
International Journal on Digital Libraries
https://doi.org/10.1007/s00799-023-00358-1

DETEXA: declarative extensible text exploration and analysis through
SQL

Yannis Foufoulas1,2 · Eleni Zacharia1,2 · Harry Dimitropoulos1,2 · Natalia Manola1,2 · Yannis Ioannidis1,2

Received: 10 November 2022 / Revised: 13 March 2023 / Accepted: 16 March 2023
© The Author(s) 2023

Abstract
Metadata enrichment through text mining techniques is becoming one of the most significant tasks in digital libraries. Due
to the exponential increase of open access publications, several new challenges have emerged. Raw data are usually big,
unstructured, and come from heterogeneous data sources. In this paper, we introduce a text analysis framework implemented
in extended SQL that exploits the scalability characteristics of modern database management systems. The purpose of this
framework is to provide the opportunity to build performant end-to-end text mining pipelines which include data harvesting,
cleaning, processing, and text analysis at once. SQL is selected due to its declarative nature which offers fast experimentation
and the ability to build APIs so that domain experts can edit text mining workflows via easy-to-use graphical interfaces. Our
experimental analysis demonstrates that the proposed framework is very effective and achieves significant speedup, up to
three times faster, in common use cases compared to other popular approaches.

Keywords Text analytics · YeSQL · User-defined functions

1 Introduction

The exponential growth of published articles opens up
new challenges and research opportunities. Text mining has
gained significant attention across a broad range of applica-
tions. The researchers implement text mining workflows to
enhance the understanding of academic literature and gener-
ate new knowledge. With text mining on scientific literature,
it is possible to identify and classify the key themes of an
academic field, explore trends, assess the impact and pop-
ularity of topics over a period of time, help authors to find
published literature related to their research, and so on.

Python is the language that many data scientists prefer for
text analysis as it is easy to learn and enhances their pro-
ductivity, given its modules for text and data mining tasks
(e.g., NLTK [1]). However, NLTK is usually sub-optimal
in terms of performance, as Python is designed to be an

B Yannis Foufoulas
i.foufoulas@di.uoa.gr

1 Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens,
Panepistimiopolis, 15784 Ilisia, Greece

2 Athena Research Center, Artemidos 6 & Epidavrou, 15125
Marousi, Greece

easy-to-use high-level dynamic language. Scalable analyt-
ical frameworks that support Python are often used to make
Python text analytics run faster (e.g., PySpark [2], Dask
[3]). Database management systems (DBMSs) also sup-
port the execution of user-defined functions (UDFs) written
in Python [4–6]. However, these works come with several
limitations, especially for text processing. For example, in
PySpark and PostgreSQL, Python functions run in a separate
process, introducing big inter-process communication over-
heads, which is a deterrent factor for text mining that usually
involves large texts. Dask targets mainly data analysis on
numeric data, as it is based mainly on NumPy and Pandas.
Furthermore,UDFs inDBMSs are often sub-optimal in terms
of expressiveness, i.e., they are statically typed which con-
tradicts Python’s nature, stateless, and without side effects.
Thus, many data scientists do not integrate their text analysis
workflows into DBMSs but prefer to use simpler tools like
NLTK and PySpark.

In this paper, we present a scalable text analysis frame-
work, DETEXA [7], built on top of YeSQL [8]. Specifically,
we have implemented a rich set of text mining functionali-
ties as polymorphic scalar, aggregate, and table UDFs that
can work in synergy with various database systems through
YeSQL.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00799-023-00358-1&domain=pdf
http://orcid.org/0000-0002-2785-946X

Y. Foufoulas et al.

We consider YeSQL a perfect match for text analysis tasks
as it supports polymorphic and dynamically typed functions
which are critical for dealing with various data schemas (i.e.,
heterogeneous data input JSON, XML, etc.), as is usually
the case when harvesting text data from various repositories.
Moreover, its performance characteristics fit well with text
mining since: 1) it supports stateful UDFs that allow data
scientists to run costly operations once at the global scope
and reuse them throughmultiple functions—such operations
are usual in text mining (e.g., pattern compilation, exter-
nal package imports and setups, etc.)—and 2) in-process
UDF execution and tracing JIT compilation of Python UDFs
enhance the scalability of text mining workflows. Further-
more, the declarative interface of the presented framework,
which is inherited by YeSQL, allows quick experimenta-
tion concerning data analysis tasks and rapid development of
data processing workflows. Finally, it allows the easy imple-
mentation of application interfaces, using the most common
architecture of the web that consists of a portal frontend and
a backend that produces SQL queries and submits them to
the DBMS. In OpenAIRE [9], such an interface has been
implemented and used by community experts to implement
and tune their own information extraction algorithmswithout
requiring any programming knowledge.

The query (shown in Algorithm 1) illustrates the data-
intensive part of a classification algorithm, written using the
text analysis library of the presented framework.

Algorithm 1 Query for the prediction phase of a classifica-
tion algorithm

SELECT doc id , c l a s s , SUM(p)
FROM (SELECT doc id ,

STRSPLITV (
STEM(
KEYWORDS(
FILTERSTOPWORDS(
LOWER(t e x t)))) , 2)
AS ngram

FROM documen t s) ,
t a x onom i e s

WHERE ngram = t axonom i e s . t e rm
GROUP BY doc id , c l a s s ;

This query reads data from a table with documents and
first applies several standard preprocessing steps (i.e., convert
to lowercase, stopword removal, tokenization with punctu-
ation removal, and stemming). With the dynamic function
STRSPLITV, the input string with tokens is transformed into
a database column with n-grams of length up to 2, which
is joined against the taxonomies table that consists of the
classes, terms, and weights. The latter has already been
produced during the offline training phase. Finally, using
relational operators the sum-of-term weights per class is cal-

culated. That is, according to the presented framework, the
heavy relational parts (i.e., JOIN, GROUPBY, and aggregate
operations) are executed by the DBMS, whereas the proce-
dural text processing tasks (preprocessing, pattern matching,
etc.) are donewith a rich set of Python text analysis functions.

In more detail, the contributions of this work are the fol-
lowing:

Text analysis library A rich library of reusable and cus-
tomizable functions for text mining implemented as scalar,
aggregate, and table functions, and executed inside a DBMS.

ExtensibilityData scientists can implement their own cus-
tom functions as scalar, aggregate, or table UDFs, and use
them in synergy with the already-supported operations. The
functions are implemented in Python files and registered in
the underlying database engine.

Deployment Currently, DETEXA is deployed and runs
in production by OpenAIRE,1 a technical infrastructure har-
vesting research output fromconnected data providers,which
partners up a total of 65 European universities, research
centers, and institutions. To date, 146M publications, 18M
research data records, and 312K research software items,
from 111K data sources, linked to 3M grants from 25 dif-
ferent national funders and 180K organizations, have been
harvested using over 150 UDFs. DETEXA has been used
in prior works to classify [10] and text mine Open Access
publications and extract information like funding informa-
tion [11], software links, citation links [12], links to datasets
and bioentities, etc.

Moreover, contributions of YeSQL, which is our underly-
ing system, allow our text analysis framework to support the
following features:

Declarative language for text mining Complex text min-
ing algorithms are supported using a declarative language
which makes easy the implementation of interactive applica-
tion interfaces. Such an interface is shown in Sect. 3.4.

Performance As the experiments show, the proposed
framework outperforms other popular libraries in impor-
tant text analysis tasks. The text mining field fits well with
database UDFs as they are defined in YeSQL, and reaps all
its performance benefits.

The structure of the paper is as follows. Section2 reviews
popular works in the field, their advantages and limitations.
Section3 presents an overview of the DETEXA framework
and its applicability. Section4 demonstrates the potential
of the presented framework through experiments on well-
established algorithms against several popular text mining
libraries and systems. Finally, Sect. 5 concludes the paper
and discusses potential future directions.

1 https://www.openaire.eu, https://explore.openaire.eu.

123

https://www.openaire.eu
https://explore.openaire.eu

DETEXA: declarative extensible...

2 Related work

In this section, we discuss prior work on text mining with
Python, divided into two main categories: (1) Python text
mining libraries and (2) Scalable data management systems
with Python support. We also touch on deep learning-based
models.

2.1 Text analysis tools

Themost popular text mining library in Python is NLTK. It is
used for tokenization, lemmatization, stemming, parsing, etc.
Thanks to its many third-party extensions, it supports many
approaches for almost any text mining task. However, it is
based on CPython’s interpreter and does not scale well with
big data.Other Python libraries for textmining include scikit-
learn [13], spaCy [14], Gensim [15], and more. Scikit-learn
is a generic tool formachine learningwith support for several
text analysis tasks. However, since it is built on NumPy it is
fast mostly in numeric operations but sub-optimal when pro-
cessing strings. SpaCy is considered to be faster than NLTK;
however, it lacks flexibility as it is not customizable. Gen-
sim was originally developed for topic modeling and is not a
complete NLP toolkit like NLTK and SpaCy, thus it should
be used in synergy with other libraries. Our work differenti-
ates from these libraries as 1) it is more efficient in terms of
performance since it is based on DBMSs, 2) it is simpler to
implement new pipelines due to its declarative interface, and
3) it is customizable and extensible.

2.2 Datamanagement systems with text mining
opportunities

Several prior efforts have focused on making Python run
faster. PySpark is a Python interface to Spark which sup-
ports the definition of UDFs written in Python. This is one
of the most popular systems for scalable Python among
data scientists, which achieves efficiency through paralleliza-
tion. However, it runs Python UDFs on the interpreter in
separate processes, introducing several inter-process com-
munication overheads. Dask is a distributed analytical tool
written in Python with Pandas and NumPy. It targets mainly
numeric operations and is usually sub-optimal when pro-
cessing strings: Pandas and NumPy natively support only
a few operations on strings, so more complex string analy-
sis is possible only outside NumPy/Pandas which requires
string copy transformations into Python Objects. Moreover,
several DBMSs support Python UDFs (e.g., PostgreSQL,
MonetDB, Vertica, andmore). However, they comewith sev-
eral limitations in expressiveness and performance, and thus
are rarely the first option for text mining. Specifically, they
require UDFs with statically defined schemata which contra-
dicts Python’s dynamic typing, they run Python in a separate

process, or they support NumPy which is not designed for
string processing. The presented text analysis framework
avoids these performance and expressiveness issues due to
the polymorphic and dynamic nature of its functions and the
performance characteristics introduced by YeSQL.

2.3 Deep learning-basedmodels

Recent works concentrate on new language representation
models like BERT [16] which can be used for several tasks
like question answering, text classification, and inference.
Existing BERT implementations are based on TensorFlow
[17] or PyTorch [18]. The presented text analysis frame-
work can be used to implement state-of-the-art techniques
like BERT using the already existing UDFs (e.g., data clean-
ing operators, tokenizers for the creation of the vocabulary),
and also using the extensibility features of the framework
to implement new functionalities via the supported types of
UDFs. Note also that UDFs implemented in DETEXA sup-
port the use of popular external Python libraries like PyTorch
and integrate already existing code with minimal edits.

3 The DETEXA framework

In this section, we analyze the presented framework and its
functionalities. Specifically, we present the library of the sup-
ported functions, we explain why we selected YeSQL and
the opportunities to extend the supported functionalities with
fully fledged Python, and finally we present a graphical inter-
face deployed inOpenAIREwhich is used by domain experts
to run simple information extraction tasks using the presented
framework.

3.1 Function library

In order to support end-to-end text analysis pipelines, the
framework includes functions in several categories:

• Data input functions: polymorphic functions used to pro-
cess data from heterogeneous sources (i.e, CSV, JSON,
XML, PDF and HTML parsers, Web tables, Rest APIs,
files in HDFS and storage devices, external database con-
nectors, etc.)

• Data processing functions: functions which apply typ-
ical text mining steps on input data (i.e., tokenization,
stopword removal, etc.)

• Pattern-matching functions: a variety of functions for
parameterized pattern matching (i.e., pattern extraction,
updating, weighted patterns, etc.)

• Bag-of-words functions: several functions to support
bag-of-words functionalities using JSON ordered or
unordered arrays and dictionaries. A JSON array with

123

Y. Foufoulas et al.

terms can be converted into a database column and vice
versa. A JSON dictionary can be converted into a nested
table and used in SQL as any other table.

• Distance functions: several functions that calculate dis-
tance among JSON arrays (e.g., Jaccard, cosine, edit_
distance, and more).

• Language functions: statistical functions that process
documents to extract language information (e.g., detect-
lang), or functions that are language specific (e.g., stem).

• Text filtering functions: functions which scan a document
and return text snippets according to specific patterns
or document sections (e.g., textreferences, textabstract,
textacknowledgements, textwindow, etc.)

• Data output functions: functions which return the result
of a text analysis workflow to a permanent location or to
standard output in various formats (JSON, CSV, SQLite
database, etc.)

• General purpose functions: functions that are used for
various data handling tasks including sampling, ran-
domgenerators, date functions,mathematical operations,
statistics, and more.

Note that the purpose of the framework is not to implement
text analysis pipelines using only Python UDFs. This would
be sub-optimal as UDFs are considered black boxes for a
database optimizer, thus in this case, we could not reap the
benefits of in-database execution. However, according to the
design of the framework, the relational parts (e.g., join, scan,
filter, sort, etc.) of a pipeline are not implemented as part of
procedural Python UDFs but are still expressed in the SQL
part of a query so that they are executed efficiently by the
DBMS,whereas the procedural parts of a pipeline are written
in Python UDFs.

All the implemented functions are mapped into scalar,
aggregate, or polymorphic table database UDFs according
to their scope. Specifically, data input functions are imple-
mented as polymorphic table UDFs, as they process external
sources and return the input data as database tables.Data pro-
cessing, pattern matching, and language functions process
one row at a time so they are defined as scalars.Bag-of-words
functions are divided either in aggregates or in scalars return-
ing dynamic schemas, i.e., jgroup function processes a group
and creates a JSON dictionary or array with all the elements
in the group, jsplit processes a JSON dictionary or array and
splits it into multiple columns, whereas jsplitv processes a
JSON dictionary or array and splits it vertically into mul-
tiple rows. Distance functions are implemented as dynamic
scalar UDFs that process JSON arrays or plain strings and
return their distance. These functions are also implemented
as aggregates in case the target data is stored inmultiple rows.
Text filtering functions process one document at a time and
return dynamic schemas so they are defined as scalar UDFs.
Finally, data output functions are implemented as polymor-

phic table UDFs with side effects, as they export their result
table at a user-defined location.

In total, the function library offers more than 150 oper-
ators for text analysis. The presented framework with its
function library is deployed as a third-party library of Ope-
nAIRE’s Inference Information Service (IIS)2 and used by
OpenAIRE’s data scientists every day to extract and discover
knowledge fromOpenAIRE’s publication texts and abstracts,
including funding information, bioentities, software links,
data citations, document classifications, and more.

3.2 WhyYeSQL?

Despite that this work could be integrated into almost any
DBMS with Python UDF support, we selected YeSQL as its
modularity and expressiveness characteristics make it a per-
fect fit for the proposed text analysis framework. Specifically,
as described in the previous section, YeSQL’s polymorphic
and dynamic functions allow the implementation of our
reusable data input functions since those functions return
dynamic schemata according to the input data. YeSQL’s
scalar UDFs returning arbitrary table forms enable the imple-
mentation of bag-of-words functions as these functions take
one row in their input and return a column or a nested table.
YeSQL also allows for UDFs with side effects which fit the
nature of data output functions.As for performance,YeSQL’s
seamless data transfer of strings between the DBMS and
the procedural language which runs in-process is critical for
applications on texts. YeSQL’s UDF fusion is a perfect fit
with text mining scenarios, as in this context, pipelines of
operations are very common (e.g., specifically during pre-
processing and data harvesting/transforming). Stateful UDFs
also allow for performant pattern matching and data process-
ing functions: external packages are imported and set up at
the global layer, and patterns are also precompiled at the
global layer and not once per row.

The following query (Algorithm 2) illustrates some of the
hallmark functionalities of the proposed framework. It reads
raw files containing publication full texts from arXiv and
PubMed (in CSV and JSON with two keys containing the id
and text), runs various processing steps (i.e., abstract extrac-
tion, tokenization, stopword removal, stemming), creates a
JSON array with the top 10% frequent terms, and then calcu-
lates the Jaccard similarity. Finally, for each arXiv document,
it returns up to 5 PubMed documents (aggregate UDF top
is similar to native SQL function max; however, it returns
multiple top N rows) with the highest Jaccard similarity. The
analysis result is exported to an external JSONfile. An exam-
ple of the first two rows of such a file is shown below.

2 https://github.com/openaire/iis.

123

https://github.com/openaire/iis

DETEXA: declarative extensible...

Algorithm 2 Query for Jaccard similarity on documents

OUTPUT ’ s i m i l a r p a i r s . j s on ’
SELECT a r x i v i d , pubmedid ,

TOP(s i m i l a r i t y , 5) AS s
FROM (SELECT a r x i v i d ,

pubmedid ,
JACCARD(a r x i v t e rm s ,

pmcterms)
AS s i m i l a r i t y

FROM (SELECT a r x i v i d ,
JPACK(
FREQUENTTERMS(
STEM(
FILTERSTOPWORDS(
TOKENIZE(
TEXTABSTRACT(t e x t)
))) , 1 0))
AS a r x i v t e rm s

FROM FILE (’ a r x i v . csv ’)) ,
(SELECT pubmedid ,

JPACK(
FREQUENTTERMS(
STEM(
FILTERSTOPWORDS(
TOKENIZE(
TEXTABSTRACT(t e x t)
))) , 1 0))
AS pmcterms

FROM FILE (’ pubmed . j s on ’)))
GROUP BY a r x i v i d ;

{" a r x i v i d " : " 1 3 04 . 2 3 23 " ,
" pmcid " : " PMC2985735 " ,

" s " : 0 . 532}
{" a r x i v i d " : " 1 3 04 . 2 3 23 " ,

" pmcid " : " PMC5464362 " ,
" s " : 0 . 493}

Note that this is not considered to be the best way to cal-
culate document similarity; this could be better based on
TF-IDF calculation, but we show this as it covers well some
of the main characteristics of the presented framework.

3.3 Extensibility

Although the presented framework comes with a large num-
ber of predefined operators, the data scientist is allowed to
extend its functionalities by submitting her own custom func-
tions categorized in scalars, aggregates, and polymorphic
table functions, according to their scope. These functions are
written in Python files with support for external packages. If
a function processes one row at a time then this is defined
as a scalar. Aggregate functions process a group of rows at a
time, and polymorphic table functions process a whole table.

As an example, the function in Algorithm 3 is imple-
mented as a scalar function and converts the input rows into
lowercase. However, the following function (Algorithm 4) is

implemented as an aggregate UDF and returns a JSON list
containing the terms for each group of input rows.

Algorithm 3 Example scalar function

UDF: d e f l owe r (v a l) :
r e t u r n v a l . l owe r ()

SQL : s e l e c t l owe r (c o l 1) from t 1 ;

Algorithm 4 Example aggregate function

UDF: c l a s s j g r o u p :
d e f _ _ i n i t _ _ (s e l f) :

s e l f . o u t g r o up = []

d e f s t e p (s e l f , c o l) :
s e l f . o u t g r o up += \
(j o p t s . e l emf r om j (c o l))

d e f f i n a l (s e l f) :
r e t u r n \
j o p t s . t o j (s e l f . o u t g r o up)

SQL : s e l e c t j g r o u p (t e rms) from pubs ;

Aggregate UDFs process whole groups of rows incremen-
tally. The function init allows for any required initializations,
the function step is called once per row, and the function final
produces and returns the final aggregate result.

Similarly, the data scientist is allowed to submit his
table-returning functions in Python files and extend the func-
tionalities of the framework.

3.4 Interfaces

As already mentioned in the introduction, having a fully
fledged text mining framework written in a declarative lan-
guage (SQL) allows for easy implementation of application
interfaces. An interactive information extraction interface on
top of the presented library is deployed in OpenAIRE. Fig-
ure1 depicts a screenshot of the interface. The purpose of
the interface is to allow the users to implement and tune sim-
ple information extraction tasks. Specifically, they upload
their documents in plain text format, and a CSV contain-
ing the entity titles/names for information extraction (i.e., in
this example terms clarin and clariah3). Through this inter-
face, they select preprocessing tasks (e.g., stopword removal,
punctuation removal, and more), text extraction tasks (i.e.,
extract acknowledgement section, citation section), positive

3 https://www.clarin.eu/.

123

https://www.clarin.eu/

Y. Foufoulas et al.

and negative terms and phrases to disambiguate false pos-
itives, and finally the length of the text snippet before and
after an occurrence of the searched concept. The user selects
the functions and mining rules using a graphical interface,
and the SQL query is built in the backend and runs online
returning the highlighted results to the domain expert who
may modify her algorithm accordingly and rerun to obtain
updated results. Using the rules as shown in the screenshot,
the following query (Algorithm5) is automatically produced:

Algorithm 5 Automatically produced query

SELECT doc id ,
p r e v | | m idd l e | | n e x t AS c o n t e x t ,
m idd l e AS match

FROM (SELECT doc id ,
TEXTWINDOW(
LOWER(
FILTERSTOPWORDS(
TEXTACKNOWLEGMENTS(t e x t))) ,
1 0 , 1 , 1 0 , "CLARIAH | CLARIN ")

FROM FILE (’ a r x i v d o c s . t s v ’)) ,
WHERE
NOT REGEXPMATCHES(" gene | cofund−c l a r i n " ,

p r e v | | m idd l e | | n e x t) ;

3.5 Distributed deployment

DETEXA is integrated with YeSQL’s implementation on
top of SQLite. Thus, each DETEXA instance runs single-
threaded. Distributed deployment of DETEXA is applicable
through its integration with popular state-of-the-art dis-
tributed systems. InOpenAIRE,DETEXAprocesses the data
locally in each node of a Spark cluster. Specifically, Spark
is responsible for the distribution and partitioning of data to
multiple nodes. In each node, DETEXA is called as a Python
command line executable, processes the data in standard
input and outputs the results in JSON format in the standard
output. The following command presents how DETEXA is
launched in each node.

c a t i n p u t d a t a . j s o n |
py thon3 e x e c d e t e x a . py

−d d a t a . db −f que ry . s q l

data.db is an SQLite database that contains supporting
data for each specific text analysis task. query.sql contains
the DETEXA query which runs the analysis. The output of
this command is redirected to a file which contains the results
in JSON.

4 DETEXA in practice

DETEXA has been used by OpenAIRE data scientists to
implement several scalable text mining workflows:

• Citation matching algorithm [12]. An algorithm for cita-
tion matching based on title matching that achieves
higher recall and precision rates than the state-of-the-
art, while running more than an order of magnitude
faster. In particular, inOpenAIRE,we search for citations
to datasets using their DOIs, titles, and other metadata
(i.e., dates, creator names, publishers, etc.). We extract
parts of the text which look like citations and search for
datasets using database join and pattern-matching tech-
niques. Based on the experiments described in the paper,
the precision of the dataset extraction module is 98.5%
and recall is 97.4% but it is also probably overestimated
since it does not take into account corruptions that may
take place during PDF-to-text extraction. It is calculated
on the extracted full texts of small samples from PubMed
and arXiv.

• Funding information extraction.4 An algorithm for
extracting funding information from scientific papers
using external data from the FundRef registry.5

• Specific grant identifier linking (project mining). An
algorithm for extracting funding information at the
grant identifier (project) level from scientific publica-
tions using the OpenAIRE projects database. The mining
algorithm works by utilizing (i) the grant identifier, and
(ii) the project acronym (if available) of each project.
The mining algorithm: (1) preprocesses/normalizes the
full texts using several functions, which depend on the
characteristics of each funder (i.e., the format of the
grant identifiers), such as stopword and/or punctuation
removal, tokenization, stemming, converting to lower-
case; then (2) string matching of grant identifiers against
the normalized text is done using database techniques;
and (3) the results are validated and cleaned by looking
at the context around the matched ID for relevant meta-
data and positive or negative words/phrases, in order to
calculate a confidence value for each publication–project
link. A confidence threshold is set to optimize high accu-
racy while minimizing false positives, such as matches
with page or report numbers, post/zip codes, parts of tele-
phone numbers, DOIs, URLs, or accession numbers. The
algorithm also applies rules for disambiguating results,
as different funders can share identical project IDs; for
example, grant number 633172 could refer to the H2020
project EuroMix but also to Australian-funded NHMRC
project ‘Brain activity (EEG) analysis and brain imag-

4 http://opensciencefair.eu/posters/funding-information-extraction.
5 https://www.crossref.org/services/funder-registry/.

123

http://opensciencefair.eu/posters/funding-information-extraction
https://www.crossref.org/services/funder-registry/

DETEXA: declarative extensible...

Fig. 1 Information extraction interface

ing techniques to measure the neurobiological effects of
sleep apnea.’ Project mining works very well and was
the first text and data mining (TDM) service of Ope-
nAIRE. Performance results vary from funder to funder
but precision rates are higher than 98% for all funders and
99.5% for EC FP7 and H2020 projects. Recall is higher
than 95% (99% for EC projects) when projects are prop-
erly acknowledged using project/grant IDs. Note that this
algorithm works by string matching of grant identifiers
in the text (step 2), so without an ID present in a par-
ticular text, it cannot match any of the projects in our
database. This occurred rarely in the collections which
were studied. However, OpenAIRE includes a couple of
funders without strong acknowledgement mandates, for
which it is much more frequent for authors to acknowl-
edge the funder only, omitting to state the specific project
that funded their work. For such cases, we run an addi-
tional mining algorithm that can identify at the funder
(rather than the project) level, linking to what we label
an "unidentified" project.

• Software mining and linking to Software Heritage.6 This
TDMmodule used inOpenAIRE runs also on parts of the
text which look like citations. We search the citations for

6 https://www.softwareheritage.org.

links to software in open software repositories, specifi-
cally GitHub, SourceForge, Bitbucket, and the Google
Code archive. After that, we search for links that are
included in Software Heritage (SH) and return the per-
manent URL that SH provides for each software project.
We also enrich this content with user names, titles, and
descriptions of the software projects, using web min-
ing techniques. Since software mining is based on URL
matching, our precision is 100% (we return a software
link only if we find it in the text and there is no need
to disambiguate). As for the recall rate, this is not cal-
culable for this mining task. Although we apply all the
necessary normalizations to the URLs in order to over-
come usual issues (e.g., HTTP or HTTPS, existence of
www or not, lower/upper case), we do not calculate cases
where a piece of software ismentioned using its name and
not by a link from the supported software repositories.

• Communities mining. Custom mining modules for link-
ing research objects to specific research communities,
initiatives, and infrastructures in OpenAIRE Connect,7

such as the mining module developed in early 2020 for
the COVID-19 OpenAIRE Connect research community

7 https://connect.openaire.eu.

123

https://www.softwareheritage.org
https://connect.openaire.eu

Y. Foufoulas et al.

gateway,8 or the mining for the Connect gateway of the
Digital Research Infrastructure for the Arts and Human-
ities (DARIAH).9

• Bioentities extraction. We have developed mining algo-
rithms for identifying over 30 bioentities in publications’
plain texts which are currently in the process of being
integrated into the OpenAIRE Research Graph.10 What
has already been integrated are links to ProteinDataBank
(PDB)11 entries [19]. We have downloaded the database
with PDB codes and we update it regularly. We search
through the whole publication’s full text for references to
PDB codes. We apply disambiguation rules and contex-
tual information so that we return valid results. PDB text
mining is challenging since many PDB codes can be eas-
ily confused with other entities. For example, there are
PDBcodes that are the sameas antibody codes, or that can
be confused with dates (5DEC, 4NOV, 4MAY), numbers
with exponents (6E00, 5E24, 4E08), time (6H20, 5MIN),
or other measurements (5MHZ, 2GHZ, 1LUX, 4X20,
3MEN) and many more. The current precision is 98%.
Although it is risky to mention recall rates since these are
usually overestimated, we have calculated a recall rate of
98% using small samples from PubMed publications.

• Interactive text analysis [11]. An interactive mining plat-
form which allows domain experts to define mining
procedures, set/update mining rules, and validate the
results, while the actual text mining code is produced
automatically. This significantly reduces the communica-
tion between the developers and the experts andmoreover
allows the experts to experiment themselves using a user-
friendly graphical interface (Fig. 1).

• ARIADNE and ARIADNEplus,12 archaeological data.
In OpenAIRE’s collaboration with the H2020 EC project
ARIADNEplus (A+), the aim is to link the A+ Data
Infrastructure with repositories of scientific publications
by exploiting OpenAIRE and the links to individual jour-
nals such as Internet Archaeology or Archaeology and
Culture (A&C), in order to make archaeological data
more discoverable, accessible, interconnected, and com-
plete. A successful pilot study for building a bridge
betweenARIADNE andOpenAIRE during the first ARI-
ADNE project utilized a text mining citation extraction
& matching algorithm on ADS Grey Literature Reports
that found almost 300 relations to OpenAIRE publica-
tions.13 In ARIADNEplus, this bridge is currently being

8 https://covid-19.openaire.eu.
9 https://dariah.openaire.eu.
10 https://graph.openaire.eu.
11 https://www.rcsb.org.
12 https://ariadne-infrastructure.eu.
13 https://www.openaire.eu/ariadne-openaire-collaboration.

built further by linking the project’s datasets with Ope-
nAIRE: byfirst harvesting relevant datasetmetadata from
A+, we then text mine for publications that cite A+ data
objects. Such relationships can then be used to link con-
tent betweenOpenAIREand theARIADNEplus portal,14

while also improving the configuration of the existing
Digital Humanities and Cultural Heritage15 gateway in
OpenAIRE.

• Patent mining and patent metadata enrichment through
the Open Patent Services (OPS)16 API. This text mining
module identifies EPO patents in the full text of publica-
tions of OpenAIRE, achieving a 90% precision accuracy.

• Document classification [10, 20–23]. Apart from text
mining modules, OpenAIRE also provides a document
classification service that employs analysis of free text
stemming from the abstracts of the publications. The pur-
pose of applying a document classification module is to
assign to a scientific text one or more predefined con-
tent classes. InOpenAIRE, the currently used taxonomies
are arXiv,MeSH (Medical Subject Headings), ACM, and
DDC (DeweyDecimal Classification, or DeweyDecimal
System).

4.1 DETEXA limitations

DETEXA’s UDF library consists mainly of low-level func-
tions which are used as building blocks to implement com-
plex algorithms. A complex technique can be implemented
using a combination of existing UDFs, SQL operators, and
through the implementation of newcustomUDFs as shown in
Sect. 3.3. Currently, the DETEXA framework does not pro-
vide end-to-end implementations for modern techniques like
BERT or more sophisticated semantic analysis. If those are
to be used, then the developer has two options: (1) imple-
ment the techniques from scratch using DETEXA UDFs
and SQL operators to utilize the performance enhance-
ments of in-database analysis, or (2) register a polymorphic
table-returning UDF which imports an external library that
implements the desired functionalities. This is the fast way to
use already existing code, e.g., a BERT classifier; however,
this does not reap all the benefits of the underlying database
engine (see also discussion in Sect. 3.1).

Note that DETEXA should not be considered as a frame-
work that provides implementations of text mining algo-
rithms, semantic analysis, and so on, but as an extensible
framework that allows the scalable implementation of such
techniques using a declarative language with a rich UDF
library and an underlying data management system.

14 https://portal.ariadne-infrastructure.eu.
15 https://dh-ch.openaire.eu.
16 https://www.epo.org/searching-for-patents/data/web-services/ops.
html.

123

https://covid-19.openaire.eu
https://dariah.openaire.eu
https://graph.openaire.eu
https://www.rcsb.org
https://ariadne-infrastructure.eu
https://www.openaire.eu/ariadne-openaire-collaboration
https://portal.ariadne-infrastructure.eu
https://dh-ch.openaire.eu
https://www.epo.org/searching-for-patents/data/web-services/ops.html
https://www.epo.org/searching-for-patents/data/web-services/ops.html

DETEXA: declarative extensible...

5 Evaluation

5.1 Experimental setup

Several experiments were conducted to compare the perfor-
mance of end-to-end text analysis pipelines. We compared
our framework against NLTK (v3.7), scikit-learn v(1.1) on
CPython (v.3.8.10), and PySpark (v2.4.7). Our framework
(DETEXA) is implemented on top of YeSQL’s integration
with SQLite (v.3.31.11) and PyPy (v.7.3.6 with GCC 7.3.1)
tracing JIT compiler. In our experiments, we selected three
real word tasks of fundamental importance that have been
gaining traction thanks to recent developments in the fields
of text mining and natural language processing (NLP). The
experiments ran on real publication abstracts from Ope-
nAIRE. We ran all experiments on an Intel(R) Core i7-4790
processor with 3.60GHz and 4 cores/8 CPUs. The server has
16GB of main memory and runs Ubuntu 20.04. We executed
all experiments with cold caches, and we report the aver-
age of 5 executions. DETEXA’s source code, queries, and
datasets for the experiments are available at [7].

5.2 Experiments

5.2.1 Project mining

We run an experiment to evaluate DETEXA’s performance in
terms of execution time. We implemented an algorithm that
mines research publications and extracts NSF (i.e., National
Science Foundation) project identifiers. The last step of the
algorithm is to calculate the count of funded publications
per directorate.17 Authors acknowledge projects that funded
their research in a specific acknowledgements section but
also several times anywhere in the text or in footnotes. Thus,
in this case, the algorithm processes the full texts. In this
experiment,we compare against hand-optimizedpurePython
code as well as against an efficient data structure of Python
(Pandas dataframe).

DETEXA query implementing NSF project mining query
is Algorithm 6. The query reads data from two sources:

• An external file with publications’ full texts in JSON
format with two keys: pubid, text. We used four versions
of this file with various sizes.

• A table stored in the database including the project iden-
tifiers. This table includes the funder name, the grant
agreement number, a unique project identifier, and the
funding class (i.e., directorate in case of NSF). This table
includes 467K NSF project identifiers as well as another
∼2 million project identifiers from other funders (e.g.,
EC, NIH, etc.)

17 https://www.nsf.gov/staff/orglist.jsp.

Algorithm 6 NSF project mining query

SELECT f u n d i n g c l a s s , COUNT(∗)
FROM (SELECT pubid ,

TEXTWINDOW(
FILTERSTOPWORDS(
TOKENIZE(
LOWER(t e x t))) ,
15 , 1 , 3 , " \ d { 7 } ")

FROM FILE (’ pubs . j s on ’)) ,
g r a n t s

WHERE f u n d e r = ’NSF ’ AND
midd l e = g r a n t i d AND
REGEXPRMATCHES("
\ b n s f \ b |
n a t i o n a l s c i e n c e f o u n d a t i o n " ,
p r e v | | n e x t)

GROUP BY f u n d i n g c l a s s ;

The query applies three preprocessing steps for each input
text (i.e., text conversion to lowercase, tokenization with
punctuation removal and stopword removal). Then, it scans
the text and returns a rolling window. The window includes
a middle word, as well as 15 words before the middle word
and three words after the middle word. Since the NSF project
identifiers are 7-digit numbers, the middle word is filtered
with the appropriate pattern. Each middle word is joined
against the NSF grant IDs from the grants table. The results
are disambiguated with a pattern which filters out matches
that do not contain strings ‘nsf’ or ‘national science founda-
tion’ in their prev and next fields. Finally, the query groups
the results by the fundingclass and counts the publications
found.

The equivalent Python implementation is shown in Algo-
rithm 7. Note that the implementation of functionalities
textwindow, tokenize and filterstopwords is the same
in all cases. In DETEXA, they are registered as UDFs,
whereas in Python code they are imported and used directly
in the code. As shown, the pure Python implementation
requires a much larger and more cumbersome code. Specifi-
cally, the data loading, creation of appropriate data structures,
the JOIN, and the GROUP BY, need to be implemented in
procedural code. We used nested Python hash dictionaries
to store the grant identifiers. The outer dictionary contains
keys including the funder name. The inner dictionary’s keys
include the grant identifiers and its values contain the unique
project identifiers and the funding class. The selection of this
struct is very important as it allows optimal execution of the
JOIN between the middle field and the grant identifiers. A
similar structure is used to implement theGROUPBY. In this
case, the dictionary keys contain the extracted funding class.
Obviously, if running a different analysis on the results, for
example, a GROUP BY on a different column, we should
apply several changes in the code. This does not happen in
the case of DETEXA as it supports a declarative SQL lan-

123

https://www.nsf.gov/staff/orglist.jsp

Y. Foufoulas et al.

Algorithm 7 Python implementation of NSF project mining algorithm

g r a n t s = c o l l e c t i o n s . d e f a u l t d i c t (d i c t)
w i t h open (’ a l l p r o j e c t s . c sv ’) a s c s v _ f i l e :

c s v _ r e a d e r = c sv . r e a d e r (c s v _ f i l e , d e l i m i t e r = ’ , ’)
f o r row i n c s v _ r e a d e r :

’ ’ ’
row [0] <− p r o j e c t i d e n t i f i e r
row [1] <− f u n d e r
row [2] <− f u n d i n g c l a s s
row [3] <− g r a n t ag r eemen t number
’ ’ ’
g r a n t s [row [1]] [row [3]] = (row [0] , row [2])

r e s u l t s g r o u p s = {}

w i t h open (’ pubs . j s o n ’) a s p u b s _ f i l e :
f o r raw i n p u b s _ f i l e :

r aw j s on = j s o n . l o a d s (raw)
pub id = r aw j s on [’ pub i d ’]
t e x t = r aw j s on [’ t e x t ’] . l owe r ()
wo rd_ t oken s = t o k e n i z e r . t o k e n i z e (t e x t)
wo rd_ t oken s = f i l t e r s t o p w o r d s (wo rd_ t oken s)
t e x t w i n d ow r e s u l t s = t ex tw indow (word_ tokens , 1 5 , 1 , 3 , " \ d {7} ")
f o r prev , middle , t n e x t i n t e x t w i n d ow r e s u l t s :

i f (m idd l e i n g r a n t s [’NSF ’] and
r e . s e a r c h (r ’ \ b n s f \ b | n a t i o n a l s c i e n c e f o u n d a t i o n ’ ,

p r e v + t n e x t)) :
f u n d i n g c l a s s = g r a n t s [’NSF ’] [m idd l e] [1]
p r o j e c t i d = g r a n t s [’NSF ’] [m idd l e] [0]
i f f u n d i n g c l a s s i n r e s u l t s g r o u p s :

r e s u l t s g r o u p s [f u n d i n g c l a s s] . append (
(pubid , p r o j e c t i d , p rev , middle , t n e x t))

e l s e :
r e s u l t s g r o u p s [f u n d i n g c l a s s] = \
[(pubid , p r o j e c t i d , p rev , middle , t n e x t]

f o r f u n d i n g c l a s s i n r e s u l t s g r o u p s . keys () :
p r i n t (f u n d i n g c l a s s , l e n (r e s u l t s g r o u p s [f u n d i n g c l a s s]))

guage which allows easy modifications. Last but not least,
implementing such an analysis in Python requires careful
selection of the appropriate structures, whereas in a declar-
ative language on top of a DBMS, the DBMS itself and the
query optimizer decide the optimal way to process a rela-
tional operator using advanced data structures to execute a
JOIN or a GROUP BY.

Figure2 shows the execution times of the DETEXA and
the pure Python implementation for different sizes (i.e., 10K,
50K, 100K, and 500Kdocuments) of input data. In this exper-
iment, the grants file contains projects from 22 funders, thus
in Python, the outer dict contains 22 entries. There are also
467KNSF 7-digit IDs (∼3MBs) that participate in the actual
JOIN. The mining results consist of 9345 links to projects
in the larger dataset. The final GROUP BY produces eight
groupswhere each group corresponds to a unique directorate.
These counts are small enough so that Python’s dictionaries
can handle them very well and clearly the main overhead
of the execution is in the preprocessing steps on the pub-
lication’s full texts which is done using the same code in

Fig. 2 Execution times ofDETEXAandPython forNSFprojectmining

both cases. Still, as shown, DETEXA outperforms the hand-
optimizedPython implementation in all different data sizes in
this experiment. Interestingly, if wemake the wrong decision
and use Python lists to load the grant identifiers, DETEXA
runs 48 times faster than Python, which proves our claim

123

DETEXA: declarative extensible...

that using procedural Python code for such tasks passes to
the developer the responsibility ofmaking the important deci-
sion of selecting the appropriate structures.

We also ran the same experiment using an implementation
with Pandas dataframes. Pandas is a powerful in-memory
tool with several functionalities with support for string
attributes. However, it offers limited native functionalities
for text processing. For example, it does not support stop-
word removal and other complex functions which should be
first implemented outside Pandas and then applied on Pandas
dataframes or series. Since the Pandas library is written in
C, execution of custom functions in Python involves signifi-
cant overheads (i.e., data copies, data types transformations,
context switches between Python and C) which results in
much slower execution than DETEXA and hand-optimized
Python code. Specifically, the execution times for Pandas
implementation are 116 and 623s, for 10K and 50K doc-
uments respectively. For the 50K dataset, preprocessing of
documents which uses custom functions implemented out-
side Pandas took 562s in total. DETEXA runs more than
three times faster than Pandas (35 and 178s).

Furthermore, a Pandas dataframe fails with data larger
than memory, passing to the developer the responsibility to
handle such cases with more complex code using chunks.
For example, in our experiment, a single Pandas dataframe
cannot handle the 500K pubs dataset of this experiment and
fails with memory error.

5.2.2 Document classification

The next experiment is a text classification task [10], defined
as assigning predefined category labels to new papers based
on the likelihood suggested by a training set of labeled papers.
Input data for text classification consist of raw, unstructured
text. Before feeding input data to any classifier, it is projected
into an appropriate feature space by applying preprocessing
procedures which transform plain texts into lists of terms
(keywords, metadata). Terms may be single words or n-
grams. Since text classification is a supervised learning task,
it has two main phases: (i) the training phase, in which a
global list of unique terms is updated, along with the respec-
tive term frequencies for each paper; and (ii) the prediction
phase, in which the classifier predicts the labels of a given
paper based on its content (list of terms).

In our experiments, we assume that the training phase
has already been executed. The prediction phase of the
algorithm involves three preprocessing operators running
sequentially. These are tokenization, stopword removal, and
stemming. Terms may be single words or 2-grams. We have
implemented the classification sub-module in the presented
DETEXA framework which is hand-optimized with Python
code as well as in NLTK. The DETEXA query implementing
the classification sub-module was shown in the introduction.

Fig. 3 Execution times of DETEXA and NLTK for the document clas-
sification task

We ran this experiment using 10K, 50K, 100K, and 1M
text abstracts. Figure3 shows the execution times for the
classification sub-module using our presented framework
compared with NTKL for the different sizes of input data. In
all cases, the time needed for the execution using DETEXA
falls in half. This happens for 2 reasons: (1) the design of
the framework which effectively maps text analysis tasks
in database UDFs and lets the DBMS handle the heavy
relational tasks (e.g., JOINs, GROUP BY’s), and (2) the per-
formance characteristics which are inherited by YeSQL.

5.2.3 Term frequency-inverse document frequency (TF-IDF)

The third task is the implementation of the TF-IDF algo-
rithm. TF-IDF is a predominant feature vectorizationmethod
widely used in many NLP applications, as well as in text
classification and text mining systems. For example, search
engines use TF-IDF to rank the relevance of a document for
a query. TF-IDF is also used to recommend papers to authors
or to detect similarities among papers. TF-IDF is divided into
two parts: computation of TF (term frequency) and computa-
tion of IDF (inverse document frequency). TF is the number
of times a term appears in a document divided by the total
number of words in the document. IDF of a term reflects the
proportion of documents in the corpus that contain the term:
it is defined as the logarithmic fraction obtained by dividing
the total number of documents in the corpus by the number
of documents in the corpus containing the term. TF-IDF of
a term is computed by multiplying TF and IDF scores.

We have implemented the TF-IDF algorithm in the pre-
sented DETEXA framework, as well as in a hand-optimized
Python implementation using NLTK. We have also used the
implementation of scikit-learn from [24] that uses the native
TfidfVectorizer sklearn package. The DETEXA query imple-
menting the TF-IDF task is shown in Algorithm 8.

This query reads data from a table that contains publica-
tion abstracts. First, it executes three preprocessing operators

123

Y. Foufoulas et al.

Algorithm 8 TF-IDF implementation

SELECT doc id , term ,
t f ∗LOG10 (1 0 0 0 0 0 0 . 0 / (1 + j g c o u n t)) AS t f i d f

FROM (JGROUPORDERED groupby : t e rm coun t : d o c i d
SELECT term , doc id , t f
FROM (SELECT c1 a s term ,

doc id ,
COUNT(∗) / (1 . 0 ∗ c2) AS t f

FROM (SELECT doc id ,
STRSPLITV (a b s t r a c t)

FROM (SELECT doc id ,
STEM(
FILTERSTOPWORDS(
KEYWORDS(
LOWER(a b s t r a c t))))
AS a b s t r a c t

FROM me t a d a t a))
GROUP BY term , do c i d))

running one after another. These are tokenization with punc-
tuation removal, stopword removal, and stemming. With
the dynamic function STRSPLITV, the input string with
stemmed words is split vertically into a database column,
and a new column containing the number of stemmed words
in each abstract is added. Then, using relational operations,
the TF score is calculated. Since the heavy data processing
task (i.e., GROUP BY) has been processed by the DBMS,
JGROUPORDERED UDF joins consecutive rows of the
table having the same term and counts the number of doc-
uments in the corpus containing the term at hand. That is
of high importance, as we do not need to execute another
database GROUP BY operator with an aggregate function,
which is a heavy data processing task; we exploit the fact
that the intermediate data is already sorted by ‘term’ column
during the previousGROUPBY. Finally, the query calculates
tfidf score.

We ran the experiment using10K, 50K, 100K, and1Mtext
abstracts. Figure4 shows the execution times for the TF-IDF
task using our framework, as well as NLTK and scikit-learn.
The results compared to NLTK reveal very similar trends to
the previous experiment. Furthermore, using the proposed
framework, the TF-IDF algorithm runs much faster than the
native implementation of scikit-learn.

Finally, we ran a separate experiment on TF-IDF to com-
pare the DETEXA framework with PySpark and its native
implementation of tfidf (HashingTF, IDF packages). We
selected PySpark, since it is a popular distributed analyti-
cal system which achieves efficient execution of algorithms
through parallelization. YeSQL’s implementation on top of
SQLite runs only single-threaded. However, we compared
it against PySpark with different configurations (i.e., single
CPU execution, 2 CPUs, 4 CPUs, and 8 CPUs). As shown
in Fig. 5, implementing TF-IDF with the proposed UDF
library runs faster than Spark, not only in single-threaded

Fig. 4 Execution times of DETEXA, NLTK, Scikit-learn for TF-IDF

mode but also if Spark runs using 2 CPUs in all data sizes.
Spark achieves its best performance with 4 CPUs, where it
runs faster than our single-core solution in 100 K and 1M
abstracts. This result indicates a potentially interesting future
direction and testing as well: deployment of the proposed
framework with multi-threaded DBMSs (e.g., MonetDB is
also supported by YeSQL) will reap the benefits of parallel
execution.

6 Conclusions

We presented an efficient and extensible text analysis frame-
work built on top of YeSQL. The DETEXA framework maps
several text mining functionalities to reusable scalar, aggre-
gate, and polymorphic table UDFs written in Python. Due
to the performance characteristics of YeSQL and its design,
the presented framework is able to execute faster than other
popular solutions critical text mining analytical tasks. The
declarative language of the DETEXA framework allows fast
experimentation and implementation, as well as easy devel-

123

DETEXA: declarative extensible...

Fig. 5 Execution times of DETEXA and Spark (various parallelisms)
for TF-IDF

opment of application interfaces. We actively concentrate on
various future directions, including integration of the frame-
work with other DBMSs that are supported by YeSQL in
order to reap the benefits of multi-threaded/parallel execu-
tion, and richer interfaces to offer the opportunity to users
without programming knowledge to implement and tune
complex text analysis tasks. Implementation of modern tech-
niques like foundation models and sophisticated semantic
analysis within DETEXA is also in our future plans.

Acknowledgements This work is funded by EU projects OpenAIRE-
Nexus (101017452) and HBP (945539). The authors would like to
acknowledge Lefteris Stamatogiannakis, Mei Li Triantafillidi, Tasos
Giannakopoulos, and Lampros Smyrnaios for their valuable contribu-
tions to the design and implementation of the presented library.

Funding Open access funding provided by HEAL-Link Greece.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. NLTK, https://www.nltk.org
2. PySpark, https://spark.apache.org/docs/latest/api/python/
3. Dask, https://dask.org
4. Raasveldt, M., Mühleisen, H.: Vectorized udfs in column-stores.

In: Proceedings of the 28th International Conference on Scientific
and Statistical Database Management (2016)

5. https://www.postgresql.org/docs/current/xfunc.html

6. https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/
ExtendingVertica/UDF-SQLFunctions/CreatingUser-
DefinedSQLFunctions.htm

7. DeclarativeExtensible Text EXploration andAnalysis (DETEXA):
https://github.com/madgik/detexa

8. Foufoulas, Y., Simitsis, A., Stamatogiannakis, L., Ioannidis, Y.:
YeSQL: “You extend SQL” with rich and highly performant user-
defined functions in relational databases. PVLDB (2022)

9. OpenAIRE. https://www.openaire.eu
10. Giannakopoulos, T., et al.: Content visualization of scientific

corpora using an extensible relational database implementation.
In: International Conference on Theory and Practice of Digital
Libraries. Springer, Cham (2013)

11. Giannakopoulos, T., Foufoulas, Y., Dimitropoulos, H., Manola, N.:
Interactive text analysis and information extraction. In: Manghi,
P., Candela, L., Silvello, G. (eds) Digital Libraries: Supporting
Open Science. IRCDL 2019. Communications in Computer and
Information Science, vol 988. Springer, Cham (2019)

12. Foufoulas, Y., Stamatogiannakis, L., Dimitropoulos, H., Ioanni-
dis, Y.: High-pass text filtering for citation matching. In: Kamps,
J., Tsakonas, G., Manolopoulos, Y., Iliadis, L., Karydis, I. (eds)
Research and Advanced Technology for Digital Libraries. TPDL
2017. Lecture Notes in Computer Science, vol. 10450. Springer,
Cham, https://doi.org/10.1007/978-3-319-67008-9_28 (2017)

13. Varoquaux, G., et al.: Scikit-learn:Machine learningwithout learn-
ing the machinery. GetMobile: Mobile Comput. Commun. 19(1):
29–33 (2015)

14. Vasiliev, Y.: Natural Language Processing with Python and SpaCy:
A Practical Introduction. No Starch Press (2020)

15. Gensim text processing library, https://radimrehurek.com/gensim
16. Devlin, J., et al.: BERT: pre-training of deep bidirec-

tional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

17. https://www.tensorflow.org
18. https://pytorch.org
19. Foufoulas, Y., Gogolou, A., Stamatogiannakis, L., Dimitropoulos,

H., Manola, N., Ioannidis, Y.: Extracting biological knowledge
from literature using SQL. In: Poster in 5th International Work-
shop on Mining Science Publishing WOSP 2016 (2016)

20. Giannakopoulos, T., Dimitropoulos, H., Metaxas, O., Manola, N.,
Ioannidis, Y.: Supervised content visualization of scientific pub-
lications: a case study on the arXiv dataset. In: Kłopotek, M.A.,
Koronacki, J., Marciniak, M., Mykowiecka, A., Wierzchoń, S.T.
(eds) Language Processing and Intelligent Information Systems.
IIS 2013. Lecture Notes in Computer Science, vol 7912. Springer,
Berlin, https://doi.org/10.1007/978-3-642-38634-3_23 (2013)

21. Giannakopoulos, T., Foufoulas, I., Stamatogiannakis, E., Dim-
itropoulos, H., Manola, N., Ioannidis, Y.: Discovering and Visual-
izing Interdisciplinary Content Classes in Scientific Publications.
D-Lib Mag., Volume 20, Number 11/12, https://doi.org/10.1045/
november14-giannakopoulos (2014)

22. Giannakopoulos, T., Foufoulas, I., Stamatogiannakis, E., Dim-
itropoulos, H., Manola, N., Ioannidis, Y.: Visual-based classifi-
cation of figures from scientific literature. In: Proceedings of the
24th International Conference on World Wide Web (WWW ’15
Companion). Association for Computing Machinery, New York,
1059–1060, https://doi.org/10.1145/2740908.2742024 (2015)

23. OpenAIRE2020 H2020 Project Deliverable D10.2 “Clustering
Algorithms” (2016), https://www.openaire.eu/d10-2-clustering-
algorithms

24. tfidf algorithm, https://www.kaggle.com/code/xfffrank/tfidf-
stemming/notebook

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.nltk.org
https://spark.apache.org/docs/latest/api/python/
https://dask.org
https://www.postgresql.org/docs/current/xfunc.html
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/ExtendingVertica/UDF-SQLFunctions/CreatingUser-DefinedSQLFunctions.htm
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/ExtendingVertica/UDF-SQLFunctions/CreatingUser-DefinedSQLFunctions.htm
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/ExtendingVertica/UDF-SQLFunctions/CreatingUser-DefinedSQLFunctions.htm
https://github.com/madgik/detexa
https://www.openaire.eu
https://doi.org/10.1007/978-3-319-67008-9_28
https://radimrehurek.com/gensim
http://arxiv.org/abs/1810.04805
https://www.tensorflow.org
https://pytorch.org
https://doi.org/10.1007/978-3-642-38634-3_23
https://doi.org/10.1045/november14-giannakopoulos
https://doi.org/10.1045/november14-giannakopoulos
https://doi.org/10.1145/2740908.2742024
https://www.openaire.eu/d10-2-clustering-algorithms
https://www.openaire.eu/d10-2-clustering-algorithms
https://www.kaggle.com/code/xfffrank/tfidf-stemming/notebook
https://www.kaggle.com/code/xfffrank/tfidf-stemming/notebook

	DETEXA: declarative extensible text exploration and analysis through SQL
	Abstract
	1 Introduction
	2 Related work
	2.1 Text analysis tools
	2.2 Data management systems with text mining opportunities
	2.3 Deep learning-based models

	3 The DETEXA framework
	3.1 Function library
	3.2 Why YeSQL?
	3.3 Extensibility
	3.4 Interfaces
	3.5 Distributed deployment

	4 DETEXA in practice
	4.1 DETEXA limitations

	5 Evaluation
	5.1 Experimental setup
	5.2 Experiments
	5.2.1 Project mining
	5.2.2 Document classification
	5.2.3 Term frequency-inverse document frequency (TF-IDF)

	6 Conclusions
	Acknowledgements
	References

