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Abstract

Radix puerariae—a popular traditional Chinese medicine—is used for the treatment of diarrhea, acute dysentery, deafness, and
cardiovascular diseases. It can also be used as an effective antioxidant and has been tested as an anticancer drug. Daidzein and
puerarin are its main active compounds. The present contribution was focused on experimental and theoretical studies of the 'H
and "*C NMR chemical shifts and nuclear magnetic shielding parameters of daidzein and puerarin. Experimental data were
gained by exploring standard one-dimensional spectra and a set of two-dimensional measurements: COSY, HSQC, and HMBC.
The theoretical gauge independent atomic orbital density functional theory supporting studies, were performed to determine
shielding constants and chemical shifts in vacuum and methanol-d4 solvent. The correlation between experimental and theoret-
ical data was fairly good, especially when the DFT/PBEO approach was used. The molecular properties of daidzein and puerine
related to antiradical activity were studied in the context of a single-step hydrogen atom transfer mechanism and its correlation
with *C NMR chemical shifts.

Keywords Radix puerariae - Daidzein - Puerarin - NMR measurements - Density functional theory - Chemical shifts - Nuclear
magnetic shielding

Introduction

In China, traditional Chinese medicine (TCM) based on nat-
ural products plays an important role, and accounts for ap-
proximately 40% of total consumption of pharmaceuticals.
However, the active components of plants and their pharma-
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cological mechanisms are still not well recognized and under-
stood. Chinese scholars believe that the curative effect of
some herbal medicines is closely related to the antioxidative
activity found in flavonoids, saponins, polysaccharides, or-
ganic acids, terpenes, etc. [1].

Radix puerariae, belonging to the families of fabaceae or
leguminosae, has been used traditionally for the treatment of
diarrhea, acute dysentery, deafness, and cardiovascular dis-
eases. Since 1950, interest in its phytochemistry and pharma-
cological activity has increased significantly [2, 3]. Over 70
chemical constituents of radix puerariae have been identified.
This collection includes daidzein (Fig. la) and puerarin
(Fig. 1b), daidzin, genistein, genistin, and formononetin.
Puerarin—the first identified major isoflavone—constitutes
the greatest part [1.88-2.55% (w/w)] of this plant [4].
Puerarin, daidzin, and daidzein have been reported to exhibit
estrogenic, antiestrogenic, and anti-inflammatory activities [5,
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Fig. 1 Chemical schemes and structures of a daidzein and b puerarin
(daizein-8-C-glucoside)

6]. Studies indicate that the cardioprotective effects of
puerarin against ischemia and reperfusion injury are mediated
by opening the calcium-activated potassium channels and ac-
tivating protein kinase C—both effects may be due to an an-
tioxidative activity [7]. Also genistein, being an isoflavone,
possesses antioxidative and pharmacologic activities against
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cardiocerebrovascular diseases; its activity is based on scav-
enging of oxygen free radicals [8, 9].

To date, several pharmacological studies on puerarin,
daidzin have been performed, applying liquid chromatogra-
phy (LC), joint liquid chromatography with mass spectrome-
try (LC-MS), and liquid chromatography—electrospray ioni-
zation—mass spectrometry (LC-ESI-MS) to provide chemical
properties of investigated compounds [10—12]. NMR chemi-
cal shifts of daidzein and puerarin have also been measured
[13—15]; however, magnetic shielding has never been reported
for either compound. The present work reports experimental
'H and ">C NMR chemical shifts of daidzein and puerarin
dissolved in methanol-d,. For the same solutions, we also
completed measurements of magnetic shielding using an orig-
inal method from our laboratory [16]. By considering features
of *C NMR spectroscopy, chemical shifts can be used as
promising descriptors for quantitative structure—activity rela-
tionships [17].

Daidzein [7-hydroxy-3-(4-hydroxyphenyl) chromen-4-
one] and puerarin (the 8-C-glucoside of daidzein) are
isoflavones [18, 19]. Molecular properties related to their an-
tioxidative activity are presented. The 'H and '*C NMR mea-
surements of nuclear magnetic shielding and chemical shifts
were determined, and supplementary theoretical studies
allowed for its careful analysis. Theoretical studies include
molecular and corresponding radical structures, atomic charge
distribution, electron spin density distribution for radicals, and
O-H bond dissociation energies (BDE).

Methods
Experimental

The NMR spectra of daidzein and puerarin were obtained at
298.2 K using a Bruker AVANCE III HD 500 MHz spectrom-
eter operating at 500.20 and 125.79 MHz for 'H and '*C
nuclei, respectively, with the 5 mm CPPBBO BB probehead
and 5 mm o.d. glass tubes (528PP, Wilmad, https://www.
wilmad-labglass.com). Liquid CD3;OD was used as the
reference of shielding and lock solvent at the same time. 'H
and "*C shielding values were determined relative to the CD5~
signal of pure methanol-d,. All 'H and '*C shielding values
were obtained on the basis of observed absolute resonance
frequencies of studied samples. The 'H and '*C NMR
chemical shifts were measured relative to pure liquid TMS
used as external reference standards [20, 21]. The
assignment of chemical shifts to individual atoms was
completed on the above basis and additionally using the
variety of two-dimensional(2D: '"H-"H cOosYy, 'H-3C
HSQC and 'H-"3C HMBC) spectra, shown as Figs. S1-S10
in the Supporting Materials.
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Computations

All calculations were performed within the density functional
theory (DFT) [22], applying B3LYP [23-25], M06-2X [26],
and PBEOQ [27] functionals with standard aug-cc-pVTZ [28]
and 6-311G(2d, 2p) atomic basis sets [29]. The structure of
molecules was optimized for every combination of functional/
basis set, and frequency calculations additionally confirmed
the proper determination of equilibrium geometries. Enthalpy
values were calculated for normal conditions. The resulting
structures were used for further studies. The
gauge independent atomic orbital (GIAO) method was used
for carrying out magnetic shielding parameters [30-32], and
theoretical chemical shifts were determined by using the cor-
responding calculations for tetramethylsilane (TMS)
(Table 1). The polarized continuum model (PCM) was applied
to represent solvent [33]. All calculations were performed uti-
lizing Gaussian16 code [34]. Electron spin density plots were
produced by applying the GausView6 program [35].

Results and discussion
Experimental and theoretical NMR studies

We used the same experimental and theoretical procedures in

our present study for daidzein and puerarin as in a previous
report [36]. We performed a complete set of 'H and '>C fre-
quency measurements for chemicals dissolved in methanol-
d4. According to Equations (1) and (2) [16], the shielding
isotropic parameters of protons and carbon nuclei (oy and
oc) were determined as follows:

on = 1-0.153506104 (v /vp) (1-0"p) (1)
oc = 1-0.610389782(vc /vp) (1-07p ) (2)
where vy V¢, and vp are the resonance frequencies of pro-

tons, carbons, and deuterons, respectively. The resonance fre-
quency of —CDj3  deuterons in methanol-d, was vp=

Table 1 Calculated *C and 'H shielding of tetramethylsilane (TMS)
applying different theoretical approaches (in ppm)

Methodology Isolated molecule In methanol-d,
3¢ H 13¢: g
B3LYP/aug-cc-pVTZ 184.50 31.74 185.45 31.73
B3LYP/6-311G(2d,2p) 183.80 31.82 184.29 31.81
MO06-2X/aug-cc-pVTZ 188.81 31.83 189.40 31.82
M06-2X/6-311G(2d,2p) 188.33 31.92 188.66 31.90
PBE0/aug-cc-pVTZ 189.12 31.57 190.06 31.55
PBE0/6-311G(2d,2p) 188.42 31.66 188.94 31.64

76.7839977 MHz, and the deuteron shielding constant was
op*=0.000029593 [16]. Note that the application of Egs. 1
and 2 requires the use of real values of shielding, not
expressed in ppm.

The analogous characterization was performed theoretical-
ly. A comparison of new experimental and calculated results is
shown in Table 2. Here, we present experimental and calcu-
lated magnetic shielding parameters of daidzein. The theoret-
ical results are given for an isolated molecule (a molecule in
vacuum) and for the same molecule dissolved in methanol-d;.
According to root mean square (RMS) values, the correlation
between calculated and experimental shielding parameters in
methanol-d, is better than similar calculations for isolated
molecules. For example, the RMS value in methanol-d,
(7.41) calculated by the PBEO/aug-cc-pVTZ approach is low-
er than the value 7.63 for the molecule in vacuum, and values
used B3LYP/aug-cc-pVTZ and M06-2X/aug-cc-pVTZ are
7.54 and 8.77 in methanol-d4, which are also lower than
values (7.58 and 9.10) in vacuum. For different functionals
within the same basis set, the PBEQ functional is better com-
paring to B3LYP and M06-2X in methanol-d,.

The °C and 'H chemical shifts of daidzein determined
experimentally and theoretically are presented in Table 3.
Comparing the correlation between experimental and calcu-
lated data, PBEQ is again better than the other two functionals.
RMS values for B3LYP and PBEO with the same basis set are
also better in methanol-d, than for the isolated molecule. The
RMS value of chemical shift in methanol-d, calculated in the
PBEO/aug-cc-pVTZ approach is 7.51, which is lower than the
value of 7.69 for the molecule in vacuum. Using B3LYP/aug-
cc-pVTZ approach, values are 7.63 in methanol-d, and 7.82 in
vacuum. For chemical shifts, the basis set 6-311G(2d,2p) is
better than aug-cc-pVTZ. RMS values are 7.38 for the
PBE0/6-311G(2d,2p) approach in methanol-d; and 7.51 for
PBEO/aug-cc-pVTZ, and B3LYP and M06-2X methods pres-
ent same conclusion, i.e., that the basis set 6-311G(2d,2p) is
better than aug-cc-pVTZ both in methanol-d, and in vacuum.
Obviously, the differences of experimental and theoretical 'H
chemical shifts are small (almost within £1 ppm), showing
high consistency between experimental and calculated results.
The correlation between experimental and theoretical chemi-
cal shifts (§) for daidzein is shown in Fig. 2b. This correlation
looks better than the previous plot shown for shielding in
Fig. 2a. In particular, the plot crosses the origin of coordinates
precisely in Fig. 2b.

Tables 4 and 5 present the '*C and 'H shielding values and
chemical shifts of puerarin determined experimentally and
theoretically in the two phases as before. The differences in
3¢ shielding constants for atoms C4, C6, C8, C3” and C5’ are
much higher in our list (from —16.07 ppm to 40.84 ppm for
PBEO0/aug-cc-pVTZ method in vacuum)—the correlation line
is shown in Fig. 3a. However, 'H shielding changes are sim-
ilar to those of daidzein between —4.48 ppm [H(6)] and
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Fig. 2 a-d Correlations between experimental and theoretical shielding constant (o) and chemical shift (9) for daidzein. Atomic numbers refer to the
corresponding data in Fig. 1a, and Tables 2 and 3
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Fig. 3 a-d Correlations between experimental and theoretical shielding constant () and chemical shift (0) for puerarin. Atomic numbers refer to the
corresponding data in Fig. 1b, and Tables 4 and 5
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Table 6 Selected structural

parameters in daidzein and Dihedral angle (2,3,1',2") A (C7-0) B (C4-0)
puerarin (Fig. 1) and correspond-
ing radicals (from B3LYP/aug-cc- Daidzein Molecule 40.54 1.361 1.367
pVTZ)Angles in degree, and dis- Radical (C7)-Oe 39.15 1.249 1365
tances in Angstrom Radical (C4’)-O- 33.07 1.358 1.248
Puerarin Molecule 40.28 1.364 1.366
Radical (C7)-Oe 38.53 1.250 1.364
Radical (C4°)-O- 32.83 1.363 1.248

—6.37 ppm [H(5)]. Results in Table 4 in methanol-d, are much
better than in vacuum for the same method PBEO/aug-cc-
pVTZ, with values ranging from —18.74 ppm to 38.82 ppm.
In Table 5, the PBEO method also presents better RMS results
compared to the other method, RMS values in methanol-d, are
7.67 for PBEO/aug-cc-pVTZ and 7.55 for PBE0/6-
311G(2d,2p). It seems that our experimental data for chemical
shifts compared to results of Xu et al. [14] match our calcu-
lated values well. For example, differences between experi-
mental data and calculated values with PBEO/aug-cc-pVTZ
method methanol-d, are smaller than differences between data
of of Xu et al. [14] and our calculated values (only values
C(2'), C(3"), C(5"), and C(6') are higher).

Comparing Tables 3 and 5, experimental data of
shielding changes between daidzein and puerarin for
each atom are quite small, ranging from —1.52 ppm
[C(3")] to 1.51 ppm [C(2")] based on their similar chem-
ical structure. However, RMS values of puerarin present
better results than daidzein with every method used. For
instance, the RMS value of puerarin is 5.73 ppm for
PBEO/aug-cc-pVTZ in methanol-d4 with 1.68 less than
daidzein, and RMS differences of shielding between
daidzein and puerarin ranging from 0.93 ppm [MO06-
2X/6-311G(2d,2p) in methanol-d4)] to 2.47 ppm
(B3LYP/aug-cc-pVTZ in methanol-d4). Differences of
chemical shifts in Tables 4 and 6 from experimental
results are a little higher than shielding comparing the
same atom between daidzein and puerarin.

Antioxdative properties

The optimization of daidzein and puerarin structures
leads to a nonplanar flovone backbone with a dihedral
angle between benzopyrene and phenyl moieties of
about 40° (Table 6). The corresponding radicals,
resulting from hydrogen abstraction from phenolic
groups, are only slightly more planar. The transforma-
tion of —OH into =0+ substituent results in a shorter C—
O bond with a significant double bond character. The
effect, however, is not strong enough to flatten the fla-
vone skeleton. Puerarin, which is daidzien modified by
a glucoside group, possesses similar structural character-
istics. The charge extraction from the flovone ring is

@ Springer

too small to cause significant geometrical effects
(Table 6).

The scavenging of free OHe or OOHe* radicals of
antioxidants is controlled by their ability to transfer hy-
drogen of phenolic groups attached directly to aromatic
rings according to the following reactions

ROH + OH" = RO’ + H,O (3)
ROH + OOH" = RO’ + H,0, 4)

In the case of the studied compounds, the mechanism of the
single-step hydrogen atom transfer dominates other mecha-
nisms involving electron transfer. The thermodynamics of
such processes is related directly to the delocalization of un-
paired electron on aromatic moieties. The structures of the
studied radicals possess significantly broken planarity,
restricting the space for electron delocalization.

The mesomeric structures for daidzein rationalize the
significant electron density delocalization (Fig. 4). This
observation agrees well with the electron spin density
distribution (Fig. 5, Fig. S11). Interestingly, some trans-
fer of electron spin density is possible from the phenyl
to the benzopyrene fragment. Of the many molecular
properties, such as ionization energy, chemical hardness,
or spin delocalization influencing the radical scaverging
mechanism, the bond dissociation enthalpy (BDE), de-
fined by the reaction

ROH = RO + H’ (5)

is probably the most important. The information provid-
ed by reaction (5) is equivalent to that carried out by
(3) or (4). The enthalpy of cleaving the O—-H bond by
homolysis at a specific temperature is defined as

BDE = Hro + Hy—Hrow (6)

The reference BDE for OHe or OOHe is adopted as
BDE,ef = Hoon + Hu —Huoon (7)

and the enthalpy of the resulting single-step hydrogen atom
transfer (HAT) process is

Hpuat = BDE-BDE,¢
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Fig. 4 Possible mesomeric
structures of daidzein radical
resulting from H dissociation at
position C7-OH

The O-H BDE:s are presented in Table 7. The hydrogen-
donating capacities of daidzein and puerarin were calcu-
lated for positions (C)-OH and (4')-OH. The results,
when compared to reference OOHe and OHe radicals,
indicate the increasing BDE upon hydrogen abstraction
from the benzopyrene ring at position C7. Despite the
fact that the actual mechanism of action of antioxidants
is much more complicated, the HAT parameter consti-
tutes the most important factor for the assessment of
oxidative properties. The transition states (Fig. S12)
for the hydrogen transfer in HAT favor the C4’ position
for the reaction (Table 7). Comparison of '*C chemical
shifts, in agreement with other suggestions [17], indi-
cates a correlation with BDE (and HAT) (Fig. S13).

Fig. 5 Electron spin density
distribution for daidzein radical
phenolic hydrogen loss on
oxygen at a C7 (benzopyrene
ring) and b C4’ (phenyl ring)

Conclusions

Daidzein and puerarin represent two active compounds of
Radix puerariae—an important member of the TCM collec-
tion. The medicinal activity of these compounds is believed to
be related to their free radical scavenging activity. Puerarin
and daidzein are isoflavones and are well known for their
cardioprotective effects. These two chemicals were studied
experimentally, providing a complete NMR analysis and de-
termining the full set of 'H and '*C chemical shifts and cor-
responding shielding constants. The measurements were sup-
ported by theoretical considerations within DFT methodology.
The correlation between calculated and experimental
shielding parameters and chemical shifts is generally good,

@ Springer
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Table7  Calculated '*C and '"H chemical shifts of puerarin and daidzein
molecules (in C7 and C4’ positions) in methanol-d,, phenolic O—H bond
dissociation enthalpies (BDE; kcal mol™), single-step hydrogen atom
transfer (HAT), and transition state for the HAT reaction derived from
B3LYP/aug-cc-pVTZ calculations

Site C H BDE  HAT TS
H,0,* H,0*

Daidzein (C7) 170.53 5.52 86.5 3.7 -13.0 93

Daidzein (C4’) 166.07 499 82.2 —0.6 -17.3 5.8

Puerarin (C7) 166.84  5.72 84.3 1.5 -15.2

Puerarin (C4) 166.14 5.00 82.5 -0.3 -17.0

H,0, 82.8

H,O 99.5

? Reference molecule (see text)

especially when the PBEO approach is used. The antioxidative
properties of daidzein and puerarin were studied with refer-
ence to hydroxyl and hydroperoxyl radicals. The calculated
BDEs indicate the promising antiradical properties of these
compounds. The single-electron hydrogen atom transfer mo-
lecular mechanism seems to be a suitable way to activate these
molecules. The observed correlation between '*C chemcial
shifts and BDE indicates that NMR measurements may pro-
vide useful data for molecules of interest.
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