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Abstract Reliable polymeric motors are required for the con-
struction of rising accurate robots for surgeon assistance. Ar-
tificial muscles based on the electrochemistry of conducting
polymers fulfil most of the required characteristics, except the
presence of creeping effects during actuation. To avoid it, or to
control it, a deeper knowledge of its physicochemical origin is
required. With this aim here bending bilayer tape/PPy-DBSH
(Polypyrrole-dodecylbenzylsulphonic acid) full polymeric ar-
tificial muscles were cycled between −2.5 and 1 V in aqueous
solutions with parallel video recording of the described
angular movement. Coulo-voltammetric (charge-potential,
QE), dynamo-voltammetric (angle-potential, αE), and
coulo-dynamic (charge-angle, Qα) muscular responses cor-
roborate that 10 % of the charge is consumed by irreversible
reactions overlapping the polymer reduction at the most ca-
thodic potentials. In parallel, the range of the bending angular
movement (145°) shifts by 15° per cycle (creeping effect)
pointing to the irreversible charge as possible origin of the
irreversible swelling of the PPy-DBS film. Different slopes
in the closed loop part of theQE identify the different reaction
driven structural processes in the film: oxidation-shrinking,
oxidation-compaction, reduction-relaxation, reduction-swell-
ing, and reduction-vesicle’s formation. Despite the irreversible
charge fraction, the muscle motor keeps a Faradaic behaviour:
described angles are linear functions of the consumed charge
in the full potential range.
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Introduction

The design and construction of robots for surgeon’s assistance
is becoming a critical issue for clinical advances. Reducing
operator fatigue, improving accuracy and increasing repeat-
ability consume most of the efforts in the area of computer-
integrated surgery and robotic assistants [1, 2].

The simultaneous use of magnetic resonance images for the
visual control of the surgeon area imposes limitations to the
use of ferromagnetic materials [3]. Polymers are becoming the
most suitable materials for developing two basic robotic com-
ponents: actuators [4–13] and mechanical sensors [14–23].
Indeed artificial muscles based on conducting polymers work
as haptic motors [24–27]: one physically uniform device
fulfils both actuating and sensing requirements. From an en-
gineering point of view, they are very robust motors due to its
Faradaic nature: the position of the motor is under linear con-
trol of the consumed charge, the rate of the movement is under
linear control of the applied current, and different devices with
different geometry or including different masses of
conducting polymers produce the same angular displacement
under flow of the same charge per unit of conducting polymer
mass and per unit of time [28–31].

Different families of materials constitute the named
conducting polymers [32–37]. One of the remaining problems
to get confidential products from artificial muscles based on
conducting polymers is that some of those conducting poly-
mer families use to develop active creeping effects. After sub-
mitting the device to a potential cycle, or to a charge cycle, the
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device doesn’t recover its initial position originating a contin-
uous displacement of the movement range on consecutive
actuation cycles [38–43]. Creeping effects require quite com-
plex self-compensation control processes to get confident
products [44–50]. A more precise knowledge of the creeping
effect origin may allow its elimination or an easier theoretical
compensation. Not many efforts have been done in this direc-
tion. Recently, we have discovered from the voltammetric and
coulo-voltammetric responses of self-supported electrodes of
polypyrrole (PPy) blends with organic macro-anions (MA−) in
aqueous solutions cycled up to −2.5 V that most of the in-
volved charge is consumed by the reversible film oxidation/
reduction with exchange of cations (C+) and water (S) with the
electrolyte following the general reaction (1) [28]:

Pol0
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MA‐ð Þn Cþð Þn Sð Þm
� �

gel
⇄ Polnþð Þ MA‐ð Þn
� �

s

þ n Cþð Þ þ m Sð Þ þ n e‐ð Þmetal ð1Þ

In addition, a minor fraction of the consumed charge gives
irreversible reactions at high cathodic potentials, overlapping
reaction 1 backwards. Coulo-voltammetric responses allow a
quantitative determination of this irreversible charge from
self-supported electrodes of polypyrrole blends with
dodecyl-bencylsulphonic acid (DBSH) [51] or para-
benzolsulfonic acid (PBSH) [52] or from polypyrrole elec-
trodes coating metals [53]. This irreversible open coulo-
voltammetric fraction is not present in responses from PPy
electrodes exchanging small anions [51, 54]. Irreversible
charges were attributed to the hydrogen evolution from the
organic acid constituent. Here, we will investigate the evolu-
tion under potential cycling of the angular movement de-
scribed by a bilayer PPy-DBS bending artificial muscles with
the consumed charge from the coulo-dynamic (charge-angle)
responses quantifying, simultaneously, charges consumed per
cycle by reversible and irreversible reactions trying to find
some correlation between the irreversible charge and creeping
effects.

Experimental

The electrogeneration of the polypyrrole films, the construc-
tion of the PPy/tape bilayer muscles, the experimental electro-
chemical procedures, and the working conditions have been
described in previous papers [51, 55]. The PPy/tape bilayer is
a full polymeric device without any metal content. The metal
clamp allowing the PPy electrical contact with the working
electrode (WE) plug from the potentiostat/galvanostat is locat-
ed outside the electrolyte. In order to avoid uncertainties relat-
ed to the possible presence of the irreversible hydrogen evo-
lution by water electrolysis [53] at the polymer/metal clamp

interface, a transversal lacquer strip is painted around the bi-
layer below the clamp contact to prevent the electrolyte ascen-
sion by capillarity. The bilayer muscle below the lacquer strip
was immersed in the electrolyte.

All electrochemical studies were performed using an
Autolab PGSTAT-100 potentiostat/galvanostat controlled by
a personal computer using a (GPES®: General Purpose Elec-
trochemical System) electrochemical software.

The electrochemical measurements were carried out in
LiClO4 aqueous solutions. Parallel angular displacements of
the bending muscles were recorded with a vision system using
EVI-D31 SONY® digital cameras controlled by a Matrox®
card and a control system programmed in C++ for image
processing in Matlab®. The experimental setup is shown by
Fig. 1.

Results and discussion

The bilayer muscle was submitted in 0.1 M LiClO4 aqueous
solution to consecutive potential cycles between −2.50 and
1 V, vs. Ag/AgCl (3 M KCl), at a sweep rate, ν, of
6 mV s−1. The counter electrode was a stainless steel plate
(4 cm2). During the initial 10 consecutive potential sweeps,
the system shows rising voltammetric responses correspond-
ing to the adaptation, after electrosynthesis, of the internal
polymer film structure to the new oxidation/reduction condi-
tions: any structural memory from the electrogeneration is
erased by cycling. After those initial cycles, stationary
voltammetric responses to consecutive potential cycles are
obtained. Any new experimental change (i.e., potential limits,
electrolyte concentration) gives stationary responses after only
two consecutive cycles. This bending bilayer tape/PPy-DBS
muscle (a full polymeric system, without any metal in-
between both films) translates very small PPy volume varia-
tions into large macroscopic bending angles of up to 145°.
Figure 2a depicts the stationary third voltammetric response
from the bilayer. Ten characteristic reference points (1 to 10)
were indicated on the voltammetric response (Fig. 2a).

By voltammetric integration, the evolution of the charge
(coulo-voltammetric, charge/potential or Q/E, responses
[56]) consumed during the potential sweep by the PPy-DBS
reactions is attained (Fig. 2b). Points 1 to 10 correlate those
from the voltammogram (Fig. 2a). Negative charge incre-
ments indicate reduction reaction and positive increments re-
fer to oxidation reactions.

In parallel to the voltammetric control (Fig 2a), the bending
movement of the bilayer muscles was video recorded. Pictures
c1 to c10 from Fig. 2 show the video frames corresponding to
the bended muscle at the points 1 to 10, respectively, from
Fig. 2a, b. The angle described by the film bottom was mea-
sured from the video frame corresponding to each muscle
potential as indicated in Fig. 1 [54]. Figure 2b, dotted line,
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shows the dynamo-voltammetric (angle-potential) muscular
response. Figure 2d shows the experimental coulo-dynamic
(charge-angle) muscular response. Positive angular displace-
ments mean clockwise bending movement of the muscle bot-
tom and negative, anticlockwise displacements. Anticlock-
wise bending movement is observed during the PPy-DBS
oxidation from point 2 to point 6 and clockwise bending
movement during the PPy-DBS reduction, from point 1 to
point 2 and from point 6 to point 10. Taking into account that
the relative position of the muscle layers in the pictures is as
follows: tape (left side)/PPy-DBS (right side) bending move-
ments indicate that the PPy-DBS film shrinks by expulsion of
cations and water (picture c2 to c6) during the positive incre-
ment of the consumed charge from point 2 to point 6 (Fig. 2b),
that means during the PPy-DBS film oxidation (reaction 1
forwards). The film swells by entrance of cations and water
driven by the PPy-DBS reduction, reaction 1 backwards, with

negative increment of the charge (Fig. 2b) producing a clock-
wise movement (pictures c1 to c2 and c6 to c10).

Slopes from the coulo-voltammetric responses quantify the
PPy-DBS layer reaction rate (reaction 1 forwards and back-
wards) at every experimental potential:

ΔQ Cð Þ
ΔE Vð Þ

ν V˙s−1
� �

F C˙mol−1
� �

1

m gð Þ ¼
ν˙ΔQ

F˙ΔE˙m
mol˙s−1˙g−1
� � ¼ r mol˙s−1˙g−1

� �ð2Þ

whereΔ indicates variation, F is the Faraday constant (96 500
C mol−1), and ν (mV s−1) is the experimental potential sweep
rate.

Any QE slope variation identifies either, a different reac-
tion driven structural processes in the PPy/DBS film, its po-
tential ranges and the involved charges [51, 53]. Thus, Fig. 1b
corroborates that PPy/DBS film reduction-swelling (reaction 1

Fig. 1 Scheme of the
electrochemical cell and
configuration of electrodes (WE
working electrode, CE
counterelectrode, RE reference
electrode) used to follow the
electrochemical behaviour of the
bilayer actuator (tape/PPy-DBS).
A vision system constituted by
two perpendicular video-cameras
was used to record and follow the
angular movement in aqueous
electrolyte solutions
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backwards) goes on between the initial potential (point 1) and
theQEminimum, point 2. There, the film oxidation-shrinking
(from point 2 to 4) and its subsequent oxidation-
conformational packing (from point 4 to 6) with expulsion
of cations and water (reaction 1, forwards) takes place. The
separation point between oxidation-shrinking and oxidation-
compaction regions is the closing potential.

After the QE maximum, the film reduction starts with a
very slow reduction-relaxation process (points 6–7), followed
by the fast reduction-swelling process (point 7 to 8) and then a
slow reduction process (points 8 to 10) attributed to the for-
mation of vesicles (water and ions surrounded by a DBS layer)
[33, 57–59] in the film, similar to those observed in colloidal
dispersions of the surfactant [60].

The reduction charge (Fig. 1b full line) always drives the
volume increment of the PPy-DBS film due to the entrance of
cations and water giving a parallel angular displacement
(Fig. 1b, dotted line).

The slow reduction process at cathodic potential (from 9 to
10 and from 1 to 2) overlaps the parallel presence of an irre-
versible process, revealed by the open part of theQV response
(Fig. 1b) and attributed to the DBSH reduction with slow
hydrogen evolution [51, 53]. The charge difference between
the initial and final points of the QE response at the cathodic
potential limit (the open QE part) is the irreversible charge
consumed by the irreversible and slow hydrogen evolution
[51, 53]. The charge difference between the QE closed loop
maximum and its minimum is the reversible film oxidation/
reduction (reaction 1) charge and, considering the different
slopes, the charge involved by each of the reaction driven
structural processes.

For those bilayer muscles constituted by CPs which
coulovoltammetric responses doesn’t show any irreversible
reaction in a similar potential ranges a linear coulo-dynamic
(Q/α) response is attained, proving the Faradaic origin of the
movement in the full potential range [29–31, 54]. Here despite
the presence of some reduction irreversible charge the
coulodynamic response (Q/α), Figure 2d, corroborates the
faradic (reaction 1) nature of the motor movement in the full
potential range:

α ¼ α0 þ kQ ð3Þ

where α (degrees) is the described angle, α0 is the initial
position of the muscle, Q (C) is the consumed charge and k

(degrees C−1) is the coulodynamic constant (the empirical
slope from Fig. 2d) of the system conducting polymer-tape-
electrolyte. Through reaction 1 the charge controls the number
(n) of monovalent cations moving into the film during reduc-
tion or expulsed during oxidation: n=Q/e−, where e− repre-
sents the electron charge. Every new cation moving into the
film membrane drives the entrance of a defined number of
water molecules for osmotic balance [61–65]. The result is
that the charge controls the PPy-DBS film volume variation,
the concomitant variation of the generated stress gradient
across the bilayer muscle, and the correlated amplitude of
the described angle.

The most significant aspect from Fig. 2b and 2d is the
presence of both, a cathodic irreversible reduction charge of
25 mC, versus a total reversible charge of 252 mC, and an
irreversible clockwise (related to the muscle position at the
beginning of the potential sweep: point 1 to point 10 distance)
bending shift of 14° (creeping angle) versus a total described
angle of 145°. As a consequence of the creeping effect after
four consecutive cycles, each producing a creeping shift of
14°, the reduced muscle’s bottom at the end of the cathodic
sweep moved outside the solution. Under similar conditions,
bilayer muscles constituted by conducting polymers without
irreversible reaction doesn’t present, according with the liter-
ature [30, 31, 54], creeping effects. Those results point to the
irreversible charge as origin (or one of the possible compo-
nents) of the creeping effect in PPy-DBS films. This charge
originates the irreversible hydrogen evolution from DBSH
component and a parallel irreversible film swelling per poten-
tial cycle, as deduced from the creeping angle.

Once identified, the possible origin of the creeping effect
different experimental approaches will be investigated during
subsequent works in order to compensate physical (creeping)
and chemical (local concentrations) effects of the creeping
driven irreversible reaction.

Conclusion

Coulo-voltammetric (charge-potential) responses from −2.5 to
1 V from a full organic tape/PPy-DBS bilayer muscle in aque-
ous solutions indicates the presence of parallel slow irrevers-
ible reactions at high cathodic potential overlapping the re-
versible reduction of the PPy layer. The charge spent by the
irreversible process is around 10 % of the coulo-voltammetric
charge. A constant angle of 145° is described (go and back)
per cycle but shifting 14° clockwise per cycle (creeping ef-
fect). The reversible, per cycle, film oxidation/reduction
charge measured form the coulo-voltammetric-closed loop is
252 mC per cycle. The irreversible charge per cycle obtained
from the QE open part is 25 mC per cycle. The clockwise
creeping displacement per cycle points to the presence of an
irreversible PPy-DBS swelling linked to the irreversible

�Fig. 2 a Stationary voltammetric response from a tape/PPy-DBS bilayer
muscle submitted to consecutive potential sweeps between −2.50 and 1.0 V
at 6 mV s−1 in 0.1 M LiClO4 aqueous solution. b Coulo-voltammetric
response obtained by integration of the voltammogram, and parallel
evolu t ion of the angle descr ibed (dots ) by the muscle :
dynamo-voltammetric response. c Pictures (c1 to c10) show the bending
position of themuscle corresponding to the points 1 to 10 from Fig. 2a, b, d.
d Evolution of the angular displacement of the muscle with the consumed
charges, coulo-dynamic response, along the potential cycle
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hydrogen evolution from the HDBS component. The different
slopes from the QE responses corroborate the presence of the
reaction driven structural changes: oxidation-shrinking,
oxidation-compaction, reduction-relaxation, reduction-swell-
ing, and reduction-vesicle formation. The coulo-dynamic
(Q/α) response of the muscle corroborates that, despite the
presence of the irreversible hydrogen evolution, the muscle
still behaves as a Faradaic polymeric motor: the described
angle follows a linear dependence of the consumed charge
up to −2.5 V.
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