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Abstract Vanadium-based catalysts are used in many tech-
nological processes, among which the removal of nitrogen
oxides (NOx) from waste gases is one of the most important.
The chemical reaction responsible for this selective catalytic
reaction (SCR) is based on the reduction of NOx molecules to
N2, and a possible reductant in this case is pre-adsorbed NH3.
In this paper, NH3 adsorption on Brønsted OH acid centers on
low-index surfaces of V2O5 (010, 100, 001) is studied using a
theoretical DFT method with a gradient-corrected functional
(RPBE) in the embedded cluster approximation model. The
results of the calculations show that ammonia molecules are
spontaneously stabilized on all low-index surfaces of the
investigated catalyst, with adsorption energies ranging from
−0.34 to −2 eV. Two different mechanisms of ammonia ad-
sorption occur: the predominant mechanism involves the
transfer of a proton from a surface OH group and the stabili-
zation of ammonia as an NH4

+ cation bonded to surface O
atom(s), while an alternative mechanism involves the hydro-
gen bonding of NH3 to a surface OH moiety. The latter
binding mode is present only in cases of stabilization over
a doubly coordinated O(2) center at a (100) surface. The
results of the calculations indicate that a nondirectional local
electrostatic interaction with ammonia approaching a surface
predetermines the mode of stabilization, whereas hydrogen-
bonding interactions are the main force stabilizing the
adsorbed ammonia. Utilizing the geometric features of the
hydrogen bonds, the overall strength of these interactions
was quantified and qualitatively correlated (R=0.93) with

the magnitude of the stabilization effect (i.e., the adsorption
energy).
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Introduction

V2O5-based catalysts are of great importance in the catalytic
reactions used to care for and protect the environment, such as
de-NOx processes. These reactions are mainly responsible
for the removal of the waste gases that are the products of
liquid or gaseous fuel combustion [1]. The interest in using
vanadium-based catalysts in industry is also a result of their
resistance to SO2 poisoning. One useful process is the selec-
tive catalytic reduction (SCR) of nitrogen oxides (NOx) in the
presence of ammonia, which can proceed either in the absence
or in the presence of oxygen. Both processes are called “stan-
dard SCR” [2–20] and proceed according to the following
equations:

6 NO þ 4NH3→ 5N2 þ 6H2O
4NOþ 4NH3 þ O2→4N2 þ 6H2O:

In 2002, the reaction mechanism of so-called fast SCR was
proposed by Koebel et al. [21, 22] and by Madia et al.: [23]:

2NOþ 2NO2 þ 4NH3 ¼ 4N2 þ 6H2O:

In the fast SCR process, the catalyst is re-oxidized by
nitrogen dioxide instead of by the oxygen molecule, and the
rate of this reaction is ten times higher than that for the
standard SCR process. However, such acceleration occurs
only for the equimolecular NO and NO2 mixture, and the
reaction rate decreases dramatically if the fraction of NO2 is
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larger than 50 %. In all SCR processes, side reactions such as
NH3 oxidation to NO, NO2, or N2O (competition with SCR at
high temperature) or the formation of ammonium nitrate
(catalyst poisoning) occur.

The mechanism of the standard SCR reaction, in which
nitrogen oxide is reduced to pure nitrogen and water, is still
not fully clear; therefore, this mechanism has been investigat-
ed extensively by both experimentalists and theoreticians.
Many attempts to understand this process have been made in
the last few years, and twomechanisms are postulated, namely
the Eley–Rideal and Langmuir–Hinshelwood mechanisms.
According to the Eley–Rideal mechanism [24–42], ammonia
is adsorbed and activated at Brønsted centers. Next, an NH3

species reacts with the gas-phase or weakly adsorbed NO
molecule to yield a dinitrogen molecule and water, whereas
the reduced surface (i.e., V–OH groups) is re-oxidized to V=O
by O2 from the gas phase or O from the bulk. The Langmuir–
Hinshelwood mechanism [43–46] also postulates ammonia
adsorption. However, NO is first oxidized by gaseous O2 to
NO2, and then the reaction between the adsorbed ammonia
and the adsorbed NO2 species occurs. The reduced Brønsted
centers are regenerated by a water molecule. Although these
two mechanisms agree with the results of an experiment
suggested by Topsøe et al. [2, 5], the SCR reaction proceeds
according to both the Eley–Rideal and the Langmuir–Hin-
shelwood mechanisms. This conclusion is supported by the
fact that NO molecules can be adsorbed at the coordinatively
unsaturated metallic centers at the catalyst surface, thus
reacting easily as weakly adsorbed species.

The main discussion in the literature concerns the forms of
both the NH3 and NO molecules. Table 1 lists the postulated

active forms of both substrates in the SCR reaction for differ-
ent catalysts. In the case of the reactions catalyzed by pure
V2O5, the NH3 molecule is adsorbed at the Brønsted acid
centers in the form of NH4

+ cations, whereas NO is in the
gaseous phase; the reaction occurs via the Eley–Rideal mech-
anism. However, the detailed mechanism of the simple acti-
vation of the ammonia molecule is still a matter of controver-
sy, especially regarding the localization of the active sites
responsible for this elementary step. Miyamoto and Inomata
et al. [24–27] suggested that the active Brønsted centers are
localized at the (010) surface of V2O5, whereas Gasior and
Haber [42] indicated planes that host the surface OH groups.
The existence of Brønsted acid sites at the unsaturated (001)
and (100) faces of the V2O5 crystals was also confirmed by
Andersson [51], who postulated that these net planes are
responsible for the adsorption and dissociation of a water
molecule, which consequently leads to surface hydroxylation.
Moreover, Ozkan et al. [39–41] also demonstrated that the
hypocoordinated (001) and (100) net planes of V2O5 serve as
active faces in the SCR mechanism, and the (010) face is
mainly responsible for the ammonia oxidation reactions. It
has also been suggested that ammonia can be coordinatively
adsorbed on the surface vanadium cations, which act as the
Lewis acidic centers in the form of V–NH3 or V–NH2 species.

In this study, the first step in the selective catalytic reduc-
tion of NOx by ammonia is discussed, mainly involving NH3

adsorption on the surface OH groups (Brønsted acid centers)
that are present at three low-index V2O5 surfaces. There have
been a number of theoretical studies of the ammonia adsorp-
tion on Brønsted acid sites using both cluster [26, 49, 50,
52–58] and periodic [59, 60] approaches at different levels of
theory, including the semiempirical level [26], post-Hartree
methods [61], and the density functional theory level [49, 50,
52, 53, 55–61]. The conclusions from these investigations are
similar and indicate that, in almost all cases, ammonia is
stabilized at surface OH groups in the form of NH4

+ cations,
as postulated on the basis of experimental results. However,
the above studies are focused only on the (010) V2O5 net
plane, but it is known that vanadium crystals can expose other
low-index surfaces, such as coordinatively unsaturated (100)
and (001) surfaces. The fact that approximately 15 % of the
overall contribution to the crystallite structure comes from
these surfaces [62] indicates that unsaturated surfaces might
play an important role in the catalytic process, as was postu-
lated by Haber [42] and Ozkan [39–41]. The present paper
discusses ammonia adsorption on OH centers of all three low-
index V2O5 surfaces. Two different modes of ammonia stabi-
lization are reported: (i) an NH4

+ moiety hydrogen bonded to
surface oxygen atoms and (ii) an NH3 moiety hydrogen bond-
ed to the surface OH group. The mode and strength of the
ammonia stabilization over various adsorption sites are
discussed in terms of the local electrostatic potential of the
surface binding sites and the strength of the hydrogen bonds

Table 1 Forms of the activated NH3 and NO species postulated to be
involved in the SCR mechanism as a function of the catalyst used.
Additionally, the table includes a list of postulated active centers thought
to be responsible for the stabilization of ammonia

Active form of: Catalyst Postulated
active center(s)

Reference(s)

NH3 NO

NH4
+ NO2 (ads) V2O5 – [43–45]

NH4
+ NO (gas) V2O5 V=O, V–OH [24–27]

NH4
+ NO (gas) V2O5 V–OH, V–O–

V
[42]

NH4
+ NO (gas/ads) V2O5/TiO2 V=O, V–OH [4, 47]

NH3

NH4
+

NO (gas) V2O5 V=O, V=O
V=O, V–OH
V–OH, V–OH

[39–41]

V–O–NH2 NO (gas) V2O5/support V=O, V=O [35, 36]

V–NH2 NO (gas) V2O5/TiO2 V=O [48]

NH3(ads)
NH2

N2O (ads)
NO (ads)

V2O5/support
V2O5/TiO2

Lewis acid
centers

[46]

NH4
+ NO (ads) V2O5 V=O [49]

NH4
+ NO (ads) V2O5/WO4 V=O/W=O [50]
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formed between the ammonia molecule and the surface oxy-
gen atoms.

Models and computational details

Model setup

The crystal lattice of vanadium pentoxide has an orthorhom-
bic symmetry and is assigned to the space group D2h-Pmmn,
with unit cell parameters defined as a=11.51 Å, b=4.37 Å,
c=3.56 Å [63, 64]. The building unit forms a distorted octa-
hedron with V–O bond distances varying between very short
(1.58 Å, vanadyl groups) and very long (2.79 Å, van der
Waals type bonding). Three possible low-index surfaces exist:
the saturated (010) and unsaturated (001 and 100) surfaces are
shown in Fig. 1.

The most thermodynamically stable (010) surface [62]
(Fig. 1a) is characterized by three structurally different oxygen
sites: (i) terminal vanadyl oxygen atoms O(1), which are
singly coordinated to vanadium atoms and protrude from
the surface in rows, and two bridging oxygen sites that are (ii)
doubly, i.e., O(2), or (iii) triply, i.e., O(3), coordinated to
vanadium centers. The unsaturated (001) surface (Fig. 1b),
which is described by the existence of “valley”- and “hill”-like
regions, exhibits coordinatively unsaturated vanadium atoms
and three structurally different oxygen sites that lie in the

plane (Fig. 1b): vanadyl oxygen O(1) and bridging O(2) or
Oe(2) oxygen atoms coordinated to two vanadium atoms
(the Oe(2) atom is connected to two vanadium atoms from
different atomic layers and positioned on the surface edges).
The unsaturated (100) surface may have a different termina-
tion [62]; the most thermodynamically stable structure is
shown in Fig. 1c and contains unsaturated V centers and in-
plane singly (O(1)) and doubly O(2)) coordinated sites.

The V10O31H12 cluster (Fig. 2) was selected as a model of
the (010) surface, as described in our previous studies [65], in
order to discuss electronic/adsorption properties of the (010)
net plane. To mimic the (001) V2O5 surface, the V21O65H25

cluster was used to describe both the “hill” and “valley” regions
(Fig. 2). The V16O52H24 cluster (Fig. 2) was chosen as the most
appropriate model to characterize the (100) V2O5 net plane
[65]. For all clusters, the dangling bonds of the peripheral O
atoms were saturated with H atoms, forming OH groups and
neutralizing the clusters [66, 67]. All initial clusters selected as
surface models were closed shell. To prepare sites for ammonia
adsorption, an additional H atom was added to the selected
surface oxygen sites, thus forming surface OH groups and
leading to the doublet systems [56, 68]. This procedure simu-
lated the mechanism of surface OH formation under the reac-
tion conditions (e.g., by dissociative adsorption of H2O [69] or
the reaction of NH3 and NO on the V5+=O sites [70]).

Calculation procedure

The program StoBe, the local version of DeMon, was applied
to perform the calculations [71]. This used an ab initio density
functional theory (DFT) method in which the Kohn–Sham
orbitals were represented by a linear combination of atomic
orbitals (LCAOs). For constrained geometry optimization of
all cluster models, we applied the revised version of the
gradient corrected functional of Perdew–Burke–Ernzerhof
(RPBE) [72, 73] with all-electron DZVP basis sets of
contracted Gaussians [74, 75]. This functional proved suitable
for studying the interactions of small molecules with a broad
range of adsorption sites, ranging from metal oxides to tran-
sition metal complexes [69, 76–81]. Models were subjected to
partial geometry optimization using the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm according to the proce-
dure described in [65]. In short, only the local environment
near to each oxygen adsorption site was allowed to relax for
both H and NH3 absorption. The local environment of a
particular oxygen was defined by its nearest V neighbors
together with the oxygen atoms linked to these metal atoms
and the adsorbate molecule. The rest of the atoms were kept
frozen at their crystallographic positions. The vibration anal-
ysis for the final V2O5–H–NH3 complexes was performed
only for the geometry-relaxed sections, and no imaginary
frequencies indicating local energy minima were observed.

Fig. 1a–c Three possible low-index surfaces: a saturated (010) and b
unsaturated (001) and (100). The annotation describes the type of atoms
involved, with their coordination number shown in parentheses. The
superscript e indicates “edge” localization of the Oe(2) oxygen atom

J Mol Model (2013) 19:4487–4501 4489



The structure of the model with an OH group was obtained
by adding the hydrogen atom to a particular oxygen site and
then performing geometry relaxation, as described in [82].
Hydrogen becomes stabilized at all oxygen sites present on
three low-index V2O5 surfaces, with this process being spon-
taneous, as shown by periodic calculations [83]. The figures
presenting the structures of clusters with adsorbed hydrogen
atoms are provided in the “Electronic supplementarymaterial”
(ESM; Figs. S1–S3).

A detailed analysis of the electronic structure of each
cluster was performed using the charge density distribution
(Mulliken populations) [84], the Mayer bond orders [85, 86],
and an analysis of electrostatic potentials. The electrostatic
potentials were calculated 2 Å above each adsorbed hydrogen
atom (i.e., x,y coordinates of the hydrogen atom). Such an
approach provided a uniform and objective method for esti-
mating the electrostatic interaction of the local surface with an
NH3 molecule before a hydrogen bond is formed, which
can result in the potential transfer of the H+ from the surface
OH to the adsorbate. On the other hand, in order to estimate
the electrostatic interaction of the surface with the already
adsorbed NH4

+/NH3 moiety, the electrostatic potential was
calculated for the respective surface (i.e., “bare” or with an
OH group) at the coordinates of the N atom of the adsorbate.

The ammonia adsorption energies were calculated according
to the following equation:

Eads ¼ Etot cluster þ NH3ð Þ− Etot clusterð Þ−Etot NH3ð Þ½ �; ð1Þ

where Etot(cluster) denotes a cluster with a Brønsted acid OH
group.

These adsorption energies were corrected for London dis-
persion forces that are not included in RPBEwith the DFT+D2
procedure using empirical damped dispersion correction [87].

A global scaling factor of 1.25 (s6) was used for RPBE calcu-
lations and 0.75 for geometries optimized with the PBE func-
tional [81, 88].

Model validation

The influence of the basis set on the adsorption energies
calculated with the RPBE functional was investigated by
performing RPBE/TZVP single point calculations for the
(010) net plane.

In order to cross-validate the performance of the RPBE
functional, we conducted test calculations for NH3 adsorption
on O sites of the (010) net plane in Turbomole v.6.3 [89]
with the gradient-corrected Perdew–Burke–Ernzerhof (PBE)
functional [90–93] and the def-TZVP all-electron basis set
[94]. The resolution of identity (RI) approach was applied to
compute the electronic Coulomb interactions [95, 96]. Com-
plete geometry optimization was performed for the (010)
models with the exception of terminal oxygen atoms termi-
nated with hydrogen atoms. The positions of terminal O
and H atoms were frozen in order to preserve the structural
constraints imposed by the surface structure. The locations of
energetic minima were confirmed by vibration analysis and
by checking for a lack of imaginary frequencies. The struc-
tures of the respective models with adsorbed hydrogen and
ammonium ion are presented in the ESM (Figs. S4 and S6).

Similar optimizations of unsaturated (001) and (100) model
surfaces were not possible, as they led to significant surface
reconstruction and yielded an artificial geometry for the V2O5

surface. Comparison of the obtained reconstructed surface
structures with model net planes obtained with periodic cal-
culations [83, 97] showed that the partially constrained cluster
models described the surface more accurately than the relaxed
models in which boundary constraints were imposed. The
reconstructed geometries obtained for the (001) and (100)
net planes are provided in the ESM.

Fig. 2 Structural models of the
clusters used in this study
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Results and discussion

The ammonia is stabilized via O–H–N hydrogen bonds with
surface hydroxyl groups present at each low-index V2O5

surface. However, the adsorption mechanism and adsorption
geometry depend on both the type of center and the type of net
plane involved (see Tables 2, S2, and 5).

Table 2 summarizes the data obtained for the process of
ammonia adsorption at the three discussed low-index V2O5

surfaces. It contains the adsorption energies (Eads(NH3)) and
Mulliken atomic charges (Q), while Table S2 in the ESM
contains the Mayer bond orders (BO) and the distances (R)
and angles (α) of the N···H···O hydrogen bonds.

NH3 adsorption at a (010) V2O5 surface

At the (010) V2O5 surface, ammonia is adsorbed as an NH4
+

cation and stabilized by single or double hydrogen bonds (see
Fig. 3 and Figure S4 of the ESM). In all of the studied cases,
ammonia is spontaneously adsorbed at each of the adsorption
sites (Table 2). The adsorption energies Eads(NH3) attain neg-
ative values: −0.98 eV, −1.07 eV, and −1.31 eV (−30.2, −22.6,
and −24.7 kcal/mol-1, respectively) for stabilization at the
O(2), O(3)–O(2), and O(1)–O(1) centers, respectively. The
largest adsorption energy (−1.31 eV) is observed for the
stabilization of two O(1) oxygen sites. The introduction of
the correction for London dispersion forces does not change
the qualitative results, i.e., the largest adsorption energy is
observed for two O(1) oxygen sites (−1.44 eV) followed by
O(3)–O(2) (−1.39 eV) and O(2) (−1.40 eV). Moreover, the
calculation of adsorption energies at the RPBE/TZVP level
also does not change the qualitative description of the adsorp-
tion, yielding −0.66 eV, −0.88 eV, and −1.02 eV eV at the
O(2), O(3)–O(2), and O(1)–O(1) centers, respectively.

When NH3 approaches the V-O(1)H Brønsted acidic group
it becomes tilted and is stabilized in the bi-dentate form by two
hydrogen bonds with hydrogen donor-acceptor distances
(O(1)–N) of 2.55 Å and 2.78 Å and N–H–O angles equal to
170° and 155°, respectively (Fig. 3). The proton of the surface
O–H group is shifted toward NH3 (the O–H distance is

elongated from 0.98 to 1.55 Å, and the BO is weakened from
1 to 0.18) and an H bond is formed with NH4

+ acting as a
donor and the surface O atom as the H-bond acceptor. A
second hydrogen bond is formed between a hydrogen atom
of ammonia and the other vanadyl O(1) oxygen atom
(d(H―O)=1.7 Å, BO=0.15).

A similar type of bidentate stabilization is observed when
ammonia approaches an O(3) site. The hydrogen-bonding
interactions with O(3)–H and O(2)–H lead to the formation
of two bonds (Fig. 3) with O···N distances of 2.63 and 2.84 Å
and NHO angles equal to 165° and 133°, respectively. The
O–H and N–H bond distances/bond orders are 1.55/0.15 and
1.10/0.71 for the first hydrogen bond and 2.03/0.06 and 1.04/
0.87 for the second hydrogen bond, again indicating the trans-
fer of the proton from the O(3)–H group to the ammonia and its
stabilization in the cationic form. Finally, for the adsorption site
above the surface O(2)H group, only one single hydrogen bond
is created, with an O···N distance of 2.60 Å and an NHO angle
of 175°. The O–H and N–H bond distances/bond orders are
1.48/0.18 and 1.12/0.66, which suggests the formation of an
NH4

+ species.
The formation of ammonium cations (NH4

+) is further sup-
ported by the results of a Mulliken population analysis (see
Table 2). The charge on the NH4

+ species when it is stabilized at
an O(1)–O(1), O(2), or O(3)–O(2) site is +0.81, +0.87, or +
0.87, respectively. This result demonstrates that, in each case,
the proton is abstracted from the surface OH group and shifted
toward the nitrogen atom. As a result, NH4

+ groups are formed
and act as proton donors in the newly created H3N–H→O
hydrogen bonds.

The introduction of corrections for dispersion forces lowers
the adsorption energy of each site by 0.13–0.34 eV (3.1–
7.8 kcal/mol-1). The dispersion attraction appears to be higher
for an ammonia ion adsorbed in between double rows of V=O
ligands (around 0.3 eV), i.e., for O(2) and O(3), O(2) sites, than
for an ammonia ion adsorbed on two O(1) oxygen atoms
(0.13 eV). As a result, all three adsorption sites exhibit similar
ammonia adsorption energies of 1.32–1.44 eV, although the
overall preference for the O(1) site is still maintained. These
calculations indicate that, in the case of ammonia ions adsorbed

Table 2 DFT (RPBE/DZVP) and DFT+D2 corrected energies of ammonia adsorption and NH3/NH4
+ charges. The Mulliken charge on the adsorbed

ammonia was calculated both with and without the H atom from the OH group as Q(NH4) and Q(NH3), respectively

(010) surface (100) surface (001) surface

Adsorption site O(1), O(1) O(2) O(3), O(2) O(1) O(2), O(2) O(2) Valley
Oe(2), Oe(2), Oe(2)–O(1)–O(1)

Eads DZVP (eV) −1.31 −0.98 −1.07 −0.86 −0.70 −0.49 −1.97

Eads+D2corr (eV) −1.44 −1.32 −1.40 −1.07 −1.03 −0.72 −2.29

Mulliken population:

Q(NH3) +0.48 +0.45 +0.47 +0.41 +0.48 +0.14 +0.60

Q(NH4) +0.81 +0.87 +0.87 +0.82 +0.83 +0.58 +0.87

J Mol Model (2013) 19:4487–4501 4491



on O(2) and (O3) sites, dispersion accounts for ∼25 % of the
stabilization, while dispersion accounts only for 10 % of the
stabilization of ions adsorbed on the tops of O(1) rows.

The above results demonstrate that, at the (010) surface,
ammonia is activated according to the same mechanism at
Brønsted acid centers. NH4

+ cations act as proton-donating
groups in the hydrogen bonds. The formation of hydrogen
bonds plays a vital role in ammonia stabilization. Our results
are consistent with the recent DFT calculations of Sun et al.
[50] and Yuan et al. [49], which showed energetically favor-
able stabilization of NH4

+ cations by two hydrogen-bonding
interactions with O(1) atoms. However, because the clusters
used in those studies were very small (V2O9H8 and V6O20H11,
respectively), the authors could not study adsorption at the
O(2) or O(3) sites.

NH3 adsorption at the (100) V2O5 surface

At the (100) surface, NH3 is stabilized at the surface hydroxyl
groups O(1)H and O(2)H (Fig. 4). In analogy to the (010)
V2O5 surface, ammonia undergoes spontaneous adsorption
with Eads(NH3) values of −0.86 and −0.70 eV (−19.8 and

−16.1 kcal/mol-1) for stabilization at the O(1) and O(2) cen-
ters, respectively, while the dispersion-corrected adsorption
energies are −1.07 and −1.03 eV (−24.6 and −23.8 kcal/mol-1)
for stabilization at the O(1) and O(2) centers, respectively.

Adsorption at Brønsted acidic vanadyl sites (V–O(1)H)
leads to the creation of a single hydrogen bond with a hydro-
gen donor–acceptor distance (O(1)···N) of 2.54 Å and an
NHO bond angle of 179°. At the second adsorption center
localized above the surface O(2)H site, ammonia is stabilized
by two hydrogen bonds formed between two bridging O(2)
oxygen atoms. One strong hydrogen bond is formed between
O(2) and an ammonium cation with an O(2)···N distance of
2.67 Å and an NHO angle of 175°, and the other—weaker—
hydrogen bond is formedwith O(2) from a parallel atomic row
and has an O(2)···N distance of 2.95 Å and an NHO angle of
178°.

The mechanism of stabilization is similar for both sites,
namely the protons shift from the O sites to the ammonia
molecule and the formation of NH4

+ is observed.
The cationic form is substantiated by the Mulliken popu-

lation and a geometry analysis. The total charge on the NH4
+

species is +0.82 for O(1) and +0.83 for the O(2) site.

Fig. 3 Geometries of ammonia
adsorption on the (010) V2O5

model surface. The NH4
+ cations

are stabilized by either a single
hydrogen bond with an O(2) atom
or double hydrogen bonds with
O(3) and O(2) or two O(1)
oxygen atoms. The geometries
obtained for V10O31H12 are
translated to the model (010)
surface for visualization purposes.
The adsorption geometries on the
V10O31H12 are presented in
Fig. S1 of the ESM
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In the hydrogen bond formed at O(1), the N–H distance is
fairly long (d(N–H)=1.17 Å, BO=0.56), whereas the interac-
tion between the hydrogen and oxygen occurs at a short
distance and is strongly covalent (d(H–O) 1.38 Å, BO=0.29).

In the case of the O(2) site, the stronger hydrogen bond is
characterized by an N–H distance of 1.11 Å (BO=0.70) and
an H–O distance of 1.56 Å (BO=0.20). The weaker hydrogen
bond has a shorter N–H distance (1.05 Å, BO=0.82) and a
longer H–O distance (d(H–O) 1.90 Å, BO=0.08). The stron-
ger H-bonding at O(2) results in closer contact of the ammo-
nium ion with the V2O5 surface than in the case of the O(1)
binding site. As a result, the dispersion forces contribute more
to stabilizing the adsorption, lowering the overall energy by
−0.33 eV (−7.7 kcal/mol-1) for the O(2) binding site, as
compared to −0.21 eV (−4.8 kcal/mol-1) for the O(1) site.

NH3 adsorption at the (001) V2O5 surface

At unsaturated (001) V2O5 surfaces, the net plane process
of ammonia adsorption is more complex because NH3 is
stabilized by single and triple hydrogen-bonding interac-
tions that can also be trifurcated toward different donors. As
was the case for the two other low-index faces of V2O5,

the Eads(NH3) energies indicate that the adsorption of ammo-
nia on Brønsted acid centers at the (001) surface is spontane-
ous. The adsorption energies Eads(NH3) (Table 2) are −0.49 eV
(−11.3 kcal/mol-1) and −1.97 eV (−45.4 kcal/mol-1) for the
ammonia stabilization at the “hill”-like O(2) and the valley-
like Oe(2), Oe(2),Oe(2)–O(1)–O(1) oxygen sites. The disper-
sion correction lowers the adsorption energy by −0.21 and

−0.31 eV (−5.2 and −7.3 kcal/mol-1) for the hill and the valley
regions, respectively. The London attraction force for the hill-
like O(2) site is comparable with the dispersion stabilization
observed for the (100) O(1) site and twice as big as that
calculated for O(1),O(1) sites on the (010) net plane. Interest-
ingly, for valley-like adsorption sites, where ammonia ions
seem to have the highest degree of van der Waals contact, the
overall stabilization is only −0.32 eV, which is in the range of
dispersion stabilization observed for O(2) sites on the (010) or
O(2),O(2) sites on the (100) net plane.

Tables 2 and 5 list the stabilization energies and character-
istics of the hydrogen bonds, and the geometries of the
adsorbed NH3 molecules are plotted in Fig. 5. Two different
mechanisms of stabilization are observed on this surface:
H3N–H→O and O–H→NH3. The former mechanism occurs
for the adsorption sites localized above the surface valley-like
region. These adsorption minima are populated independently
of the starting geometries, i.e. whenNH3 approaches O(1)H or
O(2)eH, there is a proton shift from the surface OH groups to
the ammonia molecule. After formation, the NH4

+ cation
migrates from the former OH site toward the valley region,
where it is stabilized by multiple hydrogen-bonding in-
teractions and favorable attractive electrostatic interactions
(vide infra).

The ammonium ion (charge +0.87) forms two single hy-
drogen bonds with the O(2)e atoms from two opposite hill
regions with N···O distances of 2.70 Å and 2.72 Å and NHO
angles of 173.2° and 174.3°. In addition, a weak trifurcated
hydrogen-bonding interaction with one O(2)e atom and two
O(1) atoms from the bottom of the valley occurs. The N···O

Fig. 4 Geometries of the
ammonia adsorption sites on the
(100) V2O5 model surface. The
NH4

+ cations are stabilized by a
single hydrogen bond with O(1)
and by two hydrogen bonds with
two O(2) oxygen atoms. The
geometries were obtained for the
V16O52H24 cluster, and the
position of the NH4

+ at O(1) was
moved to the edge of the cluster
for visualization purposes
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distances are 3.72 Å, 3.34 Å, and 3.30 Å and the NHO angles
are 135.5°, 106°, and 105°, respectively. Moreover, the Mayer
bond indices suggest that the N–H bonds (0.76–0.89) have
higher covalences than the H–O bonds (0.1 for strong bonds,
0.01 for weak trifurcated bonds) do. Finally, small contribu-
tions to the adsorption energies also seem to be introduced by
the interactions of NH4

+ with surrounding Vatoms. Although
each of these interactions is characterized by a very small
Mayer index (in the range of 0.007–0.016), the overall sum
of the bond orders calculated for all three H atoms pointing
into the valley equals 0.13, a value which is comparable with
the strength of one hydrogen bond.

The latter O–H→NH3 mechanism is present only for the
stable position localized in the “mountain”-like region of the
(001) net plane, i.e., over the surface O(2)H group. Such a
mode leads to the formation of a monodentate hydrogen bond
(d(N···O) 2.71 Å, NHO angle 165.8°). The surface O–H acts
as a proton donor (d(O–H)=1.04 Å, BO=0.69), forming a
long hydrogen bond of moderate strength (d(H–N)=1.69,
BO=0.15). The NH3 species remains almost neutral (+0.14),
indicating an O–H→NH3 mechanism of hydrogen-bond for-
mation. An inspection of the adsorption geometry at the O(2)
site suggests that, in this case, the hydroxyl group is a proton
donor; the H atom remains closer to the surface O atom than to
the nitrogen atom from the ammonia molecule.

NH3 adsorption at the fully relaxed (010) V2O5 surface

The optimization of NH3 adsorption at the PBE/TZVP level of
theory yielded qualitatively the same results as those obtained

for RPBE/DZVP calculations, i.e., adsorption in the form of
the NH4

+ ion after proton transfer from the surface OH group
to NH3 (see Table 3 and Table S3 in the ESM). As in previous
(010) models, the most energetically favorable adsorption site
was localized over O(1), the next most favorable was over O(3),
O(2), and the least favorable was over O(2) (−1.58, −1.02,
and −0.89 eV, respectively). The introduction of dispersion
corrections did not change that trend (−1.72, −1.25, −1.16 eV,
respectively). Similarly to RPBE models, the smallest D2 cor-
rection was observed for NH4

+ adsorbed over V=O(1) ligands
due to its relatively long distance from the V2O5 surface.

However, the application of a different optimization
algorithm implemented in Turbomole, as well as a more
diffuse basis set, led to some minor changes in the geometry
of the NH4 ions that resulted in greater H-bond interaction
(Fig. 6).

The tilt of the ammonia ion for the O(1),O(1) adsorption site
becomes bigger than in RPBE model, which results in the
presence of an additional bifurcated H-bond interaction of the
third H atom with two O(1) atoms. This bifurcated bond is
relatively weak, with H–O Mayer bond orders of 0.041 and
0.044 and H–O bond distances of 2.2 Å. Similarly, the ammo-
nia is tilted over O(2) sites, which enables the formation of two
weak H-bond contacts with O(3) oxygen atoms (BO = 0.036,
d(H–O) = 2.33 Å). Finally, also in the case of NH4

+ adsorption
over O(3) sites, aside from two strong H-bonds with O(2) and
O(3) oxygen atoms (H–O BO = 0.14 and 0.1, d(H–O)=1.74
and 1.78 Å, respectively), it was possible to detect the forma-
tion of one weak H-bond between a third hydrogen atom and
an O(2) oxygen atom (BO=0.047, d(H–O)=2.1 Å).

Fig. 5 Geometries of the
ammonia adsorption sites of the
(001) V2O5 model surface. The
NH4

+ cation is stabilized by
multiple hydrogen bonds
involving three Oe(2) and two
O(1) atoms, whereas the NH3

molecule is stabilized by a single
hydrogen bond with an O(2)
oxygen atom. The geometries
were obtained from the
V21O65H24 cluster
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Summing up, the calculations performed with almost full
optimization of cluster geometry and with the application of
the TZVP basis set led to similar results to those seen for

models with only local geometry optimization and in which
the DZVP basis set was applied. It seems that the main reason
for the observed geometry differences stem from the different
geometry optimization algorithms implemented in the Stobe
and Turbomole codes.

NH3 binding mechanism

There has been a long ongoing discussion in the literature
concerning a form of adsorbed ammonia (see Table 1) [18].
Our results indicate that at low-index V2O5 surfaces, two
types of adsorption over Brønsted acid (surface OH) centers
may occur: (i) ammonia as a positively charged NH4

+ cation
with a surface O site acting as a hydrogen acceptor, or (ii)
ammonia as a neutral NH3 molecule with a surface OH group
acting as a hydrogen donor. Although hydrogen bonds are
clearly the main force stabilizing the adsorbed ammonia, the
local electrostatic characteristics of the surface where NH3

contacts the OH group seem to determine the final form of
the stabilized ammonia (i.e., either neutral or cationic).

Table 3 DFT (PBE/TZVP) and DFT+D2 corrected energies of ammo-
nia adsorption over the (010) net plane and NH3/NH4

+ charges calculated
without and with H atoms adsorbed on the surface

(010) surface

Adsorption site O(1),O(1)
2×O(1)

O(2), 2×O(3) O(3),O(2), O(2)

Eads (NH3) (eV) −1.58 −0.89 −1.02

Eads(NH3) (kcal/mol-1) −36.4 −20.6 −23.5

Eads+D2corr (eV) −1.72 −1.16 −1.25

Eads+D2corr

(kcal/mol)
−39.8 −26.7 −28.8

Mulliken population:

Q(NH3) +0.48 +0.49 +0.53

Q(NH4) +0.75 +0.79 +0.81

Fig. 6 Geometries of ammonia
adsorption on the (010) V2O5

model surface, calculated at the
PBE/TZVP level of theory with
full optimization of the surface.
The NH4

+ cations are either
stabilized by hydrogen bonds
with an O(2) atom and two O(3)
atoms, hydrogen bonds with one
O(3) and two O(2) atoms, or two
strong H-bond interactions with
O(1) oxygen atoms and one weak
bifurcated H-bond with two O(1)
atoms. The geometries obtained
for V10O31H12 are translated to
the model (010) surface for
visualization purposes. The
adsorption geometries on the
V10O31H12 are presented in
Fig. S2 of the ESM
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This effect is especially visible in the case of a (001) low-
index surface, which has varied electrostatic characteristics
(i.e., some regions of positive and negative electrostatic po-
tential are present) [65]. If the neutral NH3 approaches
Brønsted sites, it can accept a proton from the OH group to
attain a positive charge. As a result, a decrease in the electro-
static potential of the adsorption sites is observed due to the
local accumulation of a negative charge at the deprotonated
Brønsted site (Table 4). Naturally, the electrostatic interaction
becomes significant between the positively charged ammoni-
um cation (Mulliken charge ca. 0.8) and the local negatively
charged surface. As a result, the adsorption energy decreases
further due to the attractive electrostatic interaction of the
positive charge of the ammonium cation with the negative
electrostatic potential produced by the surface.

For surface sites with a very stable or strong positive
electrostatic potential that is insensitive to the OH proton-
ation state, such a proton shift would result in an increase of
the system energy due to the repulsive electrostatic interac-
tion (i.e., an interaction of a positively charged surface with
an NH4

+ cation). Therefore, in such cases, ammonia remains
in an almost neutral form (i.e., an NH3 molecule with a small
charge of ca. +0.2, which results from NH3 acting as a
hydrogen-bond acceptor), minimizing the increase in the total
energy due to the unfavorable, repulsive electrostatic interac-
tions. Similar conclusions have been drawn by Calatayud
et al. [98], who have used electrostatic potential as a reactivity
index for V2O5 gas-phase clusters as well as unsupported
and TiO2-supported (010) V2O5 surfaces. This approach
allowed spatial mapping of the regions that are most sus-
ceptible to electrophilic attack and, in accordance with our
results, pointed to the region between terminal (O1) oxygen
atoms.

This observation can be studied in a more quantitative
manner if one considers the change in the potential electrostatic

energy upon shifting the proton from the OH site to-
ward the approaching NH3. Table 4 contains electrostat-
ic potentials calculated at a distance of 2 Å above the
hydrogen atom of each OH group for the studied sur-
face. These potentials approximate the electrostatic en-
vironment affecting the NH3 molecule approaching the
surface (i.e., before the hydrogen bond is formed). The
electrostatic potentials are determined for surfaces with
an adsorbed hydrogen atom (VOH) and a “bare” V2O5

surface (Vbare) without an adsorbed hydrogen atom. The
change in potential energy ΔPE upon shifting the proton
from the surface OH group to NH3 is approximated as the
difference between the electrostatic potential energy (PE) of
NH4

+ over a bare V2O5 surface and the PE of NH3 over the
OH group from the surface with an adsorbed hydrogen atom.

ΔPE ¼ PE NHþ
4 −PE NH3 ¼ V bareqNH4þ−VOHqNH3;

where qNH4+ represents the average charge on the adsorbed
ammonium cations (+0.86) and qNH3 represents the charge on
the adsorbed ammonia (+0.14) over the O(2) site at the (001)
net plane. Thus, ΔPE describes the gain (or loss) in the
electrostatic energy due to the transfer of a hydrogen from a
surface OH group to an NH3 molecule.

The transfer of a hydrogen in the form of a proton occurs
whenΔPE is negative, ensuring strong electrostatic stabiliza-
tion of the positively charged ammonium cation. In most of
the cases studied, the change in electrostatic energy following
the hydrogen shift is highly negative (from approximately
−0.4 to −0.9 eV), which results in a thermodynamic prefer-
ence for NH4

+. However, for O(2) sites at a (001) surface,
there is no energy gain connected with the hydrogen shift
because the ΔPE attains a positive value (+0.03 eV). As a
result, the ammonia is stabilized in its neutral form. Notably, at
a (001) surface, the site of the proton shift is distant from the

Table 4 The electrostatic characteristics of ammonia adsorption over the Brønsted sites of the (010), (100), and (001) V2O5 model surfaces

Surface (010) (100) (001)

Adsorption site O(1) O(2) O(3) O(1) O(2) O(2) O(1) Oe(2)

Ads. species NH4
+ NH4

+ NH4
+ NH4

+ NH4
+ NH3 NH4

+ NH4
+

Q 0.81 0.87 0.87 0.82 0.83 0.14

VOH −0.14 0.63 0.59 −0.22 0.33 0.42 0.16 0.55

Vbare −1.07 −0.68 −0.55 −0.84 −0.38 0.12 −0.47 −0.57

PE(NH3) −0.02 0.10 0.09 −0.04 0.05 0.07 0.03 0.09

PE(NH4
+) −0.92 −0.58 −0.47 −0.72 −0.33 0.10 −0.40 −0.49

ΔPE −0.90 −0.68 −0.56 −0.68 −0.38 0.03 −0.43 −0.58

Ads. species (NH4
+ /NH3): form of ammonia moiety;Q: overall charge on the ammonia moiety; V: electrostatic potential (eV) calculated for the position

of the N atom of the adsorbed ammonia over the hydrogenated (OH) and nonhydrogenated (bare) V2O5 model surfaces; PE: potential electrostatic
energy (eV) of the adsorbed ammonia (PE(NH3)) or the ammonium ion (PE(NH4

+ )) over the hydrogenated and nonhydrogenated surfaces, respectively;
ΔPE: difference between PE(NH4

+ ) and PE(NH3) in eV. The average charges used for the calculation of ΔPE are 0.86 for NH4
+ and 0.16 for NH3
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final, most favorable adsorption site. Regardless of the initial
starting place of the NH3 molecule (i.e., over O(1) or Oe(2)),
the proton is shifted from the surface OH group. To probe the
electrostatic influence of the surface on the proton shift pro-
cess, the electrostatic potentials were calculated at distance of
2 Å above the H atoms adsorbed at the Oe(2) and O(1) sites.
The results are collected in Table 4.

As observed from Table 4, the positive potential of the
surface with the adsorbed H atom becomes negative (changing
from 0.16 eV to −0.47 eV for the O(1) site and from 0.55 eV
to −0.57 eV for the Oe(2) site). This result explains why
ammonia becomes an ammonium cation at those sites. How-
ever, the vicinity of the deep negative potential well at the
center of the valley (−1.58 eV for the NH4

+ absorption site)
attracts the cations to the most energetically favorable
position.

Thus, the surface electrostatics influence the form of the
stabilized ammonia. The local surface electrostatics of the spot
at which ammonia contacts the surface determineswhether the
proton transfer will occur. If the proton is shifted, the ammo-
nium cation can migrate further across the surface to maxi-
mize the electrostatic and hydrogen-bond interaction energies,
as exemplified by a model of the adsorption over the O(1) and
Oe(2) over (001) surface.

Quantitative modeling of adsorption energies

As shown above, the stabilization of ammonia over the
Brønsted acid sites originates from the hydrogen bonds and
is sensitive to the surface electrostatics. An interesting ques-
tion arises as to whether it is possible to predict the strength of
each adsorption site (i.e., the adsorption energy) based on a
knowledge of the hydrogen-bond strength (derived only from
geometry parameters) and on the local electrostatic potential.
Theoretically, such a model would allow for the estimation of
the relative importance of the forces (i.e., hydrogen bonds
versus electrostatic) involved in the stabilization of ammonia
over the V2O5 surface. Moreover, such a model would allow
estimation of the adsorption site strength based solely on the
geometry of the final structure of the V2O5-OH–NH3 complex
without the need to calculate the geometry and energy of the
V2O5–OH reference model (thus shortening the calculation
procedure). The usefulness of the electrostatic potential for
predicting adsorption phenomena (such as interaction ener-
gies) has already been demonstrated by Tielens and Geerlings
[99].

To build such a semiquantitative structure–property rela-
tionship (QSPR) model, each hydrogen-bond strength was
described according to the methodology of the hydrogen bond
analysis proposed by Jeffrey [100, 101], who studied a large
number of hydrogen bonds and demonstrated that the energy
of the particular bond varies between 0.2 and 40 kcal/mol-1

(which is up to ∼1.7 eV). He then classified the hydrogen

bonds into “strong,” “moderate,” and “weak” bonds based on
several bond geometric parameters, such as

& The distance (H–A, in Å) between the proton (H) and the
proton-acceptor group (A)

& An increased distance (Δ(D–H), in Å) between the proton
(H) and the proton-donor group (D)

& The distance (D–A, in Å) between the proton-donor (D)
and the proton-acceptor (A) groups

& The angle (α) of the N–H–O bond.

According to Jeffrey’s criteria, all of the necessary param-
eters were divided into “weak” (w), “moderate” (m), and
“strong” (s) class contributions. Based on this concept, we
selected a set of four parameters to describe the strength of
each hydrogen bond responsible for the stabilization of am-
monia at the V2O5 surfaces according to the scheme illustrated
in Table S1 of the ESM and Table 5. Based on the categori-
zation of these four parameters, we assigned a numerical value
to each bond representing its strength, with 1 representing a
weak, 2 a moderately strong, and 3 a strong hydrogen bond.
Moreover, for hydrogen bonds of intermediate strength, we
allocated intermediate values (for example, two moderate and
two strong features results in a value of 2.5). Finally, for each
site, the strengths of all identified hydrogen bonds were added
together and this sum was used as a site hydrogen bond
strength descriptor (SHBS).

The electrostatic energy was calculated as the product of
the charge on the adsorbed species (NH3 or NH4

+) and the
electrostatic potential of the respective surface (VOH or Vbare,
respectively) at the atomic coordinates of the N atom of the
adsorbed ammonia. The energy values obtained ranged from
positive values (0.18 eV) for the (001) O(2) site to highly
negative values for the valley adsorption site at the (001)
surface (−1.54 eV). These extreme cases exemplify the effect
of the electrostatic interaction on the overall energy (a de-
crease ofEads in the case of the positive electrostatic energy for
the O(2) site at the (001) net plane and an increase of Eads in
the case of the 4×Oe(2)O(2) site at the (001) net plane).

The results of the correlation analysis show a very high
linear correlation of the adsorption energy Eads with the SHBS
(R=−0.93) and a moderate correlation with the electrostatic
energy (R=0.79). Theoretically, both variables could be used
to predict Eads. However, these variables are nonorthogonal,
i.e., they are linearly intercorrelated with R=−0.82. The col-
linearity indicates that multiple strong hydrogen-bonding in-
teractions are present for sites with favorable (i.e., negative)
electrostatic interactions. As a result, it is not possible to
construct a QSPR model with these two variables; because
of the collinearity problem, the electrostatic energy is statisti-
cally insignificant when used in one equation together with
SHBS.

Therefore, it is not possible to independently estimate the
influence of both variables on the adsorption energy. Because
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more of the variance of the Eads value can be explained by
SHBS (R2=0.87), this descriptor can be used to approximate
the energy using the following simple QSPR model:

Eads ¼ −0:21 �0:037ð ÞSHBS−0:20 �0:17ð Þ
n ¼ 7 R2 ¼ 0:8609; corr: R2 ¼ 0:8331; F ¼ 30:996; p ¼ 0:00258:

The same model is obtained for DFT+D2 corrected ad-
sorption energies (R2=0.87, corr. R2=0.84404, F=33.472,
p<0. 00217), where London dispersion forces are accounted
for with a more negative constant (−0.44 instead of −0.2).

Eads DFTþD2ð Þ ¼ −0:21 �0:036ð ÞSHBS−0:44 �0:17:ð Þ

This result indicates that introducing DFT+D2 corrections
on average does not cause any significant change to the
observed trend.

The QSPR model demonstrates that higher hydrogen-bond
strengths at the particular site result in lower adsorption ener-
gies. The quality of the model’s predictions is graphically
presented on a scatter plot (see Fig. 7).

The apparent success of the applied hydrogen-bond strength
index in predicting the adsorption energy clearly indicates
two points: (i) the importance of these interactions in the

stabilization of ammonia over V2O5 surfaces and (ii) the
additivity of the hydrogen bonds at the particular adsorption
site. However, as was demonstrated by statistical analysis, it is
also important to take into account the fact that hydrogen
bonds and surface electrostatic interactions are not separable,

Fig. 7 Correlation scatter plot showing the predicted and DFT-calculated
values for the ammonia adsorption energy (n=7, R2=0.8609, corr.
R2=0.8331, F=30.996, p=0.00258)

Table 5 Parameters used in the hydrogen-bond analysis. Eads: ammonia
adsorption energy, D: proton donor species, H···A: distance between the
hydrogen atom and the hydrogen bond acceptor, D···A: distance between
the donor and acceptor, Δ(D–H): change in donor-hydrogen atom bond
length upon hydrogen-bond formation, α: D···H···A angle. The strength
of a particular Jeffrey hydrogen bonding criterion is shown using color:
black for strong, gray for moderately strong, and white for weak

hydrogen bonds. The number representing the hydrogen-bond strength
is provided in the hydrogen-bond strength column, whereas the site
hydrogen bond strength (SHBS) provides the sum of the strengths of all
hydrogen-bond interactions in a particular binding site. Elect. energy:
electrostatic energy calculated at the atomic coordinates of the N atom of
the adsorbed ammonia over the respective surface

su
rf

ac
e

Adsorption 
center

Eads

[eV]
D

H…A 
[Å]

D…A 
[Å]

Δ(D-
H) [Å]

α [°]
H-bond 
strength

Site
H-bond 
strength
(SHBS)

Elect. 
energy
[eV]

01
0

O(1)
O(1)

-1.31 NH4
1.55 2.51 0.02 170 2.75

4.75 -0.51
1.70 2.72 0.05 155 2

O(2) -0.98 NH4 1.48 2.60 0.09 175 2.75 2.75 -0.57
O(3)
O(2) -1.07 NH4

1.55 2.63 0.07 165 2.25
4 -0.52

2.03 2.84 0.01 133 1.75

10
0

O(1) -0.86 NH4 1.38 2.54 0.14 179 2.75 2.75 -0.69
O(2)
O(2) -0.70 NH4

1.55 2.67 0.085 175 2.5
4 -0.72

1.9 2.95 0.025 178 2

00
1

O(2) -0.49 OH 1.83 2.80 0.04 159 2 2 0.18
Oe(2)
Oe(2)
Oe(2)
O(1)
O(1)

-1.97 NH4

1.63 2.70 0.04 173 2.5

8.5 -1.54
1.66 2.72 0.04 174 2.5
2.91 3.72 0 135 1
2.94 3.64 0 126 1
2.98 3.93 0 154 1.25
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independent phenomena. If a nondirectional positive electro-
static interaction exists, it allows for the formation of stronger,
shorter hydrogen bonds. In contrast, when a repulsive inter-
action with the surface adsorbate occurs, the hydrogen bonds
should be elongated, weakening the overall interaction. This
relationship explains the high negative linear correlation that
was observed between SHBS and the electrostatic energy at
the adsorption site.

Conclusions

Based on the theoretical results, we can conclude that not only
the saturated (010) but also the two unsaturated (001) and
(100) surfaces are able to stabilize ammonia by adsorbing it at
Brønsted acid sites, i.e., at OH surface groups. In all cases, the
hydrogen bonds play a major role in this process.

Hydrogen bonds are formed via two different adsorp-
tion mechanisms. In the dominant scheme, a surface
proton from the OH group is abstracted during ammonia
adsorption and shifted toward the ammonia to become
an NH4

+ cation that serves as a “proton-donor” group in
the newly created hydrogen bond. In the second scheme, no
proton transfer is observed during the NH3 adsorption; con-
sequently, a surface hydroxyl species serves as the proton-
donor group.

The local electrostatic interaction and the change in this
interaction following proton transfer from the surface to the
ammonia (when approaching the Brønsted site) appear to
determine the adsorption mechanism. The electrostatic inter-
actions between the catalyst surface and the adsorbing species
also contribute to the overall stabilization, although it was not
possible to evaluate the influence of these interactions on the
adsorption energy independently of the input introduced by
hydrogen bonding. The magnitude of this contribution strong-
ly depends on the surface and is the largest for the negatively
charged “valley” region of the (001) net plane (−1.97 eV). The
adsorption energies of ammonia correlate very well with
the hydrogen-bond strengths of the site. The strength of the
hydrogen-bond stabilization can be derived only from geo-
metrical features such as angles and atomic distances.

Finally, the results of our calculations fully confirm the
previous predictions that the active sites for ammonia activa-
tion in the SCR mechanism are localized not only at saturated
(010) sites but also at the unsaturated (001) and (100) V2O5

surfaces.
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