International Journal on Software Tools for Technology Transfer (2021) 23:797-821
https://doi.org/10.1007/s10009-020-00603-x

GENERAL O‘)

Check for
updates

Special Issue: MeTRID

Verification of randomized consensus algorithms under round-rigid
adversaries

Nathalie Bertrand’ - Igor Konnov? - Marijana Lazi¢? - Josef Widder?

Accepted: 17 December 2020 / Published online: 2 February 2021
© Springer-Verlag GmbH Germany, part of Springer Nature 2021, corrected publication 2021

Abstract

Randomized fault-tolerant distributed algorithms pose a number of challenges for automated verification: (i) parameterization
in the number of processes and faults, (ii) randomized choices and probabilistic properties, and (iii) an unbounded number of
asynchronous rounds. This combination makes verification hard. Challenge (i) was recently addressed in the framework of
threshold automata. We extend threshold automata to model randomized consensus algorithms that perform an unbounded
number of asynchronous rounds. For non-probabilistic properties, we show that it is necessary and sufficient to verify these
properties under round-rigid schedules, that is, schedules where processes enter round r only after all processes finished round
r — 1. For almost-sure termination, we analyze these algorithms under round-rigid adversaries, that is, fair adversaries that
only generate round-rigid schedules. This allows us to do compositional and inductive reasoning that reduces verification of
the asynchronous multi-round algorithms to model checking of a one-round threshold automaton. We apply this framework
and automatically verify the following classic algorithms: Ben-Or’s and Bracha’s seminal consensus algorithms for crashes

and Byzantine faults, 2-set agreement for crash faults, and RS-Bosco for the Byzantine case.

Keywords Verification - Distributed algorithms - Fault tolerance - Probabilistic - Parameterized

Supported by Interchain Foundation, Switzerland; by the Austrian Sci-
ence Fund (FWF) via the National Research Network RiSE (S11403,
S11405), project PRAVDA (P27722), and Doctoral College Log-
iCS (W1255-N23); by the Vienna Science and Technology Fund
(WWTF) via project APALACHE (ICT15-103); and by the Euro-
pean Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme Under Grant Agreement No.
787367 (PaVeS). Experiments presented in this paper were carried out
using the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER, and others, see www.
grid5000.fr..

This is an extended version of Bertrand et al. [7], which appeared in
the proceedings of CONCUR 2019. In the conference version, we did
not provide proofs. As a result, also the definitions where just
sketched and we omitted preliminary lemmas. In this paper, we
completely develop our theory. Moreover, we give more detailed
discussions and explanation with new figures and diagrams, we add
and extend examples.

D<I Marijana Lazié¢
lazic@in.tum.de

Igor Konnov
igor@informal.systems

1 Introduction

Fault-tolerant distributed systems such as Blockchain or
Paxos recently received much attention. Still, these sys-
tems are out of reach with current automated verification
techniques. One problem comes from the scale: These sys-
tems should be verified for a very large (ideally even
an unbounded) number of participants. In addition, many
systems (including Blockchain) provide probabilistic guar-
antees. To check their correctness, one has to reason about
their behavior in a probabilistic setting. We take a step toward
this direction and consider the verification of randomized dis-
tributed algorithms in the parameterized setting.

In this paper, we make first steps toward parameterized
verification of fault-tolerant randomized distributed algo-
rithms. We consider consensus algorithms that follow the
ideas of Ben-Or [4]. Interestingly, these algorithms were

1 University Rennes, Inria, CNRS, IRISA, Rennes, France
2 1Informal Systems, Vienna, Austria

3 TU Miinchen, Munich, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00603-x&domain=pdf
www.grid5000.fr
www.grid5000.fr

798

N. Bertrand et al.

analyzed in [29,31] where probabilistic reasoning was done
using the probabilistic model checker PRISM [30] for
systems consisting of 10-20 processes, while only safety
was verified in the parameterized setting using Cadence
SMV. From a different perspective, these algorithms extend
asynchronous threshold-guarded distributed algorithms from
Konnov et al. [24,25] with two features (i) a random choice
(coin toss), and (ii) repeated executions of the same algorithm
until it converges (with probability 1).

A prominent example is Ben-Or’s fault-tolerant consensus
algorithm [4] given in Fig. 1. It circumvents the impossibility
of asynchronous consensus [19] by relaxing the termination
requirement to almost-sure termination, i.e., termination with
probability 1. Here processes execute an infinite sequence of
asynchronous loop iterations, which are called rounds r. Each
round consists of two stages where they first exchange mes-
sages tagged R, wait until the number of received messages
reaches a certain threshold (given as expression over param-
eters in line 5) and then exchange messages tagged P. In the
code, n is the number of processes, among which at most ¢ are
Byzantine faulty (which may send conflicting information).

Figure 2 shows an example execution of Ben-Or’s algo-
rithm in the distributed environment of six processes, one
of them being Byzantine. We only depict the time line of
the first couple of steps for the five correct processes. Time
moved downwards, and each line roughly corresponds to a
time step. In each line, the statements of that line are exe-
cuted. When we write, e.g., “> n — t messages (R, 1, x)”,
we mean that the process has received at least n — f messages
that match the expression (possibly including a message from
itself), and the corresponding guard in the code evaluates to
true. As the processes are executed asynchronously, they may
receive messages in different orders. In our example, pro-
cesses 1 and 2 receive two messages of type (P,1,0,D),
whereas processes 3 and 4 receive only one message of
type (P, 1,0,D).Asaresult, the processes follow different
control flows of the algorithm. Nevertheless, the correct pro-
cesses decide in the end of the second round. Also observe
that due to asynchrony, the processes may take steps at dif-
ferent times. As a result, process 1 sets r to 2 and thus enters
the second round before process 5 has started its first round.
Thus, at the same time, processes may be in different rounds.

The algorithm is designed to satisfy the following three
properties:

Agreement: no two correct processes decide on different
values.

Validity: if all correct processes have v as the initial value,
then no process decides 1 — v.

Probabilistic wait-free termination: with probability 1,
every correct process eventually decides.

@ Springer

The correctness of the algorithm should be verified for
all values of the parameters n and ¢ that meet a so-called
resilience condition, e.g., n > 5t. Carefully chosen thresh-
olds (namely n — ¢, (n +t)/2, and ¢t + 1) on the number of
received messages of a given type ensure agreement. At the
end of a round, if there is no “strong majority” for a value,
i.e., less than (n + t)/2 messages were received (cf. line 13),
a process picks a new value randomly in line 16. Observe
that if a process decides in line 14, it nevertheless continues
to execute the algorithm for the rounds to follow.

While these non-trivial threshold expressions can be dealt
with using the methods in [24], several challenges remain.
The technique in [24] can be used to verify one iteration of
the round from Fig. 1 only. However, consensus algorithms
should prevent that there are no two rounds r and r’ such
that a process decides 0 in r and another decides 1 in r’. This
calls for a compositional approach that allows one to com-
pose verification results for individual rounds. A challenge
in the composition is that distributed algorithms implement
“asynchronous rounds”, i.e., during a run, processes may be
in different rounds at the same time.

The combination of distributed aspects and probabilities
makes reasoning difficult. Quoting Lehmann and Rabin [33],
“proofs of correctness for probabilistic distributed systems
are extremely slippery”. This advocates the development of
automated verification techniques for probabilistic properties
of randomized distributed algorithms in the parameterized
setting.

Contributions. We extend the framework of threshold
automata [24] to round-based algorithms with coin-toss tran-
sitions. For the new framework, we achieve the following:

1. For safety verification, we introduce a method for com-
positional round-based reasoning. This allows us to
invoke a reduction similar to the one in [12,15,17].
We highlight necessary fairness conditions on individ-
ual rounds. This provides us with specifications to be
checked on a one-round automaton.

2. We reduce probabilistic liveness verification to prov-
ing termination with positive probability within a fixed
number of rounds. To do so, we restrict ourselves to
round-rigid adversaries, that is, adversaries that respect
the round ordering. In contrast to existing work that
proves almost-sure termination for fixed number of par-
ticipants [29,31], these are the first parameterized model
checking results for probabilistic properties.

3. Using the tool ByMC [24,26], we automatically check
the specifications that we derive in Points 1. and 2. and
thus verify challenging benchmarks in the parameterized
setting. We verify Ben-Or’s [4] and Bracha’s [11] classic
algorithms, and more recent algorithms such as 2-set
agreement [38], and RS-Bosco [42].

Verification of randomized consensus algorithms under round-rigid adversaries

799

bool v := input_value({0, 1});

intr:=1;
while (true) do
send (R,r,v) to all;

if received at least (n + t) / 2 messages (R,r,w)

then send (P,r,w,D) to all;

1
2
3
4
5 wait for n — t messages (R,r,x);
6
7
8
9

10
11
12
13
14
15
16

if received at least t + 1 messages (P,r,w,D)
then {

vVi=w;

if received at least (n + t) / 2 messages (P,r,w,D)
then decide w;

else v := random({0, 1});

else send (P,r,?) to all; 17 ori=r+41;
wait for n — t messages (P,r,*); 18 od
Fig.1 Pseudocode of Ben-Or’s algorithm for Byzantine faults
Process 1: Process 2: Process 3: Process 4: Process b5:
v:=0;r:=1 v:=0;r:=1 vi=0;r:=1 vi=1r:=1 vi=1r:=1

|
send (R,1,0) to all

|
>n — t messages (R,1,*
send (P,1,?) to all

|

|

>n — t messages (P,1,x
>t+1 messages (P,1,0,0
v:=0

|
|
|
|
|
|
|
|
|
|
|
|
|
send (R,2,0) to all

|

|
>n — t messages (R,2,x*
> "TH messages (R,2,0
send (P,2,0,D) to all

|

>n — t messages (P,2,x
> n;»t

messages (P,2,0,D
decide 0

|
send (R,1,0) to all

|
>n — t messages (R,1,x
send (P,1,?) to all

|

|

>n — t messages (P,1,x
)>t+1 messages (P,1,0,0
v:=0

|
|
|
|
|
|
|
|
|
|
|
|
|
€

send (R,2,0) to all

— t messages (R,2,x*
ntt messages (R,2,0
send (P,2,0,D) to all
|

>n — t messages (P,2,x
messages (P,2,0,D
decide 0

|

|
>n
> =

|
send (R,1,0) to all
|

>n — t messages (R,1,*

send (P,1,?) to all
|

)

|
|
|
|
|
>n — t messages (P,1,x

Vv i=

random(0, 1)

(% as a result: v =0 %)

r.=2

|
|
|
|
|
|
|
|
|
send (R,2,0) to all

|

>n — t messages (R,2,x*
> HTH messages (R,2,0
send (P,2,0,D) to all

>n — t messages (P,2,x

> n+t

decide 0

2
messages (P,2,0,D

send (R,1,1) to all I
\
>n — t messages (R,1,* I
> ntt messages (R,1,0) |
send (P, 1,0, D) to all || |
\ |

\ |

\ |
>n — t msgs (P,1,%) |
v := random(0, 1) |
(* as aresult: v=1=x)| |
r:=2 |
|

\
\ |
| send (R,1,1) to all
send (R,2,1) to all |
| >n — t messages (R,1,*
| send (P,1,?) to all
|

} >n — t messages (P,1,*
| >t+1 msgs (P,1,0,D)
| v:=0
| r:=2
\ |
| send (R,2,0) to all
| |
>n — t messages (R,2,%]] >n — t messages (R,2,x
> "—“ messages (R,2,0)] > ”TH messages (R,2,0
send (P,2,0,D) to all send (P,2,0,D) to all

\ |

>n — t messages (P,2,x] >n — t messages (P,2,x*

> n+t > n«;t
Z 5 > 5=

messages (P,2,0,D) messages (P,2,0,D
decide 0 decide 0

Fig. 2 Distributed execution of Ben-Or’s algorithm for 5 correct and 1 faulty process (n = 6,1 = 1, f = 1). The figure shows the code that is
executed by the correct processes

2 Overview

2.1 Modeling randomized threshold-based

algorithms

We introduce probabilistic threshold automata for the model-
ing of randomized threshold-based algorithms. An example
of such an automaton is given in Fig. 3. Nodes represent local

states of processes, which move along the labeled edges or
forks. Local states are called locations, while edges and forks
are called rules. The automaton rules are given in Table 1.
When a rule is annotated with a guard ¢ and an update u,
a process can move along the edge only if ¢ evaluates to

true, and this is followed by the update u of shared variables.
Additionally, each tine of a fork is labeled with a number in
the [0, 1] interval, representing the probability of a process

@ Springer

N. Bertrand et al.

Fig.3 Ben-Or’s algorithm as a probabilistic threshold automaton with
resilience conditionn > 3t At > f>0At >0

moving along the fork to end up at the target location of the
tine. If we ignore the dashed arrows in Fig. 3, a threshold
automaton captures the behavior of a process in one round,
that is, a loop iteration in Fig. 1.

While most rules are derived directly from the pseu-
docode, some have to be added for modeling purposes: The
self-loops of rules r13 and r14 model the “wait” statements
in lines 5 and 9. In the standard asynchronous distributed
computing model [19], a process repeatedly performs steps
that include possible reception of messages until the condi-
tion of the “wait” is satisfied. Formally, this results in local
stutter steps (modulo possibly received messages) in the con-
trol locations of lines 5 and 9 which are modeled with the
self-loops. The rules r1 and r, are the result of introduc-
ing so-called border locations Iy and /7 which, intuitively,
inserts control locations between two loop iterations that do
not belong to any iteration. This is required in our proofs for
a reduction argument that reasons about steps from different
iterations.

The algorithm is parameterized: n is the number of pro-
cesses, t is the assumed number of faults, and f is the actual
number of faults. It should be demonstrated to work under
the resilience conditionn > 5t At > f At > 0. Observe that
the parameters n and ¢t show up in the code of Fig. 1, while f
does not. That is, for a concrete system, the values of n and ¢
must be fixed a priori and compiled into the executable. The
value f is outside of the control of a designer as it captures
the number of faults in a run, which is determined by an unre-
liable environment (e.g., physical faults in components). In
that, the correctness of fault-tolerant distributed algorithms
is only restricted to runs where f < ¢, which is captured by
the resilience condition. However, at the level of the thresh-
old automata model, we do not distinguish between fixed
(known) and unknown parameters. From a model checking
perspective, by setting f > f, we can generate executions
that violate certain specification in runs where there are more
faults than expected, which is interesting when analyzing and
comparing distributed algorithms.

One round. The code in Fig. 1 refers to numbers of
received messages, and as is typical for distributed algo-
rithms, their relation to sent messages (that is, the semantics
of send and receive) is not explicit in the pseudo code. To for-
malize the behavior, the encoding in the threshold automaton
directly refers to the numbers of sent messages, and they are
encoded in the shared variables x; and y;. For instance, the
locations Jy and Jj capture that a loop is entered with v being
0 and 1, respectively. Sending an (R, r, 0) and (R, r, 1) mes-
sage is captured by the increments on the shared variables x(
and x in the rules r3 and r4, respectively, e.g., a process that
is in location Jy uses rule r3 to go to location SR (“sent R
message”), and increments xg in doing so. Waiting for R and
P messages in the lines 5 and 9 is captured by looping in
the locations SR and SP. In line 7, a process sends, e.g.,

Table 1 The rules of the

probabilistic threshold Rule Guard Update
automaton for the Ben-Or’s - true _
algorithm
r true -
r3 true Xo++
r4 true X1++
rs xo+x1 = n—t—f A xo=@n+1)/2—f Yo++
T xot+x1 =n—t—f A x1>@m+1)/2-f yi++
r7 xo+tx1 =n—t—f AN x0=0=30)/2-f AN x1=@=30)/2-f Yo+
rs Yotyityr =n—t—f AN y=@0-30)/2—f A yo=t+l-f -
r9 Yo+yity: zn—t—f A yo>@m+0)/2— f -
710 Yotyi+yr =n—t—=f A yr=@m=3t)/2—f A yr>n-2t—f—1 -
N Yotyi+yr =n—t—=f A y1>n+t)/2—f -
2 Yotyi+yr =n—t—=f AN y=@m=3)/2—f AN y1=>t+l-f -
ri3 true _
ri4 true -

@ Springer

Verification of randomized consensus algorithms under round-rigid adversaries 801

a (P,r,0, D) message if it has received n—t messages out
of which (n+1)/2 are (R, r, 0) messages. This is captured
in the guard of rule rs where xo+x; > n—t— f checks the
number of messages in total, and xo > (n+¢)/2 — f checks
for the specific messages containing 0.

The “— f” term models that in the message passing seman-
tics underlying Fig. 1, f messages from Byzantine faults may
be received in addition to the messages sent by correct pro-
cesses (modeled by shared variables in Fig. 3). The branching
at the end of the loop from lines 10 to 18 is captured by the
rules outgoing of S P. In particular rule, 1o captures the coin
toss in line 16. The non-determinism due to faults and asyn-
chrony is captured by multiple rules being enabled at the
same time.

Recall that behavior of a process in a single round is mod-
eled by the solid edges in Fig. 3. Note that in this case,
threshold guards should be evaluated according to the values
of shared variables, e.g., xo and x1, in the observed round.

Round switches. The dashed edges, called round-switch
rules, encode how a process, after finishing a round, starts
the next one. The round number r serves as the loop iterator
in Fig. 1, and in each iteration, processes send messages that
carry r. To capture this, each round r maintains independent
copies of the variables xq, x1, Yo, Y1, which are initialized
with 0. Because there are infinitely many rounds, this means
a priori we have infinitely many variables.

Example 1 Recall the distributed execution of Ben-Or’s algo-
rithm in Fig. 2. We show how to model the pseudocode as a
threshold automaton and the distributed execution as an exe-
cution of a counter system. Consider the threshold automaton
in Fig. 3, and let us fix a system based on this automaton;
for instance, let there be n = 6 processes where f =1t = 1
process is Byzantine faulty. Note that in this case, we explic-
itly model only the five correct processes. In this example,
accompanied in Fig. 4, we show a run in such a system; that
is, we only show a prefix as every run is infinitely long.

Assume three correct processes start with value 0 and two
with value 1. This initial configuration is denoted by op and
depicted in the upper left corner of Fig. 4, where three red
circles in location [represent three correct processes with
initial value 0, and similarly, two circles in /1 represent two
correct processes with initial value 1.

After applying 71 = (r1, 1)3(r2, D(r3, 1)3(r4, 1) to oo,
we reach configuration o1, where 4 processes are in loca-
tion SR and one is still in its initial location. We use a
short notation (r, 1)3 for (r1, 1)(r1, 1)(r1, 1), where 3 pro-
cesses execute ry in the first round. After applying 7, =
(rs, DYy, D3(r2, D(rg, D%(r10, D2 to o1, we reach o
where the four processes from SR reach final location of
the first round, which is depicted in the lower left corner of
Fig. 4.

Next, the four “fast” processes move and start the sec-
ond round by executing 3 = (rcr,, D(rery, (2, 2)
(rEy» 1)? and reaching o3. In order to distinguish pro-
cesses from the first and the second round, we depict those
in the second round as green diamonds. Applying ©4 =
(rq, 1)(r4,2)(rs, D)(rg, 1)(r1, 2)3 to o3 leads to o4. Here, we
can see that processes move in their own relative speeds, and
at the same time, they might be in different rounds.

Finally, by executing 75 = (rg,, 1)(r1, 2)(r3, 2)*(rs, 2)°
(r9,2)° all correct processes decide value 0; that is, they
all reach location Dy, depicted in the lower right corner of
Fig. 4. Note that processes do not stop the execution here,
but continue to the following round. It is important to notice
that in the rest of the run, no matter how we extend it, every
correct process will finish every following round in Dy; that
is, it will eventually decide 0. O

Liveness and fairness. Liveness properties of distributed
algorithms typically require fairness constraints, e.g., every
message sent by a correct process to a correct process is even-
tually received. For instance, this implies in Fig. 1 that if n—¢
correct processes have sent messages of the form (R, 1, *)
and (n+t)/2 correct processes have sent messages of the
form (R, 1,0), then every correct process should eventu-
ally execute line 7 and proceed to line 9. We capture this
by the following fairness constraint: If xo+x; > n—t Axp >
(n+t)/2—that is, rule r5 is enabled without the help of the
f faulty processes but by “correct processes alone” —then
the source location of rule rs5; namely, SR should eventu-
ally be evacuated; that is, its corresponding counter should
eventually be 0.

Restrictions. The definition of threshold automata in
its general form allows two disturbing features. First, the
updates allow increments and decrements in shared vari-
ables. As was shown in [28], this feature allows us to use
threshold automata to encode two counter machines, for
which the halting problem is undecidable. As a result, with-
out this restriction, parameterized verification of threshold
automata is undecidable. Second, the most general defini-
tion also allows loops (closed paths) that contain rules that
increase shared variables. In [28], it is shown that this leads
to counter systems whose diameter is not bounded. As our
model checker ByMC does bounded model checking, such
threshold automata also cannot be handled. Luckily, none of
these features is needed to encode fault-tolerant distributed
algorithms: First, as increments in shared variables are used
to model the sending of messages, we only need increments,
as one cannot make a message unsent (which would cor-
respond to a decrement). Second, increasing within a loop
would correspond to a process iteratively sending the same
message over and over again. As we use threshold automata
to count messages from distinct processes, this increments
would violate the intended semantics we require to cap-

@ Springer

N. Bertrand et al.

TG 0

{3 = (rom, D(rer,, 1) (r2,2)(rs,, 1)?

Fig.4 A part of a run in the system based on the threshold automaton
from Fig. 3, accompanying Example 1. Red circles represent correct
processes in the first round, and green diamonds represent correct pro-

ture for distributed algorithms. Thus, it is convenient to
consider standard —so-called “canonic” —restrictions here,
i.e., increments only of shared variables, and no updates
of shared variables within loops. These restrictions still
allow us to model threshold-based fault-tolerant distributed
algorithms [24]. As a result, threshold automata without
probabilistic forks and round switching rules can be auto-
matically checked for safety and liveness [23,24]. Adding
forks and round switches is required to adequately model
randomized distributed algorithms. Here, we introduce the

@ Springer

cesses in the second round. Similarly, red and green transitions are
executed in the first and the second round, respectively

restriction! (met by all our benchmarks) that coin-toss tran-
sitions only appear at the end of around, e.g., line 16 of Fig. 1.
Intuitively, as discussed in Sect. 1, a coin toss is only neces-
sary if there is no strong majority. Thus, all our benchmarks
have this feature, and we exploit it in Sect. 7.

! This restriction is needed in Sect. 7.1 and in particular to establish
Lemma 11.

Verification of randomized consensus algorithms under round-rigid adversaries 803

2.2 Our approach at a glance

To sum up the above from a verification viewpoint, these
algorithms have two sources of unboundedness: (i) They are
parameterized by the number of participating processes, and
(ii) they run for an infinite number of rounds. This paper is
based on the idea to reduce the analysis of the iterative part
(the rounds) to a few verification tasks for one-round systems,
thus solving the verification challenge posed by (ii). Then, we
can invoke existing model checking techniques from Konnov
et al. [23,24] that address (i).

To reduce to the verification of one-round systems, we
need to take several steps. First, we introduce the frame-
work of probabilistic threshold automata in Sect. 3 that gives
a precise semantics to the distributed algorithms (that are
typically only described in pseudocode). This allows us in
Sect. 4 to formalize the folklore consensus properties in the
precise semantics provided by threshold automata. We arrive
at temporal logic specifications that speak about multiple
rounds. At this point, we have a precise formal understand-
ing of the verification task: We have an infinite-state model
of the computation of the distributed algorithm, and tempo-
ral logic specifications that contain multiple quantified round
variables that range over an infinite sequence of rounds.

After having formalized all the objects of study, we are in
the position to develop the reduction arguments. We start
by reducing the problem statement, namely the temporal
logic formulas. We show how to transform consensus spec-
ifications into one-round temporal formulas in Sect. 5 by
analyzing the formulas: Consensus specifications often talk
about at least two different rounds. In this case, we need to
use round invariants that imply the specifications. For exam-
ple, if we want to verify agreement, we have to check that
no two processes decide different values, possibly in differ-
ent rounds. We do this in two steps: (i) We check the round
invariant that no process changes its decision from round to
round, and (ii) we check that within a round, no two processes
disagree. It remains the challenge of infinitely many rounds,
which we address in the non-probabilistic setting in Sect. 6.
Here, the main challenge is, as discussed above, that at the
same time, different processes may be in different rounds.
We simplify the verification by exploiting a reduction based
on communication-closed rounds [12,15,17]. We prove that
every execution in which steps are arbitrarily interleaved
can be reduced to an “equivalent” execution where, roughly
speaking, at all times all processes are on the same round. To
do so, we prove that one can reorder transitions of any fair
execution such that in the resulting (reordered) execution,
the round numbers of the transitions are in a non-decreasing
order. The mentioned equivalence is with respect to tem-
poral logic properties. More precisely, the obtained ordered
execution is stutter equivalent with the original one, and
thus, they satisfy the same LTL_x properties over the atomic

propositions describing only one round. In other words, any
interleaved multi-round system that poses the verification
challenge (ii) can be transformed to a sequential composi-
tion of one-round systems, which reduces the verification to
one-round systems, which can be automatically checked by
the model checker ByMC [26].

Verifying almost-sure termination under round-rigid adver-
saries calls for distinct arguments. Our methodology follows
the lines of the manual proof of Ben-Or’s consensus algo-
rithm by Aguilera and Toueg [1]. However, our arguments are
not specific to Ben-Or’s algorithm and apply to other random-
ized distributed algorithms (see Sect. 8). Compared to their
paper-and-pencil proof, the threshold automata framework
required us to provide a more formal setting and a more infor-
mative proof, also pinpointing the needed hypotheses that we
discuss in Sect. 7. As in the non-probabilistic case, the crucial
parts of our proof are automatically checked by the model
checker ByMC. Hence, the correctness we establish stands on
less slippery ground, addressing the above-mentioned con-
cerns of Lehmann and Rabin.

3 The framework of probabilistic threshold
automata

To start with, we introduce our model of probabilistic thresh-
old automata.

Definition 1 A probabilistic threshold automaton PTA is a
tuple (£, V, R, RC), where

— L is a finite set of locations that contains the following
disjoint subsets:

— initial locations 7,
— final locations F, and
— border locations B,

with |B| = |Z];
Vis a set of variables. It is partitioned in two sets:

— [T contains parameter variables, and
— I' contains shared variables;

— R is a finite set of rules; and
RC , the resilience condition, is a formula in linear integer
arithmetic over parameter variables.

In the following, we introduce rules in detail and give
syntactic restrictions on rules that model the local transitions
of a distributed algorithm from/to particular locations. The
resilience condition RC only appears in the definition of the
semantics in Sect. 3.1.

@ Springer

804

N. Bertrand et al.

A simple guard is an expression of the form
b-x>a-pT+ay or b-x <a-pT+aop,

where x € I' is a shared variable, @ € Z"! is a vector of
integers, ag, b € Z, and p is the vector of all parameters. The
set of all simple guards is denoted by G. A threshold guard
(or just a guard) is a conjunction of simple guards.

A rule r is a tuple (from, &5, ¢, w) where from € L is the
source location, 8§, € Dist(L) is a probability distribution
over the destination locations, ¢ is a conjunction of guards,
andu € ngl is the update vector.

If r.8,, is a Dirac distribution, i.e., there exists £ € L
such that r.8,,(£) = 1, we call r a Dirac rule and write it
as (from, £, ¢, u). Destination locations of non-Dirac rules
are in F. (Coin-toss transitions only happen at the end of a
round.) If all rules of PTA are Dirac, then this automaton is
also a threshold automaton [23].

As in [23], we only consider so-called canonic threshold
automata, that is, every rule r that lies on a cycle ensures that
r.u = 0. Moreover, to simplify formalization of fairness con-
straints (to model reliable communication between processes
of a distributed algorithm), we will exploit a characteristic of
all our benchmarks, namely that there are no cycles within a
round, except possibly self-loops.

Remark 1 The above condition r.u = 0 forarule r onacycle
may seem to be prohibitively restrictive. Note, however, that
we use a shared variable x € I' to encode the number of
the messages of type x that are sent by all correct processes.
Hence, when constructing a threshold automaton, it is impor-
tant to preserve the following invariant: the automaton may
increase every variable at most once. This invariant allows
us to model sending of a message in the environment with
reliable communication [19] (which still allows for process
failures). In an implementation of a distributed algorithm, a
node would maintain the set of messages that it has received
from other peers, and the node would discard duplicate mes-
sages. If a rule r increased the variable x, and the rule r lied
on acycle, then this would model the situation, in which a sin-
gle process broadcasts a message by using several identities.
This is forbidden in the classical fault-tolerant distributed
algorithms.

We have investigated extensions of (non-probabilistic)
threshold automata, including the automata that allow all
rules to increase shared variables [28]. For such automata,
the parameterized model checking problem is still decidable.
However, the reduction-based techniques of ByMC [26] are
not applicable to counter systems of non-canonical threshold
automata. O

Probabilistic threshold automata model algorithms with
multiple rounds that follow the same code. Informally, a
round happens between border locations and final locations.

@ Springer

The round-switch rules let processes move from final loca-
tions of a given round to border locati