7 Round-rigid probabilistic termination
	7.1 Reducing probabilistic to non-probabilistic specifications
	7.2 Verifying (C1) on a non-probabilistic TA

	8 Experiments
	9 Related work
	10 Conclusions
	References

