Skip to main content
Log in

Diffusion aspects of lithium intercalation as applied to the development of electrode materials for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The creation of new electrode materials and the modification of existing ones are important trends in the development of lithium-ion batteries. Of special significance is to evaluate their diffusivity, i.e., the ability of providing transfer of the electroactive component. Such electrochemical techniques as cyclic voltammetry, electrochemical impedance spectroscopy, potentiostatic intermittent titration technique, and galvanostatic intermittent titration technique are used for this purpose. The values of chemical diffusion coefficient D estimated in similar electrode materials are shown to scatter by several orders of magnitude. Principal causes of this rather considerable scattering are discussed, including the uncertainty of diffusion area estimations and the use of various approaches to deriving equations to calculate D. Our conclusions are illustrated by examples of D estimations in the electrode materials Li x C6, Li x Sn, Li x TiO2, Li x WO3, LiM y Mn2−y O4, and LiFePO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon J-M (1996) J Electrochem Soc 143:1890–1903

    Article  Google Scholar 

  2. Sandi G, Winans RE, Carrado KA (1996) J Electrochem Soc 143:L95–L96

    Article  CAS  Google Scholar 

  3. Jean M, Desnoyer C, Tranchant A, Messina R (1995) J Electrochem Soc 142:2122–2125

    Article  CAS  Google Scholar 

  4. Takami N, Satoh A, Hara M, Ohsaki T (1995) J Electrochem Soc 142:371–379

    Article  CAS  Google Scholar 

  5. Takami N, Satoh A, Ohsaki T, Kanda M (1998) J Electrochem Soc 145:478–481

    Article  CAS  Google Scholar 

  6. Funabiki A, Inaba M, Ogumi Z, Yuasa SI, Otsuji J, Tasaka A (1998) J Electrochem Soc 145:172–178

    Article  CAS  Google Scholar 

  7. Piao T, Park S-M, Doh C-H, Moon S-I (1999) J Electrochem Soc 146:2794–2798

    Article  CAS  Google Scholar 

  8. Chang YC, Sohn HJ (2000) J Electrochem Soc 147:50–58

    Article  CAS  Google Scholar 

  9. Chang YC, Jong JH, Fey GTK (2000) J Electrochem Soc 147:2033–2038

    Article  CAS  Google Scholar 

  10. Ong TS, Yang H (2001) Electrochem Solid-State Lett 4:A89–A92

    Article  CAS  Google Scholar 

  11. Dollé M, Orsini F, Gozdz AS, Tarascon J-M (2001) J Electrochem Soc 148:A851–A857

    Article  Google Scholar 

  12. Yu P, Popov BN, Ritter JA, White RE (1999) J Electrochem Soc 146:8–14

    Article  CAS  Google Scholar 

  13. Nishizawa M, Hashitani R, Itoh T, Matsue T, Uchida I (1998) Electrochem Solid-State Lett 1:10–12

    Article  CAS  Google Scholar 

  14. Wang Q, Li H, Huang X, Chen L (2001) J Electrochem Soc 148:A737–A741

    Article  CAS  Google Scholar 

  15. Umeda M, Dokko K, Fujita Y, Mohamedi M, Uchida I, Selman JR (2001) Electrochim Acta 47:885–890

    Article  CAS  Google Scholar 

  16. Dokko K, Fujita Y, Mohamedi M, Umeda M, Uchida I, Selman JR (2001) Electrochim Acta 47:933–938

    Article  CAS  Google Scholar 

  17. Churikov AV, Volgin MA, Pridatko KI (2002) Electrochim Acta 47:2857–2865

    Article  CAS  Google Scholar 

  18. Churikov AV, Ivanischev AV (2003) Electrochim Acta 48:3677–3691

    Article  CAS  Google Scholar 

  19. Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O (2009) Electrochim Acta 54:4631–4637

    Article  CAS  Google Scholar 

  20. Tang K, Yu X, Sun J, Li H, Huang X (2011) Electrochim Acta 56:4869–4875

    Article  CAS  Google Scholar 

  21. Zhang SM, Zhang JX, Xu SJ, Yuan XJ, He BC (2013) Electrochim Acta 88:287–293

    Article  CAS  Google Scholar 

  22. Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ (2006) J Power Sources 159:717–720

    Article  CAS  Google Scholar 

  23. Gao F, Tang Z (2008) Electrochim Acta 53:5071–5075

    Article  CAS  Google Scholar 

  24. Liu J, Jiang R, Wang X, Huang T, Yu A (2009) J Power Sources 194:536–540

    Article  CAS  Google Scholar 

  25. Li L, Tang X, Liu H, Qu Y, Lu Z (2010) Electrochim Acta 56:995–999

    Article  CAS  Google Scholar 

  26. Jiang Z (2012) Jiang Z–J. J Alloys Compd 537:308–317

    Article  CAS  Google Scholar 

  27. Zhao D, Feng Y-L, Wang Y-G, Xia Y-Y (2013) Electrochim Acta 88:632–638

    Article  CAS  Google Scholar 

  28. Sun CS, Zhou Z, Xu ZG, Wang DG, Wei JP, Bian XK, Yan J (2009) J Power Sources 193:841–845

    Article  CAS  Google Scholar 

  29. Churikov AV, Ivanishchev AV, Ivanishcheva IA, Sycheva VO, Khasanova NR, Antipov EV (2010) Electrochim Acta 55:2939–2950

    Article  CAS  Google Scholar 

  30. Xianming W, Shang C, Zeqiang H, Mingyou M, Jianben L (2009) J Wuhan Univ Technol Mater 24:706–710

    Article  Google Scholar 

  31. Singh D, Kim W-S, Craciun V, Hofmann H, Singh RK (2002) Appl Surf Sci 197–198:516–521

    Article  Google Scholar 

  32. Yamada O, Ishikawa M, Morita M (2000) Electrochim Acta 45:2197–2201

    Article  CAS  Google Scholar 

  33. Deiss E, Häriger D, Novak P, Haas O (2001) Electrochim Acta 46:4185–4196

    Article  CAS  Google Scholar 

  34. Eftekhari A (2001) Electrochim Acta 47:495–499

    Article  CAS  Google Scholar 

  35. Cao F, Prakash J (2002) Electrochim Acta 47:1607–1613

    Article  CAS  Google Scholar 

  36. Hjelm A-K, Lindbergh G (2002) Electrochim Acta 47:1747–1759

    Article  CAS  Google Scholar 

  37. Mohamedi M, Takahashi D, Itoh T, Uchida I (2002) Electrochim Acta 47:3483–3489

    Article  CAS  Google Scholar 

  38. Bang HJ, Donepudi VS, Prakash J (2002) Electrochim Acta 48:443–451

    Article  CAS  Google Scholar 

  39. Mohamedi M, Makino M, Dokko K, Itoh T, Uchida I (2002) Electrochim Acta 48:79–84

    Article  CAS  Google Scholar 

  40. Xiao L, Guo Y, Qu D, Deng B, Liu H, Tang D (2013) J Power Sources 225:286–292

    Article  CAS  Google Scholar 

  41. Wang YZ, Shao X, Xu HY, Xie M, Deng SX, Wang H, Liu JB, Yan H (2013) J Power Sources 226:140–148

    Article  CAS  Google Scholar 

  42. Yi T-F, Yin L-C, Ma Y-Q, Shen H-Y, Zhu Y-R, Zhu R-S (2013) Ceram Int 39:4673–4678

    Article  CAS  Google Scholar 

  43. Tang X-C, Song X-W, Shen P-Z, Jia D-Z (2005) Electrochim Acta 50:5581–5587

    Article  CAS  Google Scholar 

  44. Xie J, Kohno K, Matsumura T, Imanishi N, Hirano A, Takeda Y, Yamamoto O (2008) Electrochim Acta 54:376–381

    Article  CAS  Google Scholar 

  45. Xie J, Tanaka T, Imanishi N, Matsumura T, Hirano A, Takeda Y, Yamamoto O (2008) J Power Sources 180:576–581

    Article  CAS  Google Scholar 

  46. Tang SB, Lai MO, Lu L (2008) Mater Chem Phys 111:149–153

    Article  CAS  Google Scholar 

  47. Ye SH, Bo JK, Li CZ, Cao JS, Sun QL, Wang YL (2010) Electrochim Acta 55:2972–2977

    Article  CAS  Google Scholar 

  48. Quan Z, Ohguchi S, Kawase M, Tanimura H, Sonoyama N (2013) Preparation of nanocrystalline LiMn2O4 thin film by electrodeposition method and its electrochemical performance for lithium battery. J Power Sources. doi:10.1016/j.jpowsour.2012.12.087

    Google Scholar 

  49. Manjunatha H, Mahesh KC, Suresh GS, Venkatesha TV (2011) Electrochim Acta 56:1439–1446

    Article  CAS  Google Scholar 

  50. Churikov AV, Sycheva VO (2011) Russ J Electrochem 47:1043–1048

    Article  CAS  Google Scholar 

  51. Churikov AV, Sycheva VO (2012) Russ J Electrochem 48:111–116

    Article  CAS  Google Scholar 

  52. Churikov AV, Romanova VO (2013) Russ J Electrochem 49:272–277

    Article  CAS  Google Scholar 

  53. Churikov AV, Romanova VO (2012) Ionics 18:837–844

    Article  CAS  Google Scholar 

  54. Levi MD, Aurbach D (1999) Electrochim Acta 45:167–185

    Article  CAS  Google Scholar 

  55. Levi MD, Gamolsky K, Aurbach D, Heider U, Oesten RJ (1999) Electroanal Chem 477:32–40

    Article  CAS  Google Scholar 

  56. Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L (1999) J Electrochem Soc 146:1279–1289

    Article  CAS  Google Scholar 

  57. Levi MD, Aurbach D, Vorotyntsev MA (2002) Condens Matter Phys 30:329–362

    Article  CAS  Google Scholar 

  58. Vorotyntsev MA, Levi MD, Aurbach D (2004) J Electroanal Chem 572:299–307

    Article  CAS  Google Scholar 

  59. Levi MD, Markevich E, Aurbach D (2005) J Phys Chem B 109:7420–7427

    Article  CAS  Google Scholar 

  60. Levi MD, Aurbach D, Maier J (2008) J Electroanal Chem 624:251–261

    Article  CAS  Google Scholar 

  61. Montella C (2001) J Electroanal Chem 497:3–17

    Article  CAS  Google Scholar 

  62. Montella C (2002) J Electroanal Chem 518:61–83

    Article  CAS  Google Scholar 

  63. Montella C (2005) Electrochim Acta 50:3746–3763

    Article  CAS  Google Scholar 

  64. Montella C (2006) Electrochim Acta 51:3102–3111

    Article  CAS  Google Scholar 

  65. Li J, Yang F, Xiao X, Verbrugge MW, Cheng Y-T (2012) Electrochim Acta 75:56–61

    Article  CAS  Google Scholar 

  66. Li J, Xiao X, Yang F, Verbrugge MW, Cheng Y-T (2012) J Phys Chem C 116:1472–1478

    Article  CAS  Google Scholar 

  67. Churikov AV, Pridatko KI, Ivanishchev AV, Ivanishcheva IA, Gamayunova IM, Zapsis KV, Sycheva VO (2008) Russ J Electrochem 44:550–557

    Article  CAS  Google Scholar 

  68. Churikov AV, Zobenkova VA, Pridatko KI (2004) Russ J Electrochem 40:63–68

    Article  CAS  Google Scholar 

  69. Zobenkova VA, Churikov AV (2004) Russ J Power Sources (Elektrokhim Energetika) 4:29

    CAS  Google Scholar 

  70. Churikov AV, Ivanishchev AV, Ivanishcheva IA, Zapsis KV, Gamayunova IM, Sycheva VO (2008) Russ J Electrochem 44:530–542

    Article  CAS  Google Scholar 

  71. Volgin MA, Churikov AV, Konoplyantseva NA, Gridina NA, L'vov AL (1998) Russ J Electrochem 34:681–687

    CAS  Google Scholar 

  72. Suzuki T, Wada H, Yoshimoto Y, Yoshida M (1992) US Patent 5169508

  73. Ivanishchev AV, Churikov AV, Ivanishcheva IA, Zapsis KV, Gamayunova IM (2008) Russ J Electrochem 44:510–524

    Article  CAS  Google Scholar 

  74. Kachibaya EI, Imnadze RI, Paikidze TV, Akhvlediani RA (2006) Russ J Electrochem 42:1224–1234

    Article  CAS  Google Scholar 

  75. Churikov AV, Kachibaya EI, Sycheva VO, Ivanishcheva IA, Imnadze RI, Paikidze TV, Ivanishchev AV (2009) Russ J Electrochem 45:175–182

    Article  CAS  Google Scholar 

  76. Churikov AV, Ivanishchev AV, Ushakov AV, Gamayunova IM, Leenson IA (2013) J Chem Eng Data 58:1747–1759

    Article  CAS  Google Scholar 

  77. Churikov A, Gribov A, Bobyl A, Kamzin A, Terukov E (2013) Mechanism of LiFePO4 solid-phase synthesis using iron (II) oxalate and ammonium dihydrophosphate as precursors. Ionics. doi:10.1007/s11581-013-0948-4

    Google Scholar 

  78. Galus Z (1971) Teoretyczne podstawy electroanalizy chemicznej. Panstwowe wydawnictwo naukowe, Warszawa

    Google Scholar 

  79. Weppner W, Huggins RA (1977) J Electrochem Soc 124:1569–1578

    Article  CAS  Google Scholar 

  80. Pridatko KI, Churikov AV, Volgin MA (2003) Russ J Power Sources (Elektrokhim Energetika) 3:184–191

    Google Scholar 

  81. Skundin AM, Egorkina OY (1995) Russ J Electrochem 31:337–339

    CAS  Google Scholar 

  82. Dathar GKP, Sheppard D, Stevenson KJ, Henkelman G (2011) Chem Mater 23:4032–4037

    Article  CAS  Google Scholar 

  83. Arora P, Doyle M, Gozdz AS, White RE (2000) J Power Sources 88:219–231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (project #13-03-00492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Churikov.

Appendix

Appendix

When the diffusion medium has a flat geometry or the thickness of the diffusion layer L is small in comparison with the particle radius, the phenomenological task reduces to solving Fick's equations for flat diffusion in a homogeneous solid with retardation R s on the external boundary. As a result, the theoretical PITT equations, i.e., the dependence of the current density j on the electrode polarization ΔE was obtained [17, 18]:

$$ j=\frac{2 nFD\varDelta E}{L}\frac{\mathrm{d}{c}_{\mathrm{s}}}{\mathrm{d}E}{\displaystyle \sum_{\mathrm{k}=1}^{\infty }}\frac{\left({\alpha}_{\mathrm{k}}^2+{(hL)}^2\right){ \sin}^2{\alpha}_{\mathrm{k}}}{\alpha_{\mathrm{k}}^2+ hL+{(hL)}^2} \exp \left(-\frac{\alpha_{\mathrm{k}}^2 Dt}{L^2}\right) $$
(A1)

where dE/dc s is the derivative of the electrode potential with respect to the surface concentration c s of the potential-determining particles (coinciding, by sense, with the experimental derivative of the electrode potential with respect to the total concentration dE/dc, though perhaps differing numerically), h = |dE/dc s|/nFDR s is a characteristic parameter to determine the shape of the j(t) curves, R s is the electrode surface resistance, α k the kth positive root of the characteristic equation α tan α = hL. Clearly, hL ≡ Λ in Montella's designations [62]. Equation A1 significantly simplifies for short t:

$$ \begin{array}{c}\hfill j=\frac{\Delta E}{R_{\mathrm{s}}} \exp \left({h}^2 Dt\right)\mathrm{erfc}\left(h\sqrt{ Dt}\right),\kern0.5em t<<{\tau}_{\mathrm{d}}\hfill \\ {}\hfill j=\frac{\Delta E}{R_s}\left(1-\left|\frac{ dE}{d{c}_{\mathrm{s}}}\right|\frac{2}{ nF{R}_{\mathrm{s}}}\sqrt{\frac{t}{\pi D}}\right)\kern1.5em t<<{\left(D{h}^2\right)}^{-1}\hfill \end{array} $$
(A2)

when t ≪ τ dd being the characteristic diffusion time). When GITT is used, the theoretical ΔE vs. j equation reads as [17, 18]:

$$ \varDelta E=\varDelta {E}_{\mathrm{s}}-\frac{j}{ nF}\frac{\mathrm{d}E}{\mathrm{d}{c}_{\mathrm{s}}}\left[\frac{t}{L}-\frac{L}{D}\left\{\frac{1}{3}-\frac{2}{\pi^2}{\displaystyle \sum_{\mathrm{k}=1}^{\infty }}\frac{1}{k^2} \exp \left(-\frac{k^2{\pi}^2 Dt}{L^2}\right)\right\}\right] $$
(A3)

where ΔE s is a rapid jump of potential owing to the Ohmic and surface resistance and proportional to current at not too big j. In the semi-infinite approximation, Eq. A3 takes the form

$$ \varDelta E=\varDelta {E}_s-\frac{2j}{ nF}\frac{\mathrm{d}E}{\mathrm{d}{c}_{\mathrm{s}}}\sqrt{\frac{t}{\pi D}} $$
(A4)

which is valid with an error lesser than 5 % when t < 0.5τ d.

Each of these equations can be used to calculate the chemical diffusion coefficient D. The simple Eqs. A2 and A4 are used for linear approximation of the initial fragments of the transients or current or potential in the j vs. t 0.5 or ΔE vs. t 0.5 coordinates, respectively. Equations A1 and A3 are used for computer processing of full transients. Some model parameters (S, L, R s, dE/dc s, and D) have to be determined independently and set, while the others become a result of processing. The use of Eqs. A2 and A4 requires no knowledge of L, but an exact estimation of the diffusion area A becomes crucial. On the contrary, Eqs. A1 and A3 are insensitive to errors in the A values but require the exact knowledge of the geometry and thickness of diffusion layer.

To estimate D from EIS data, the generalized formula of Warburg's diffusion impedance is applied [52, 53]. Then, the diffusion coefficient at the measurement point c 0 can be calculated from the equation of semi-infinite diffusion

$$ D=\frac{1}{2}{\left(\frac{{\left|\mathrm{d}E/\mathrm{d}c\right|}_{c={c}_0}}{ nFS{W}_{\mathrm{D}}}\right)}^2 $$
(A5)

or from that of finite-length diffusion

$$ D={T}_{\mathrm{D}}{\left(\frac{{\left|\mathrm{d}E/\mathrm{d}c\right|}_{c={c}_0}}{ nFS{R}_{\mathrm{D}}}\right)}^2, $$
(A6)

where W D the semi-infinite Warburg factor, R D the diffusion resistance, T D the characteristic diffusion time constant. Equation A5 goes over to the usual expression \( {W}_{\mathrm{D}}= RT/{(nF)}^2{c}_0\sqrt{2D} \) when E(c) concentration equation by Eq. 4 is substituted into Eq. A5, i.e., when the activity of the potential-determining component is replaced by its volume concentration c 0.

If the diffusional medium is an aggregative (two-layered) solid body with different diffusion coefficients D 1 and D 2 in each layer and different permeability parameters R 1 and R 2 for the two borders, this task can be simplified. As in the electrochemical experiment the electrode potential is determined by the surface concentration c s, in order to find the latter it is enough to only consider the task of transfer in the external phase layer bounded by two borders. Assuming R 1 = R 2 = R s, the theoretical PITT and GITT equations were derived [29]:

$$ j(t)= nFDh\varDelta E\left|\frac{\mathrm{d}{c}_{\mathrm{s}}}{\mathrm{d}E}\right|\left(\frac{1}{2+ hL}+4{\displaystyle \sum_{k=1}^{\infty}\left[\frac{ \exp \left(-{\alpha}_{\mathrm{k}}^2\frac{4 Dt}{L^2}\right)}{2+ hL+\frac{4{\alpha}_{\mathrm{k}}^2}{ hL}}+\frac{ \exp \left(-{\beta}_{\mathrm{k}}^2\frac{4 Dt}{L^2}\right)}{2+ hL+\frac{4{\beta}_{\mathrm{k}}^2}{ hL}}\right]}\right) $$
(A7)
$$ \varDelta E=\varDelta {E}_{\mathrm{s}}+\frac{j}{ nFDh}\left|\frac{\mathrm{d}E}{\mathrm{d}{c}_{\mathrm{s}}}\right|\left(1+ hL-{\displaystyle \sum_{k=1}^{\infty}\frac{2 hL\left({\alpha}_k^2+{(hL)}^2\right)}{\alpha_k^2\left( hL+{(hL)}^2+{\alpha}_k^2\right)}} \exp \left[-\frac{\alpha_k^2 Dt}{L^2}\right]\right), $$
(A8)

where α k and β k are the kth positive roots of the characteristic equations α tan α = hL and β cot β = − hL, respectively. At rather short t, when the diffusion front does not reach the internal boundary, Eqs. A7 and A8 reduce down to Eqs. A2 and A4, respectively.

To describe the E vs. c dependence with a Frumkin-type intercalation isotherm in the framework of the lattice gas model [5460], the differential capacity C dif(x) is used in accordance with the expression:

$$ {C}_{\mathrm{dif}}(x)={\left(g+\frac{1}{x}+\frac{1}{1-x}-0.5\gamma \alpha \left[1- \tanh {\left(\alpha \left(x-0.5\right)\right)}^2\right]\right)}^{-1}, $$
(A9)

where g is the interaction parameter of attraction (g < 0) and repulsion (g > 0) between species, γ appears as the distortion parameter characterizing the change in the interlayer distance, α represents the rigidity parameter. D as related to the self-diffusion coefficient D 0 can be expressed by:

$$ \frac{D}{D_0}=\frac{ Fx\left(1-x\right){Q}_{\mathrm{m}}}{ RT{C}_{\mathrm{dif}}}, $$
(A10)

where Q m is the maximum charge upon intercalation. The second version of the model comprises a more sophisticated expression for C dif(x)

$$ {C}_{\mathrm{d}\mathrm{if}}(x)={\left(g+\frac{1}{x}+\frac{1}{1-x}-2\gamma \frac{\mathrm{d}p}{\mathrm{d}x}+\lambda {\left(\frac{\mathrm{d}p}{\mathrm{d}x}\right)}^2+\left(\lambda p-\gamma x\right)\frac{{\mathrm{d}}^2p}{\mathrm{d}{x}^2}\right)}^{-1} $$
(A11)

involving the interaction parameter λ between the intercalation particles and the host matrix, and the modulating function p(x), proportional to the interlayer spacing:

$$ p(x)=0.5\left[1+{\displaystyle \sum_m}{p}_m \tanh \left[{\alpha}_m\left(x-{x}_m^0\right)\right]\right], $$
(A12)

where m is the number of intercalation phases. To calculate the electrode potential from the intercalation isotherm by numerical integration, the following formula should be used

$$ \left(E-{E}_0\right)={Q}_{\mathrm{m}}\underset{0}{\overset{1}{\int }}{C}_{\mathrm{dif}}^{-1}\mathrm{d}x $$
(A13)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Churikov, A.V., Ivanishchev, A.V., Ushakov, A.V. et al. Diffusion aspects of lithium intercalation as applied to the development of electrode materials for lithium-ion batteries. J Solid State Electrochem 18, 1425–1441 (2014). https://doi.org/10.1007/s10008-013-2358-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2358-y

Keywords

Navigation