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Abstract
The Poisson–Boltzmann equation (PBE) is a nonlinear elliptic parametrized partial differential equation that arises in
biomolecular modeling and is a fundamental tool for structural biology. It is used to calculate electrostatic potentials around an
ensemble of fixed charges immersed in an ionic solution. Efficient numerical computation of the PBE yields a high number of
degrees of freedom in the resultant algebraic system of equations, ranging from several hundred thousand to millions. Coupled
with the fact that in most cases the PBE requires to be solved multiple times for a large number of system configurations,
for example, in Brownian dynamics simulations or in the computation of similarity indices for protein interaction analysis,
this poses great computational challenges to conventional numerical techniques. To accelerate such onerous computations,
we suggest to apply the reduced basis method (RBM) and the (discrete) empirical interpolation method ((D)EIM) to the PBE
with a special focus on simulations of complex biomolecular systems, which greatly reduces this computational complexity
by constructing a reduced order model (ROM) of typically low dimension. In this study, we employ a simple version of the
PBE for proof of concept and discretize the linearized PBE (LPBE) with a centered finite difference scheme. The resultant
linear system is solved by the aggregation-based algebraic multigrid (AGMG) method at different samples of ionic strength
on a three-dimensional Cartesian grid. The discretized LPBE, which we call the high-fidelity full order model (FOM), yields
solution as accurate as other LPBE solvers. We then apply the RBM to the FOM. DEIM is applied to the Dirichlet boundary
conditions which are nonaffine in the parameter (ionic strength), to reduce the complexity of the ROM. From the numerical
results, we notice that the RBM reduces the model order fromN = 2× 106 to N = 6 at an accuracy ofO(10−9) and reduces
the runtime by a factor of approximately 7600. DEIM, on the other hand, is also used in the offline-online phase of solving
the ROM for different values of parameters which provides a speed-up of 20 for a single iteration of the greedy algorithm.

Keywords Reduced basis method · Poisson–Boltzmann equation · Finite differences scheme · Aggregation-based algebraic
multigrid method · Discrete empirical interpolation method

1 Introduction

Electrostatic interactions are important in biological pro-
cesses such as molecular recognition, enzyme catalysis, and
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biomolecular encounter rates. A significant challenge in
computational biology has been to model these interactions
accurately and efficiently. This is because biomolecules are
surrounded by solvent molecules and therefore, the solvent
effects must be considered during modelling. There are two
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main groups of computational approaches which are used to
model electrostatic interactions based on how the solvent is
treated. Explicit methods place the solvent molecules around
the biomolecule while implicit methods consider the solvent
molecules as a continuum [1,2].

The Poisson–Boltzmann equation (PBE) is one of the
most popular implicit solvent models which describes the
solvent in a continuum model through the Boltzmann dis-
tribution. The PBE solves the electrostatic potential in the
entire domainwhich comprises both themolecule and the sol-
vent. From this potential, further information can be obtained
at various regions of interest and for different applications.
Firstly, the electrostatic potential at the biomolecular sur-
face, commonly known as electrostatic surface potential,
can provide insights into possible docking sites for other
small or large molecules. Secondly, the potential outside the
biomolecule can provide information about the free energy
of interaction of small molecules at different positions in
the vicinity of the biomolecule. Thirdly, free energy of a
biomolecule can be determined, which provides information
about the molecule’s stability. Finally, the electrostatic field
can be estimated from which the mean atomic forces can be
derived. More information can be found in [2–5].

Analytical solutions of the PBE are only possible under
the assumption that the biomolecules of interest have regular
shapes, for example, spheres or cylinders. And even if these
solutions exist, they are still quite complex. However, these
are not realistic because biomolecules have irregular shapes
or geometries and charge distributions [6,7]. This makes it
necessary to apply numerical techniques to the PBE and the
first of suchmethodswere introduced in [8]where the electro-
static potential was determined at the active site of a protein
(or enzyme). The most popular numerical techniques in this
regard are basedon the discretizationof the domainof interest
into small regions and employ the finite difference methods
(FDM) [1,9], the finite element methods (FEM) [9,10], or
the boundary element methods (BEM) [11,12]. A thorough
review of the numerical methods for solving the PBE can be
found in [13].

All of the aforementioned numerical methods have one
major advantage in common. It is possible to employ ‘elec-
trostatic focussing’, which enables users to apply relatively
coarse grids for the entire calculations and very fine grids in
regions of great interest such as the binding or active sites of
macrobiomolecules. This adaptivity provides highly accu-
rate local solutions to the PBE at reduced computational
costs [14]. However, the BEM has the drawback of being
applicable only to the LPBE and thus limiting its general
use. Numerous software packages have been developed to
solve the PBE and some of the major ones include the adap-
tive Poisson–Boltzmann solver (APBS) [9] and Delphi [15].
There are also recent developments regarding the PBE theory
which include, the treatment of the biomolecular system as

an interface problem, the extensive studies on the nonlinear
PBE, among others, see Sect. 2 for more details.

Due to the limited computationalmemory and speed, solv-
ing the PBE efficiently is still computationally challenging
and affecting the accuracy of the numerical solutions. This
is due to the following reasons. Firstly, electrostatic interac-
tions are long-ranged and therefore, the electrostatic potential
decays exponentially over large distances, see Eq. (7). This
requires an infinite domain which is infeasible in practice.
Secondly, biomolecules of interest comprise of thousands to
millions of atoms which require a large domain to accom-
modate both the biomolecule and the solvent. To circumvent
these challenges, it is customary to choose a truncateddomain
of at least three times the size of the biomolecule so as to
accurately approximate boundary conditions [6]. Nonethe-
less, this still leads to a very large algebraic system consisting
of several hundreds of thousands to millions of degrees of
freedom. It becomes even more difficult if the PBE is incor-
porated in a typical dynamics simulation which involves
millions of time steps or in a multi-query task where the
solution is solved many times for varying parameter values
such as the ionic strength [1].

The computational complexity arising from the resul-
tant high-dimensional system can be greatly reduced by
applying model order reduction (MOR) techniques. The
main goal of MOR is to construct a reduced-order model
(ROM) of typically low dimension, whose solution retains
all the important information of the high-fidelity system at
a greatly reduced computational effort. Because the PBE is
a parametrized PDE (PPDE), we apply the reduced basis
method (RBM) which falls into the class of parametrized
MOR (PMOR) techniques [16]. However, it is important to
note that the RBM is not an independent numerical tech-
nique; hence its accuracy depends on that of the underlying
technique which is used to discretize the PBE [16,17]. In this
paper, we discretize the PBE using FDM before applying the
RBM.

The benefits of the RBM, or the MOR in general, become
obvious when the same problem has to be solved for a large
number of parameter values. In our study, the break-even
point is about 10, and thus, the RBM becomes very effec-
tive if dozens or more parameter configurations need to be
evaluated.

Here, we consider a protein molecule immersed in ionic
solution at physiological concentration, and determine the
electrostatic potential triggered by the interaction between
the two particles, see Fig. 1. The electrolyte here is of mono-
valent type, implying that the ionic strength is equivalent to
the concentration of the ions. The ionic strength is a physical
parameter of the PBE, and we consider it as the parameter μ

for the RBM in this article. Therefore, the electrostatic poten-
tial shall be determined under variation of this parameter. The
electrostatic potential as a function of the ionic strength in
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Fig. 1 2-D view of Debye–Hückel model

solution may influence the rate of association between the
enzyme and substrate [18,19].

This paper is an extension of the ECCOMAS Congress
2016 proceedings paper, Kweyu et al. [20] with the following
additional key inputs. Firstly, we employ nonaffine Dirichlet
boundary conditions given in Sect. 3.4 to replace the zero
Dirichlet boundary conditions in the former. Secondly, and
as a consequence of the nonaffine parameter dependence of
these boundary conditions, we apply the (discrete) empirical
interpolation method ((D)EIM) to reduce the resultant com-
plexity in the reduced order model (ROM) during the online
phase of the reduced basis method (RBM), see Sects. 4.2
and 4.3. Note that we follow the description of the DEIM
implementation discussed in [21]. Mathematically, this is
equivalent to the original EIM version introduced in [22] and
the discrete variant in [23]. Lastly, we apply finite volume
discretization to the dielectric coefficient function instead
of taking the averages of the dielectric values between two
neighbouring grid points. This is meant to reduce the trun-
cation error as explained in Sect. 3.2.

RBM has previously been applied to the nonlinear regu-
larized PBE based on the range-separated tensor format and
preliminary results for only simplemoleculeswere published
in [24]. Chen et al. [25] used a simplified variant of the classi-
cal nonlinear PBE but only in 1- and 2-dimensions wherein
smooth exponential functions, which derive their applica-
tion in electrochemical systems involving the modeling of
the symmetric electrolyte, were used as the source terms.
However, the novelty of this paper rests in the efficient con-
struction of a lowdimensional surrogate reduced ordermodel
(ROM) for the LPBE by the RBM and DEIM, whose solu-
tion is as accurate as those of popular PBE software packages,
for example, the APBS. Here, for the first time, the RBM has
been applied to the LPBE in 3D for modeling of complex
biomolecular systems, which are characterized by the pres-
ence of strong singularities generated by singular sources
and subject to parametric nonaffine Dirichlet boundary con-
ditions in the form of Yukawa potential.

The outline of this paper is as follows: in Sect. 2, we
present an overview of the PBE theory and derive the PBE
model. In Sect. 3, we provide a glimpse on the finite differ-
ence discretization of the LPBE and those of the dielectric
coefficient and kappa functions, charge densities, as well
as their respective mappings to the computational grid. In
Sect. 4, we provide the basics of the RBMwhich include the
problem formulation, the solutionmanifold, the greedy algo-
rithm, the discrete empirical interpolation method (DEIM),
and the a posteriori error estimation. In Sect. 5, we provide
numerical results of the FOM (via the FDM) and those of the
ROM (via RBM and DEIM). Conclusions and some ideas on
future work are given in the end.

2 An overview of Poisson–Boltzmann theory

There are numerousways and reviews on the derivation of the
PBE. The simplest stems from the Poisson equation [26,27]
(in SI units),

− �∇ · (ε(x) �∇u(x)) = ρ(x), in � ∈ R
3, (1)

which describes the electrostatic potential u(x) at a point
x ∈ �. The term ρ(x) is the charge distribution which gen-
erates the potential in a region with a position-dependent
and piecewise constant dielectric function ε(x). Equation (1)
is generally solved in a finite domain � subject to Dirich-
let boundary conditions u(x) = g(x) on ∂�. Usually, g(x)
employs an analytic and asymptotically correct form of the
electrostatic potential and therefore, the domain must be suf-
ficiently large to ensure an accurate approximation of the
boundary conditions [7].

To obtain the PBE fromEq. (1), we consider two contribu-
tions to the charge distributionρ(x): the ‘fixed’ solute charges
ρ f (x) and the aqueous ‘mobile’ ions in the solvent ρm(x).
The Nm partial atomic point charges (zi ) of the biomolecule
are modeled as a sum of delta distributions at each atomic
center xi , for i = 1, . . . , Nm , that is,

ρ f (x) = 4πe2

KBT

Nm∑

i=1

ziδ(x − xi ). (2)

The term e/KBT is the scaling coefficient which ensures
that the electrostatic potential is dimensionless, where e is
the electron charge and KBT is the thermal energy of the
system and is comprised of the Boltzmann constant KB and
the absolute temperature T . The total charge of each atom is
ezi .

On the other hand, the solvent is modeled as a continuum
through theBoltzmann distributionwhich leads to themobile
ion charge distribution
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ρm(x) = 4πe2

KBT

m∑

j=1

c jq j e
−q j u(x)−Vj (x), (3)

where we have m mobile ion species with charges q j and
bulk concentrations c j . The term Vj (x) is the steric potential
which prevents an overlap between the biomolecule and the
counterions. For monovalent electrolytes, whose ions are in
a 1 : 1 ratio, for example, NaCl, Eq. (3) reduces to

ρm(x) = −κ2(x) sinh(u(x)), (4)

where the kappa function κ2(x) is position-dependent and
piecewise constant; it describes both the ion accessibility
through e−V (x) and the bulk ionic strength (or concentration)
[14].

We eventually obtain the PBE by combining the two
expressions for the charge distributions in (2) and (4) with
the Poisson equation (1) for a monovalent electrolyte,

−�∇.(ε(x) �∇u(x)) + κ̄2(x) sinh(u(x))

= 4πe2

KBT

Nm∑

i=1

ziδ(x − xi ), (5)

subject to

u(x) = g(x) on ∂�, (6)

where

u(∞) = 0 �⇒ u(xmax) → 0 as |xmax| → ∞. (7)

In Eq. (5), u(x) = eψ(x)/KBT is the dimensionless poten-
tial scaled by e/KBT and ψ(x) is the original electrostatic
potential in centimeter-gram-second (cgs) units at x ∈ R

3.
The terms ε(x) and κ̄2(x) are discontinuous functions at the
interface between the charged biomolecule and the solvent,
and at an ion exclusion region (Stern layer) surrounding the
molecule, respectively. The term κ̄2 = 8πe2 I/1000εKBT

is a function of the ionic strength I = 1/2
∑Nm

i=1 ci z
2
i , which

shall be used as the RBMparamterμ in Sect. 4 . The function
g(x) represents the Dirichlet boundary conditions which are
discussed in detail in Sect. 3.4 and are nonaffine in the param-
eter I . Equation (7) shows that the electrostatic potential
decays to zero exponentially as the position approaches infin-
ity. Details on mapping ε(x) and κ̄2(x) onto a computational
grid can be found in [9]. The PBE (5) poses severe computa-
tional challenges in both analytical andnumerical approaches
due to the infinite (unbounded) domain in (7), delta distri-
butions, rapid nonlinearity, and discontinuous coefficients
[6,10].

The PBE (5) can be linearized under the assumption
that the electrostatic potential is very small relative to the

thermal energy KBT [2]. Therefore, the nonlinear function
sinh(u(x)) can be expanded into a Taylor series

sinh(u(x)) = u(x) + u(x)3

3! + u(x)5

5! + · · · , (8)

and only the first term is retained. We obtain the linearized
PBE (LPBE) given by

− �∇.(ε(x) �∇u(x)) + κ̄2(x)u(x) =
(
4πe2

KBT

) Nm∑

i=1

ziδ(x − xi ). (9)

Usually, proteins are not highly charged, and it suffices to
consider the linearized PBE (LPBE). One can still obtain
accurate results because the higher order terms in (8) do not
provide a significant contribution. However, we must note
that the LPBE can give inaccurate results for highly charged
biomolecules such as the DNA and RNA (nucleic acids),
phospholipid membranes, and polylysine [4]. More infor-
mation about the PBE, including its derivation from first
principles, can be found in [6].

It is worth noting that there are recent developments of
the PBE theory. Firstly, the biomolecular system has been
considered as an interface problem which requires solution
decomposition techniques to get rid of the solution singular-
ities caused by the Dirac-delta distributions on the right hand
side of (9) or (5). This has been discussed, for example, in
[28–30] where the LPBE has been modified into the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−εp	u(x) = α
∑Nm

i=1 ziδ(x − xi ), x ∈ Dp,

−εs	u(x) + κ2u(x) = 0, x ∈ Ds,

u(s+) = u(s−), εs
∂u(s+)
∂n(s) = εp

∂u(s−)
∂n(s) , s ∈ �,

u(s) = g(s), s ∈ ∂�,

(10)

where α is a constant, Dp the protein domain, Ds the solvent
domain and � the interface between the protein and the sol-
vent. The PBE (nonlinear) has also been extensively solved
as an interface problem [28,29].

The interface problem in (10) is more accurate than the
model in (9) considered in this study, because the local or
short-range potentials generated by the Dirac-delta distribu-
tions are computed independent of the long-range potentials,
thus avoiding errors. However, this model is still compu-
tationally expensive because the numerical calculations by
conventional methods are in O(N 3), (commonly known as
the ‘curse of dimensionality’), where N is the dimension of
the system in one direction. Therefore, we use the simple
model (9) for the purpose of introducing and validating the
RBM. Considering the interface problem would be our next
step.

Secondly, studies on a variational problem of minimizing
a mean-field variational electrostatic free-energy functional
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have been conducted [31]. This has been done in order
to investigate the dependence of dielectric coefficient on
local ionic concentrations and its effect on the equilibrium
properties of electrostatic interactions in an ionic solution
which was proposed, for instance, in [32]. Results show that
indeed the dielectric coefficient depends on the local ionic
concentrations and this dependence can be expressed as a
mathematical function which is continuous, monotonically
decreasing, and convex [31].

2.1 Applications and post-processing of the PBE
solution

The resultant electrostatic potential for the entire system can
be used to calculate electrostatic free energies and electro-
static forces. The electrostatic free energy represents thework
needed to assemble the biomolecule and is obtained by inte-
gration of the potential over a given domain of interest [7,33].
For the LPBE, this energy is given by

Gelec[u(x)] = 1

2

∫

�

ρ f u(x)dx = 1

2

N∑

i=1

zi u(xi ), (11)

where u(xi ) is the mean electrostatic potential acting on an
atom i located at position xi and carrying a charge zi . The
integral in (11) can be seen as the integral of polarization
energywhich is equivalent to the sumof interactions between
charges and their respective potentials.

On the other hand, it is also possible to differentiate the
energy functional in (11) with respect to atomic positions
to obtain the electrostatic force on each atom [7,14,34]. The
electrostatic potential can also be evaluated on the surface of
the biomolecule (electrostatic surface potential). It is used
to provide information about the interaction between the
biomolecule and other biomolecules or ligands or ions in
its vicinity.

2.1.1 Similarity index (SI) analysis of proteins

Similarity indices (SIs) are quite significant for the following
reasons. Firstly, they are used in quantum mechanical calcu-
lations to compare the electron densities and electrostatic
potentials of small organic compounds. The comparison
can be used to derive quantitative structure-activity relation-
ships (QSARs) [35]. Secondly, they are used for comparison
of molecular electrostatic potentials generated by the PBE.
In general, similarity analysis can be used to compare the
interaction properties of related proteins which provides
information about binding to other particles [35].

If somany protein samples are considered, then it becomes
a severe computational issue. On the other hand, self-
similarity indices can also be calculated by rotation of

individual proteins about an axis, tasks which can be han-
dled more conveniently by the RBM. In this case, the angle
of rotation becomes the useful parameter. This is our next
research focus where we shall apply solution decomposition
technique (the range-separated canonical tensor format) [36]
in order to modify the PBE in (5) so as to improve on the
accuracy and to reduce the computational costs.

2.1.2 Brownian dynamics simulation (BDS) and ionic
strength dependence on reaction rates

Brownian dynamics simulation technique has a myriad
of applications in biological systems. It may be used for
example, to determine protein association rates, simulate
protein-protein encounter, among others [2,37]. Protein asso-
ciation rates highly depend on the ionic strength of the ionic
solution in which the interaction takes place. For instance,
high ionic strengths dampen or attenuate the effect of elec-
trostatic forces and energies of proteins, hence reducing the
rates of association and vice versa. The dependence on ionic
strength of the solution is an indicator to the significance of
long-range electrostatic forces and hence diffusion control
[37].

Works of several researchers corroborate this dependence
of protein association rates on ionic strength and we here
mention a few of these findings. In their research about
ionic strength dependence of protein-polyelectrolyte inter-
actions, Seyrek et al. [38] investigated the effect of univalent
electrolyte concentration on protein-polyelectrolyte complex
formation. They observed that the addition of salt screened
repulsions, as well as attractions, thus reduced the binding of
the complex.

Pasche et al. [39] examined the effect of ionic strength
and surface charge on protein adsorption at PEGylated sur-
faces. They observed that at high grafting density and high
ionic strength, the net interfacial force was determined by
the steric barrier properties of PEG (polyethylene glycol).
On the other hand, at low ionic strength, the electrical double
layer thickness exceeded that of the PEG layer, therefore, the
protein interactions with PLL-g-PEG coated surfaces were
influenced by the surface charges shining through the PEG
double layer.

In [40], the electrostatic influence on the kinetics of lig-
and binding to acetylcholinesterase (AChE) was investigated
and distinctions between active center ligands and fasciculin
weremade. It was observed that reaction rates for the cationic
ligands showed a strong dependence on ionic strength. Fur-
thermore, fasciculin 2 (FAS2) showed greater ionic strength
dependence than TFK+ (m-trimethylammoniotrifluoroacet-
ophenone) which is consistent with its multiple net positive
charges.

The RBM technique can be quite useful for such multi-
parametric systems, whereby a reduced order model (ROM)
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can be obtained for varying ionic strengths and positions of
the molecule under investigation. This ROM can make the
BDS computations much cheaper than using the full order
model (FOM).

3 Discretization of the Poisson–Boltzmann
equation

3.1 Finite difference discretization

We discretize the LPBE in (2) with a centered finite differ-
ences scheme to obtain the algebraic linear system as follows,

− H

dx2
εx
i+ 1

2 , j,k
(ui+1, j,k − ui, j,k)

+ H

dx2
εx
i− 1

2 , j,k
(ui, j,k − ui−1, j,k)

− H

dy2
ε
y
i, j+ 1

2 ,k
(ui, j+1,k − ui, j,k)

+ H

dy2
ε
y
i, j− 1

2 ,k
(ui, j,k − ui, j−1,k)

− H

dz2
εz
i, j,k+ 1

2
(ui, j,k+1 − ui, j,k)

+ H

dz2
εz
i, j,k− 1

2
(ui, j,k − ui, j,k−1) + H κ̄2

i, j,kui, j,k = HCqi, j,k ,

(12)

where H = dx × dy × dz is a scaling factor, qi, j,k is the
discretized molecular charge density and C = 4πe2/KBT .
It is important to choose efficient algorithms and parameters
to be used in the discretization of the charge density distri-
bution, the kappa, and the dielectric functions that appear in
the LPBE for the accuracy of the mean electrostatic potential
solution. An efficient method is usually chosen to partition
the domain into regions of solute (or biomolecule) and the
solvent dielectric. Some of the key methods employed in
APBS are the molecular surface and cubic-spline surface
methods [33]. In the following subsections, we provide some
insights into these discretizations.

3.2 Calculation of dielectric constant distribution
and kappa function

We notice that the dielectric constant ε in Eq. (12), is dis-
cretized at half grid, and therefore, we use a staggered mesh
which results in three arrays (in x , y, and z directions) repre-
senting the shifted dielectric values on different grids. This
intends to fully take advantage of the finite volume discretiza-
tion in order to minimize the solution error by increasing the
spatial resolution. The dielectric coefficients and kappa func-
tions which are piecewise constant, are mapped according to
the following conditions,

ε(x) =
{
2 if x ∈ �1

78.54 if x ∈ �2 or �3
, κ̄(x) =

{
0 if x ∈ �1 or �2√

ε3κ if x ∈ �3
,

(13)

where�1 is the region occupied by the protein molecule,�2

is the ion-exclusion layer, and �3 is the region occupied by
the ionic solution.

Techniques used tomap the dielectric and kappa functions
onto the grid include, among others, the molecular surface,
and the smoothed molecular surface, which are calculated
using the Connolly approach [41] and the cubic-spline sur-
face. Formore information see [33]. The cubic-spline surface
method, which is our method of choice, is more suitable than
the other two because it is possible to evaluate the gradient
of the mean electrostatic potential such as in the determina-
tion of the solvated or polar forces. This method introduces
an intermediate dielectric region at the interface between the
solute and the solvent because the kappa and dielectric maps
are built on a cubic-spline surface. This smoothes the tran-
sition of the functions to circumvent discontinuities inherent
in them [9,33].

3.3 Calculation of charge densities

The molecular charge density (right-hand side of the LPBE
(9)) can be obtained from any file with atomic coordinates,
charges, and radii. However, these atomic coordinates may
not coincide with any of our grid points. Therefore, it is
necessary to find an efficient method of spreading the point
charges (summation term in LPBE) to the grid points. Sev-
eral methods are available to map or spread the charges onto
the grid points, e.g. in the APBS software package. Trilinear
interpolation (or linear spline) in which charges are mapped
onto nearest-neighbour grids, results in potentials which are
very sensitive to the grid resolution. Cubic B-spline interpo-
lation where charges are mapped to two layers of grid points,
has an average sensitivity to the grid setup, and quintic B-
spline interpolation has the lowest sensitivity to grid spacing
because charges are spread out to three layers of the grid
points [9].

In this study,we use the cubicB-spline interpolation (basis
spline) method which maps the charges to the nearest and
next-nearest grid points. Although computationally expen-
sive, this method provides softer or smoother distributions
of charges which subsequently reduces the sensitivity of the
mean electrostatic potential solutions to the grid spacing [33].

3.4 Dirichlet boundary conditions

Analytical solutions to the LPBE can only be obtained for
systems with simple geometries, for example, spherical and
cylindrical systems. Equation (14) shows an analytical solu-
tion for a spherical molecule with uniform charge (Born ion)
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[6]. From this equation, we can obtain two different kinds
of Dirichlet boundary conditions, the single Debye–Hückel
(SDH) and multiple Debye–Hückel (MDH). For the former,
we assume that all the atomic charges are collected into a
single charge at the center of the solute approximated by a
sphere. This kind of boundary condition is suitable when the
boundary is sufficiently far from the biomolecule. On the
other hand, the latter assumes the superposition of the con-
tribution of each atomic charge (i.e. multiple, non-interacting
spheres with point charges) with respective radius. This kind
of boundary condition is more accurate than SDH for closer
boundaries but can be computationally expensive for large
biomolecules.

In this study, we employ the MDH type [9,42],

u(x) =
(

e2

KBT

) Nm∑

i=1

zi e−κ(d−ai )

εw(1 + κai )d
on ∂�, d = |x − xi |. (14)

Here zi are the point partial charges of the protein, εw is
the solvent dielectric, κ = κ̄/

√
εw is a function of the ionic

strength of the solution, ai are the atomic radii, and Nm is
the total number of point partial charges in the protein.

4 Essentials of the reduced basis method

The Reduced basis method (RBM) and proper orthogonal
decomposition (POD) are examples of popular projection-
based parametrized model order reduction (PMOR) tech-
niques. The main goal of these techniques is to generate a
parametric ROMwhich accurately approximates the original
full order model (FOM) of high dimension over vary-
ing parameter values [16,17,43]. The RBM exploits an
offline/online procedure which ensures an accurate approxi-
mation of the high-fidelity solution in a rapid and inexpensive
manner and iswidely applicable in real-time andmany-query
scenarios. For a thorough review, see [16].

We consider a physical domain � ⊂ R
3 with boundary

∂�, and a parameter domain D ⊂ R in which the physical
parameter of the RBM, (i.e., the ionic strength μ) resides.
The LPBE (9) is discretized with the centered finite differ-
ence scheme (12) on� andDirichlet boundary conditions (6)
obtained from (14) are applied. The resultant discrete prob-
lem of the LPBE becomes, for any μ ∈ D, find uN (μ) that
satisfies the linear system

A(μ)uN (μ) = f (μ), μ ∈ D, (15)

where A(μ) ∈ R
N×N and f (μ) ∈ R

N . The matrix A(μ)

can also be written as a parameter-affine matrix,

A(μ) =
Q∑

i=1

�i (μ)Ai , (16)

where Q ∈ N, �i are scalar coefficient functions, and Ai

are the parameter independent matrices. The N × N sys-
tem is indeed computationally expensive to be solved for an
accurate approximation of u(μ) because the dimensionN is
approximately 2 × 106 in our problem. Therefore, we apply
the RBM to save computational costs by providing an accu-
rate approximation of uN (μ) at a greatly reduced dimension
of N � N . The ROM is given by (19).

However, as detailed in Sect. 4.2, we encounter some com-
putational complexity in the online phase of RBM which is
caused by the nonaffine parameter dependence in the right-
hand side vector f (μ) from the boundary condition (14).
The parameter, the ionic strength, resides in the kappa term
κ in the exponential function. This violates one of the key
assumptions of the RBM which requires that all the sys-
tem matrices and vectors must be affinely dependent on the
parameter so that the offline/online decomposition is natural
[44]. To circumvent this problem, we propose to apply an
empirical interpolation method to reduce the complexity of
the the online phase by avoiding the high-dimensional com-
putation related to the vector f (μ). We provide some details
in Sect. 4.3.

4.1 The solutionmanifold and the greedy algorithm

Another key assumption in RBM besides the affine param-
eter dependence, is the existence of a typically smooth and
very low dimensional solution manifold which almost cov-
ers all the high-fidelity solutions of (15) under variation of
parameters [17],

MN = {uN (μ) : μ ∈ D}. (17)

The RB approximation space is then built upon this solu-
tion manifold and is given by the subspace spanned by the
snapshots of the FOM. In other words, it is the subspace
spanned by the high-fidelity uN (μ) solutions corresponding
to a number of samples of the parameters, that is,

range(V ) = span{uN (μ1), . . . , u
N (μl )}, ∀μ1, ..., μl ∈ D. (18)

The greedy algorithm as given in Algorithm 1 is used to
generate the reduced basis space (18) through an iterative
procedure where a new basis is computed at each iteration
[45]. The RB space can be thought of being nested or hierar-
chical such that the previous basis set is a subset of the next
and so on.

TheRBapproximation is then formulated as, for any given
μ ∈ D, find uN (μ) ∈ XN which satisfies

AN (μ)uN (μ) = fN (μ), (19)

where AN = V T AV and fN (μ) = V T f (μ). V is the
orthonormal matrix computed from the greedy algorithm.
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Algorithm 1 Greedy algorithm[46]
Require: A training set � ⊂ D including samples of ionic strength μ

covering the parameter domain D, i.e., � := {μ1, . . . , μl }.
Ensure: RB basis represented by the projection matrix V .
1: Choose μ∗ ∈ � arbitrarily.
2: Solve FOM (15) for uN (μ∗).
3: V1 = [uN (μ∗)], N = 1.
4: while max

μ∈�
	N (μ) ≥ ε do

5: μ∗ = argmax
μ∈�

	N (μ).

6: Solve FOM (15) for uN (μ∗).
7: VN+1 = [VN uN (μ∗)].
8: Orthonormalize the columns of VN+1.
9: N = N + 1.
10: end while

From the fact that N � N , solving the small dimensional
reduced order model (ROM) is much cheaper than solv-
ing the high-fidelity model, the FOM (15) [17]. However,
one problem still remains when computing the ROM. The
computational complexity of evaluating the nonaffine func-
tion fN (μ) still depends on the dimension of the FOM, as
illustrated in Sect. 4.2. Efficient implementation of Sect. 1
depends on an efficient error estimation	N (μ) of the ROM,
which is discussed in Sect. 4.5.

4.2 Computational complexity of the reduced order
model (ROM)

To demystify the issue of computational complexity in the
ROM, we can first rewrite (15) explicitly to illustrate the
affine parameter decomposition on the left-hand side and the
nonaffine right-hand side,

(A1 + μA2)u
N (μ) = ρ + b(μ), μ ∈ D, (20)

where the matrix A1 comes from the Laplacian operator
term, A2 is a diagonal matrix from the κ̄ term, ρ represents
the charge density term and b(μ), the boundary conditions
obtained from the analytical solution in (14). We can clearly
notice the affine parameter decomposition of the matrix A
in (15) into A1 and μA2 in (20). However, the right-hand
side function b(μ) is nonaffine in the parameter and there-
fore it cannot be decomposed in such a manner. Consider the
ROMwhich is obtained by the greedy algorithm approach in
Algorithm 1 and a Galerkin projection,

( Â1︸︷︷︸
N×N

+μ Â2︸︷︷︸
N×N

) uN (μ)︸ ︷︷ ︸
N×1

= ρ̂︸︷︷︸
N×1

+ V T
︸︷︷︸
N×N

b(μ)︸︷︷︸
N×1

, (21)

where Â1 = V T A1V , Â2 = V T A2V , ρ̂ = V T ρ, and N �
N .

It is clear from (21) that the last term of the right-hand
side (RHS) still depends on the dimension N of the FOM

while all the other matrices and vectors depend only on the
dimension N of the ROM, with N � N . Therefore, the
reduced order matrices on the left-hand side and the first
vector on the right-hand side of (21) can be precomputed
and stored during the offline phase, thereby providing a lot
of computational savings. However, the term V T b(μ) can-
not be precomputed because of the aforementioned nonaffine
parameter dependence and therefore, the Galerkin projection
involvingmatrix-vector products which are dependent on the
dimensionN , has to be computed in the online phase of solv-
ing the ROM.

In principle, we require O(2N N ) flops for these matrix-
vector products and a full evaluation of the nonaffine
analytical function (14) to obtain V T b(μ). This can be com-
putationally expensive for a large N , especially during the
a posteriori error estimation (computing 	N (μ)), where the
residual is computed l times for varying parameter valuesμi ,
i = 1, . . . , l for a single iteration of the greedy algorithm.
The (discrete) empirical interpolation method [21–23] is an
approach to circumvent this problem in order to reduce the
computational complexity of the nonaffine function. We dis-
cuss this technique at length in the next subsection.

4.3 Discrete empirical interpolationmethod (DEIM)

(D)EIM is a complexity reduction technique that was pro-
posed in [22] in a continuous setting and then for imple-
mentation purposes later developed in discrete versions in
[21,23]. The goal of (D)EIM is to overcome the drawback
of the proper orthogonal decomposition (POD) approach for
approximating a nonaffine (or nonlinear) parametrized func-
tion in the ROM during the online phase. This drawback is
in the sense that the evaluation of the nonlinear/nonaffine
function is still as costly as computing the counterpart of the
original system, which restricts the computational savings
of POD significantly. Therefore, the main idea of (D)EIM
is to interpolate the nonlinear/nonaffine function by com-
puting only a few entries of it, which dramatically reduces
the computational complexity. Here, we follow the easy-to-
implement description from [21,47], thoughmathematically,
this is equivalent to the earlier versions in [22,23].

We provide a brief overview on using the singular value
decomposition (SVD) to obtain the interpolation basis vec-
tors. Firstly, we compute snapshots of the function b(μ) at a
set of parameterμ in the training set� = {μ1, . . . , μl} ⊂ D
and construct the snapshot matrix,

F = [b(μ1), . . . , b(μl)] ∈ R
N×l . (22)

Secondly, we compute its singular value decomposition
(SVD),

F = UFWT , (23)
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Fig. 2 Decay of singular values
before truncation (left) and after
truncation (right) of  in (23)

5 10 15 2010−15

10−5

105

Number of singular values

Si
ng

ul
ar

va
lu

es

2 4 6 8 1010−15

10−5

105

Number of singular values

Si
ng

ul
ar

va
lu

es

where UF ∈ R
N×l ,  ∈ R

l×l , and W ∈ R
l×l . Note that

the matrices UF and W are orthogonal, that is, (UF )TUF =
WTW = Il , Il ∈ R

l×l and  = diag(σ1, . . . , σl), with
σ1 ≥ . . . ≥ σl ≥ 0.

Figure 2 shows the decay of the singular values of  for
the protein fasciculin 1. Figure 2 (left) shows the behaviour of
20 singular values with almost no decay from the 11th singu-
lar value. We discard these non-decaying singular values to
obtain those in Fig. 2 (right). From the latter, we can actually
truncate the singular values by selecting only the largest of
them represented by r ∈ {1, . . . , l} that correspond to some
required degree of accuracy. In this case, l = 11 and r = 9
which corresponds to an accuracy of εsvd = O(10−10) in
(25). The number r plays an important role to select a basis
set {uF

i }ri=1 of rank r fromUF which solves theminimization
problem [48],

arg min
{ũi }ri=1

l∑

j=1

‖Fj −
r∑

i=1

〈Fj , ũi 〉ũi‖22, s.t. 〈ũi , ũ j 〉 = δi j ,

(24)

where Fj is the j th column of the snapshot matrix F , and δi j
is the usual Kronecker delta.

The following criterion is used to truncate the largest sin-
gular values from Fig. 2 based on some desired accuracy,
εsvd.

∑l
i=r+1 σi

∑l
1=1 σi

< εsvd, (25)

where σi , i = 1, . . . , l are the nonzero singular values of F .
The dotted horizontal black line corresponds to r = 9 sin-
gular values and the corresponding singular vectors {uF

i }ri=1
are used in the DEIM approximation.

DEIM overcomes the problem mentioned in Sect. 4.2 by
determining an interpolation of the nonaffine function b(μ).
This is realized by approximating b(μ) with the linear com-
bination of the basis vectors UF = [uF

1 , . . . , uF
r ] ∈ R

N×r ,
i.e.

b(μ) ≈ UFc(μ), (26)

where c(μ) ∈ R
r is the corresponding coefficient vector,

and can be determined by assuming thatUFc(μ) interpolates
b(μ) at r selected interpolation points, then,

PT b(μ) = PTUFc(μ), (27)

where P is an index matrix given by

P = [e℘1, . . . , e℘r ] ∈ R
N×r , (28)

which consists of unit vectors e℘i , i = 1, . . . , r , where the
indices ℘i , are the DEIM interpolation points which are
selected iteratively with a greedy algorithm. Suppose that
PTUF ∈ R

r×r is nondegenerate, then c(μ) can be deter-
mined from (27) by

c(μ) = (PTUF )−1PT b(μ). (29)

Therefore, the function b(μ) in (14) can be approximated as

b(μ) ≈ UFc(μ) = UF (PTUF )−1PT b(μ), (30)

so that the ROM in (21) with DEIM approximation becomes,

( Â1︸︷︷︸
N×N

+μ Â2︸︷︷︸
N×N

) uN (μ)︸ ︷︷ ︸
N×1

= ρ̂︸︷︷︸
N×1

+ V TUF (PTUF )−1
︸ ︷︷ ︸

N×r

PT b(μ)︸ ︷︷ ︸
r×1

.

(31)

The interpolant V TUF (PTUF )−1PT b(μ) can be computed
a lot cheaper than V T b(μ) because we can precompute
V TUF (PTUF )−1 independent of the parameter μ. Alter-
natively, we can also compute only those entries in b(μ)

that correspond to the interpolation indices ℘i , i = 1, . . . , r ,
r � N , i.e., PT b(μ) instead of the entireN entries in b(μ).
Algorithm 2 provides a brief overview of the DEIM proce-
dure.

Remark 1 For the actual numerical implementation of the
interpolation (30), the matrix P needs not be explicitly
applied. Instead, only the interpolation indices ℘i , i =
1, . . . , r need to be applied to the matrixUF or the nonaffine
function b(μ). This implies that PTUF merely consists of
the rows ofUF which correspond to the interpolation indices
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Algorithm 2 DEIM algorithm [21,22]

Require: POD basis {uF
i }ri=1 for F in equation (10).

Ensure: DEIM basis UF and indices �℘ = [℘1, . . . , ℘r ]T ∈ R
r .

1: ℘1 = arg max
j∈{1,...,N }|u

F
1 j |, where uF

1 = (uF
11, . . . , u

F
1N )T .

2: UF = [uF
1 ], P = [e℘1 ], �℘ = [℘1].

3: for i = 2 to r do
4: Solve (PTUF )α = PT uF

i for α, where α = (α1, . . . , αi−1)
T ,

5: ri = uF
i −UFα,

6: ℘i = arg max
j∈{1,...,N }|ri j |, where ri = (ri1, . . . , riN )T .

7: UF ← [UF uF
i ], P ← [P e℘i ], �℘ ←

[ �℘
℘i

]
.

8: end for

℘i , i = 1, . . . , r . Similarly, PT b(μ) is a condensed vector
composed of a few entries of b(μ) which correspond to the
same indices.

Note that inAlgorithm2, the PODbasis {uF
i }ri=1 is of great

significance as an input basis for the DEIM procedure in two
ways. First, a set of interpolation indices ℘i are constructed
inductively based on this basis through a greedy algorithm.
Secondly, an error analysis in [21] indicates that the ordering
of this basis according to the dominant singular values makes
it the right choice for this algorithm. In step 1, the process
selects the first interpolation index ℘1 which corresponds to
the location of the entry in uF

1 with the largestmagnitude. The
subsequent indices in step 6, ℘i , i = 2, . . . , r , are selected
in such a way that each of them corresponds to the location
of the entry in r (step 5) with the largest magnitude.

4.4 DEIM approximation error

We compute the error due to the DEIM interpolation which
is to be included into the residual in the a posteriori error
estimation. This error was first proposed in [47] for nonlinear
dynamical systems and has also been used in [49] in the
context of a nonlinear population balance systems.We extend
this idea to parametrized elliptic PDEswhere the DEIM error
is given by,

eDEIM = b(μ) − b̃(μ) = �2(I − �)b(μ), (32)

where � and �2 are oblique projectors defined as follows,

� = UF (PTUF )−1PT , (33)

and

�2 = (I − �)ŨF (P̃T (I − �)ŨF )−1 P̃T . (34)

In Eq. (33), UF = (uF
1 , . . . , uF

r ) ∈ R
N×r and P ∈ R

N×r

are the current DEIM basis and interpolation index matrix
obtained from Algorithm 2.

To obtain�2 in (34), we assume that r∗(≥ r)DEIM basis
vectors U∗

F = (uF
1 , . . . , uF

r∗) interpolate b(μ) exactly, i.e.

b(μ) = U∗
F ((P∗)TU∗

F )−1(P∗)T b(μ), (35)

where P∗ is the corresponding indexmatrixwith r∗ columns.
Finally, ŨF = U∗

F (:, r + 1 : r∗) and P̃ = P∗(:, r + 1 : r∗)
such thatU∗

F = [UF , ŨF ] and P∗ = [P, P̃], where M(:, r+
1 : r∗), usingMATLABnotation [49]. In the next subsection,
we introduce an a posteriori error estimation derived from
the residual of the approximate RB solution and the DEIM
approximation error.

4.5 A Posteriori error estimation

Aposteriori error estimators are computable indicatorswhich
provide an estimate to the actual solution error by utilizing the
residual of the approximate RB solution. An efficient error
estimator is required to possess three major characteristics,
namely: it is required to be as sharp as possible (close to the
unknown actual error), asymptotically correct (tend to zero
with increasingRB space dimension N , at a similar rate as the
actual error), and computationally cheap. Therefore, these
estimators guarantee both reliability and efficiency of the
reduction process [50]. In Sects. 4.5.1 and 4.5.2, we briefly
introduce the concepts of error estimators which are related
related to the solution vector (i.e., electrostatic potential) and
the output (electrostatic energy), respectively.

4.5.1 Error estimator for the solution vector

We first compute the residual due to DEIM interpolation;

rDEIMN (uN ;μ) = (ρ + b̃(μ)) − AN (μ)uN (μ), (36)

where b̃(μ) = �b(μ) is the DEIM interpolation of b(μ)

and uN (μ) := VuN (μ) is the RB solution transformed
back to the high-fidelity space N . Then the final residual is
obtained by including theDEIMapproximation error derived
in Sect. 4.4 as follows;

rN (uN ;μ) = (ρ + b(μ)) − AN (μ)uN (μ)

= (ρ + b̃(μ)) − AN (μ)uN (μ) + b(μ) − b̃(μ)

= rDEIMN (uN ;μ) + b(μ) − b̃(μ)︸ ︷︷ ︸
:=eDEIM

= rDEIMN (uN ;μ) + eDEIM.

(37)

The a posteriori error estimation is then derived from the
residual in (37).Rewriting thefirst equationof (37),weobtain

rN (uN ;μ) = AN (μ)uN (μ) − AN (μ)uN (μ)

= AN (μ)e(μ),
(38)
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where the error of the solution vector e(μ) := uN (μ) −
uN (μ) is given by

e(μ) = (AN (μ))−1rN (uN ;μ). (39)

We obtain an upper bound for the 2-norm of the error by
taking the 2-norm on both sides of Eq. (39), i.e.

‖e(μ)‖2 ≤ ‖(AN )−1(μ)‖2‖rN (uN ; μ)‖2 = ‖rN (uN ; μ)‖2
σmin(AN (μ))

=: 	̃N (μ),

(40)

where σmin(AN (μ)) is the smallest eigenvalue of the sym-
metric matrix AN (μ) [50]. The quantity 	̃N (μ) is a rigorous
error bound, and can be used to select snapshots within the
greedy algorithm in the offline stage and consequently to
measure the accuracy of the RB approximation [45]. For
efficient computation of the norm of the residual and error
bounds, see [44,50]. It is computationally expensive to com-
pute σmin(AN (μ)) in the online phase as it entails solutions
of large-scale eigenvalue problems [45]. Therefore, in our
computations, we use the norm of the residual as our error
estimator, which satisfies the inequality (40) and provides an
estimation of the true error that workswell for our problem. It
also provides rapid convergence as depicted in the numerical
results in Fig. 4. It is given by

‖e(μ)‖2 ≈ ‖rN (uN ;μ)‖2 := 	N (μ). (41)

4.5.2 Output error estimator

When the output becomes interesting, one can also use the
output error bounds (or estimators) to measure the output
error. For the PBE model, the output of interest is given by
s(μ) = u(μ)T f (μ), which represents the electrostatic free
energy of the system. We here briefly describe the output
error estimator a compliant problem, in which the output
functional is equivalent to the load/source functional, see
[44] for more details. Additionally, the coeffient matrix of
the system should be symmetric for any parameter μ ∈ D.
These properties are fulfilled by the PBE system. According
to the derivation in [44], the output error bound is given by

s(μ) − sN (μ) ≤ 	′
s(μ) := ‖rN (uN ;μ)‖22

σmin(AN (μ))
, (42)

where sN (μ) = uN (μ)T fN (μ) is the output computed from
the ROM, and u(μ) and uN (μ) are the solutions of the FOM
in (15) and ROM in (19), respectively. We here also avoid
the use of σmin(AN (μ)) due to the high computational costs
involved. We provide some numerical results in Fig. 8 for
different kinds of molecules.

5 Numerical results

5.1 Finite difference results

We consider the LPBE (9), a parameter domain μ ∈ D =
[0.05, 0.15] containing ionic strengths (or varying concen-
trations) of the ionic solvent, and a cubic grid of 129 points
and a box length of 60Å centered at the protein position.
The parameter domain is chosen for a feasible physiologi-
cal process and μ resides in the second term in the kappa
function. Information about the molecular charge density
is obtained from a PQR file which contains 1228 atoms of
the protein fasciculin 1 toxin CPDB entry 1FAS. We dis-
cretize the LPBE with a centered finite difference scheme
and the resulting parametrized linear system (15) is of more
than 2 × 106 degrees of freedom. This FOM is solved by
the aggregation-based algebraic multigrid (AGMG) method,
where a tolerance of 10−10 and a zero initial guess are used
[51–53].

The choice of the tolerance directly affects the results
of the greedy algorithm. Therefore, it is prudent to ensure
that the high-fidelity solution (uN (μ),N = 2, 146, 689) is
highly accurate. Some of the iterative methods commonly
used in the PBE solvers are; the minimal residual (MIN-
RES) method, the generalized minimal residual (GMRES)
method and the biconjugate gradient stabilized (BICGSTAB)
method. These methods employ the incomplete LU fac-
torization to generate the preconditioner matrices L (lower
diagonal) and U (upper diagonal) which are used to improve
their stability and convergence at low costs [33].

Figure 3 shows the lower cross-sections of the z-axis of
the electrostatic potential u(x, y, 1) at varying ionic strengths
(i.e., μ = {0, 0.05, 0.15, 0.5}, respectively). Notice that the
electrostatic potential decays exponentially with the varia-
tion of the parameter μ, and is attributed to the large force
constant (332 kcal/mol) of electrostatic interactions. In the
absence of ions (that is, at μ = I = 0), these interactions
are long ranged (see Fig. 3 (top left)), but in the presence
of ions (that is, μ > 0), they are damped or screened and
gradually decay to zero [2]. The runtime taken to obtain the
high-fidelity solution uN (μ) is approximately 28 s on aver-
age and varies depending on the value of the ionic strength
used.

5.2 Accuracy of FDM

We demonstrate the accuracy and reliability of the FDM
before applying the RBM for the solution of the PBE. This
is because the accuracy of the RBM depends on that of the
underlying discretization technique. In this study, we con-
sider six test examples to validate the FDM which include
a Born ion and five proteins consisting of between 380 and
3400 atoms, respectively. We compare the FDM results with
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Fig. 3 High-fidelity solutions (uN (μ)) at varying ionic strengths (i.e., μ = {0, 0.05, 0.15, 0.5}), respectively

those of APBS for electrostatic solvation free energy at dif-
ferent mesh refinements. Firstly, we consider the Born ion
which is a canonical example for polar solvation and whose
analytical solution is well known.

This analytical solution gives the polar solvation energy
which results from the transfer of a non-polarizable ion
between two dielectrics [54], i.e.,

	pGBorn = q2

8πε0r

(
1

εout
− 1

εin

)
, (43)

where q is the ion charge, r is the ion radius, εout is the
external dielectric coefficient (e.g., water) and εin is the inter-
nal dielectric coefficient (e.g., vacuum). This model assumes
zero ionic strength.We consider aBorn ion of unit charge, 3Å
radius and located at the origin ((0, 0, 0)). Here, εin = 1 and
εout = 78.54. With these parameters, the analytical solution
in (43) is

	pGBorn = −691.85

(
q2

r

)
= −230.62kJ/mol. (44)

Table 1 Comparison of Born ion solvation energies in kJ/mol

	x N Solver Numerical Analytical Relative error

0.33 973 APBS −229.59 −230.62 4.4662e−3

FDM −232.86 −230.62 9.7130e−3

0.25 1293 APBS −230.00 −230.62 2.6884e−3

FDM −230.42 −230.62 8.6723e−4

We compare numerical computations using Eq. (11) for
charging free energies in a homogeneous (εin = εout = 1)
and heterogeneous (εin = 1, εout = 78.54) dielectric coeffi-
cients with the analytical solution [54]. We use the following
additional parameters. We consider two different mesh sizes
(or 	x), which result in different degrees of freedom (orN )
as shown in Table 1. Numerical results using FDM are com-
pared with those of the exact solution (43) and APBS (which
also uses FDM). The results show that the FDM method
gives solutions which are consistent with those of the exact
solutions, as well as those of the APBS software package.
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Table 2 Comparison of electrostatic solvation free energies 	E , between FDM and APBS for different proteins

	x N 	E , FDM 	E , APBS Relative error

1. Solvation energies of a 22 residue, α-helical peptide from the N protein of phage λ in kJ/mol (379 atoms)

0.375 1293 −4557.71 −4546.52 2.4613e−3

0.320 1613 −4541.48 −4532.76 1.9235e−3

0.260 1933 −4522.48 −4516.85 1.2444e−3

2. Solvation energies of fasciculin 1 in kJ/mol (1228 atoms)

0.465 1293 −5870.54 −5845.86 4.2212e−3

0.375 1613 −5684.85 −5664.85 3.5301e−3

0.320 1933 −5629.20 −5611.25 3.1985e−3

3. Solvation energies of the electrostatic potential of a minimized FKBP protein in kJ/mol (1663 atoms)

0.465 1293 −4419.04 −4403.88 3.4429e−3

0.375 1933 −4344.55 −4331.10 3.1050e−3

0.320 2253 −4292.54 −4288.08 1.0382e−3

4. Solvation energies of a 180-residue cytokine solution NMR structure of a murine–human
chimera of leukemia inhibitory factor (LIF) in kJ/mol (2809 atoms)

0.450 1613 −9317.76 −9293.98 2.5595e−3

0.375 1933 −9270.05 −9247.28 2.4618e−3

0.280 2573 −9153.95 −9134.29 2.1523e−3

5. Solvation energies of CAMP-dependent protein kinase A, here the apo form, in kJ/mol (3423 atoms)

0.465 1293 −19,742.36 −19681.32 3.1017e−3

0.375 1613 −19,332.66 −19296.63 1.8670e−3

0.320 1933 −19,039.86 −19014.04 1.3579e−3

Fig. 4 Comparison of maximal
error estimator and true error for
the proteins in Table 2,
respectively
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Secondly, we compare the accuracy of FDM for the LPBE
with the following set of typical examples of use of LPBE
and APBS in particular: Calculation of the total electrostatic
energy (including self-interaction energies) of a 22 residue,
α-helical peptide from the N protein of phage λ which binds
to its cognate 19 nucleotide box B RNA hairpin [55], Fasci-
culin 1, an anti-acetylcholinesterase toxin fromgreenmamba
snake venom [56], the electrostatic potential of a minimized

FKBP protein from binding energy calculations of small lig-
ands [57], a 180-residue cytokine solution NMR structure
of a murine–human chimera of leukemia inhibitory factor
(LIF) [58], and the binding energy of a balanol ligand to the
catalytic subunit of the CAMP-dependent protein kinase A,
here the apo form of the enzyme [59]. The proteins and or
complexes have the following number of atoms (379, 1228,
1663, 2809, and 3423), respectively.
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The electrostatic solvation free energies, 	E are com-
puted and shown in Table 2 for varying grid resolutions 	x .
However, we here do not have the analytical electrostatic
energies for these proteins but rely on the accuracy of the
APBS software for validation. A compute cluster with 4 Intel
Xeon E7-8837 CPUs running at 2.67 GHz (8 cores per CPU)
and 1 TB RAM, split into four 256 GB parts (each CPU con-
trols one part) is used to carry out the computations which
require a huge amount ofmemory, so that it allows for solving
large-scale problems with N ≥ (3 × 106).

From Table 2, we can clearly see that the results of the
FDM method agree well with those of APBS in terms of
convergence with respect to mesh refinement. Hence, we
conclude that we can test the RBM in conjunction with our
FDM solver reliably. We expect no differences when using a
FDM solver like APBS, which would require intruding the
software.

5.3 Accuracy of the RBM

In this section, we evaluate the accuracy of the RBM for
the approximation of the high-fidelity solutions generated
by the FDM for the five proteins which were investigated
in Sect. 5.2. We consider a cubic domain of 129 points and
a box length of 60Å centered at the protein position for all
the computations. Figure 4 shows the decay of the error esti-
mator and the true error during the greedy algorithm at the
current RB dimension i = 1, . . . , N . They corroborate the
asymptotic correctness property stated in Sect. 4.5, and it
is evident that the error estimator is an upper bound to the
true error. We also observe a high convergence rate of the
error estimator with up to two orders of magnitude and the
RB space is rich enough at only six iterations of the greedy
algorithm for the five proteins. These error estimators are the
maximal error and relative maximal error, respectively, and
are defined as,

	max
N = max

μ∈�
‖rN (uN ;μ)‖2,

and

	max
N /‖uN (μ∗)‖2,

where μ∗ = argmax
μ∈�

‖rN (uN ;μ)‖2.
Note that we here set the inf-sup constant, σmin(AN (μ))

in (40) to unity ∀ μ ∈ � as in (41), because they are of the
O(10−2). This makes the norm of the residual in (41) a better
error estimator than that of (40) for this specific problem.

In the greedy algorithm, we apply an error tolerance of
ε = 10−3 and a training set � consisting of l = 11 samples
of the parameter. From Fig. 4, it is evident that both the

error estimator and the true error fall below the prescribed
tolerances at the final dimension of the ROM (i.e. N = 6).

Figure 5 shows the error estimator and the true error of the
finally constructed ROMoverμi = �, for i = 1, ..., 11 sam-
ples for each protein as in Table 2, respectively. It is evident
that the error estimator for the final RB approximations of
dimension N = 6 is indeed an upper bound of the true error
and a trend that both quantities behave similarly is clearly
visible from the graphs. Consequently, the error estimators
fall below the greedy tolerance of 10−3.

Figure 6 is used to validate the true error in Fig. 5, whereby
20 random values of the parameter domain D which are dif-
ferent from those in the training set � are used. A common
observation from these figures is that the true errors fall below
O(10−4), which is approximmately an order of magnitude
below the error estimator. The computational time taken to
obtain the approximate solution uN (μ) in the online phase is
approximately 4.97 × 10−3 s on average, for any parameter
μ ∈ D.

A standard measure to determine the efficiency and the
quality of the error estimator is the so-called effectivity index
[60] given by

eff := 	N (μ)

‖uN (μ) − uN (μ)‖2 , (45)

where 	N (μ) is the error estimator and ‖uN (μ)−uN (μ)‖2
is the true error. The effectivity index in (45) is required to
be ≥ 1 for rigorosity and as close as possible to unity for
sharpness of the error estimator.

In Fig. 7, we present the effectivity indices to demonstrate
the quality and efficiency of the error estimator in Fig. 4.
Since they are of orderO(10) at the final RB dimension, we
can claim that the error estimator is of good quality.

Figure 8 demostrates the output error estimators for the
generalized Born ion and some of the protein molecules
which were introduced in Sect. 5.2. We observe that the
dimension of the ROMs obtained by these output estimators
are slighlty smaller than those obtained in Fig. 4.

5.4 Runtimes and computational speed-ups

Before we dive into the runtimes of the various phases of the
RBM, we would like to make clear about some key notions
of the two phases of the greedy algorithm, i.e., the offline and
online phases, respectively. The offline phase is subdivided
into twoparts, the offline-offline phase, and the offline–online
phase [44]. The offline–offline phase involves computation of
the snapshots and pre-computing the parameter-independent
quantities. The offline–online phase involves computation of
the error estimator and the RB approximation. On the other
hand, the pure online phase is where the final ROM has been
constructed after the accuracy of the reduced basis is fulfilled,
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Fig. 5 Comparison of error
estimator and true error for the
final ROM for � ∈ D and for
the proteins in Table 2,
respectively
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Fig. 6 True error
‖uN (μ) − uN (μ)‖2 for random
parameters μ ∈ D for the
proteins in Table 2, respectively
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and is independent of the greedy algorithm. In this phase, the
ROM can be solved for any parameter value in the parameter
domain, including those which are different from the training
set.

Table 3 shows the runtimes and computational speed-ups
obtained with the use of DEIM approximation during the
offline-online phase of the RBM at a single iteration of the
greedy algorithm and with the use of the RBM in solving
the linear system. We use a modest PC with the following
specifications: Intel (R) Core (TM)2 Duo CPU E8400 @
3.00GHzwith 8GBRAM. In this section, the PBE is applied
to the protein fasciculin 1.

Table 4 shows the runtimes of computing the FOMand the
ROM at a given parameter value, respectively. The runtimes

at different phases of the RBM are also presented. Speed-up
factors induced by solving the ROM are listed to visualize
the big difference between the FOMand the ROM. TheROM
is much faster and takes a split second to assemble and solve
for any parameter value. In the offline phase of the RBM,
which comprises the greedy algorithm, the dominating cost
is that of solving the linear system of the FOM by AGMG
(i.e., computing snapshot) at every iteration of the greedy
algorithm. Miscellaneous in this case refers to the runtime
to initialize the FDM, including assembling the FOM. The
total RBM runtime includes the miscellaneous and offline
runtimes.

Table 5 shows the runtimes of APBS and RBM for solv-
ing the FOM and the ROM at any given parameter value,
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Fig. 7 Effectivity indices to
demonstrate the quality of the
error estimators in Fig. 4,
respectively
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Fig. 8 Comparison of error
estimator and true output error
for the Born ion, proteins
Fasciculin 1, a 180-residue
cytokine solution NMR
structure of a murine–human
chimera of leukemia inhibitory
factor, and a minimized FKBP
protein, respectively
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Table 3 Runtimes and
speed-ups due to DEIM

Runtime (s) and speed-up
Without DEIM With DEIM Speed-up

Offline-online phase 96.29 4.84 20

Assemble and solve ROM 8.36 9.91e−03 844

Table 4 Runtimes and
speed-ups for FOM, ROM and
RBM

Runtime (s) and speed-up
FOM ROM Speed-up

Solve linear system 11.88 4.97e−03 7616

Assemble and solve linear system 27.82 9.91e−03 5500

Runtime (s) for RBM phases

Miscellaneous Offline Online Total RBM

10.58 85.54 9.91e−03 96.12
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Table 5 Runtimes for APBS and RBM

Runtime (s) and speed-up for APBS and RBM

No. of parameters APBS RBM Speed-up

1 22.893 ≈ 96.12 0.24

10 228.93 ≈ 96.12 2.38

100 2289.3 ≈ 96.12 24

1000 22,893 ≈ 106.12 215.75

respectively. The speed-up factor of RBM w.r.t. the APBS is
also shown for different numbers of parameter values. It is
evident that RBM is much more efficient than APBS when
solving the system for many input parameter values (i.e. in a
multi-query context). This is because we only need to solve a
small system of order N = 6 once the final ROM model has
been constructed which takes approximately 9.91 × 10−3 s
for each parameter value, whereas APBS solves the FOM
besides the initial system setup.

In a nutshell, to solve the LPBE for any parameter value
with APBS, it takes 22.893 s, because the solver has to
reconstruct the linear system. This implies that it takes
approximately 2289.3 s to compute the potential for 100
parameter values (neglecting the runtime to modify the input
files). This is more expensive than the total RBM time of
96.12 s. On the other hand, it takes the RBM approximately
9.91 × 10−1 s to solve the ROM of the LPBE for the same
number of parameters values (i.e., 100).

The RBMonly solves the FOM N times during the expen-
sive offline phase as stated in Algorithm 1. Moreover, the
RBM utilizes the precomputed system matrices and vectors
and only solves the ROM for the new parameter value, thus
saving a significant amount of computational costs during
the online phase. This efficient implementation of a new
mathematical approach to solve the PBE holds great promise
towards reducing computational costs in a multi-query sce-
nario and molecular dynamics simulation.

6 Conclusions

In this paper, we have presented a new, computationally
efficient approach to solving the LPBE for varying parame-
ter values occuring in biomolecular simulations. The RBM
reduces the high-dimensional full order model by a factor
of approximately 360, 000 and the computational time by
a factor of approximately 7600. The error estimator pro-
vides fast convergence to the reduced basis approximation
at an accuracy ofO(10−3). The true error between the RBM
and the FDM is smaller than O(10−4), for all the param-
eter samples tested. DEIM provides a speed-up of 20 in
the online phase by reducing the complexity of the non-

affine Dirichlet boundary conditions. This is achieved by
only selecting a few entries from a high-dimensional vector
which provides the most important information. Therefore,
the RBM can be extremely beneficial in cases where sim-
ulations of the PBE for many input parameter values are
required. This method can also be implemented in the avail-
ablePBEsolvers, for example,APBS, after a fewadjustments
regarding parametrization in the linear system are made. Our
future research is based on two aspects. Firstly, we plan to
develop a more efficient error estimator which is more rig-
orous than merely taking the norm of the residual. Secondly,
we aim to develop a modified version of the LPBE which
considers the PBE as interface problem by applying a range-
separated tensor format [36]. This is expected to reduce the
computational complexity experienced by the current PBE
studies, and to provide more accurate results due to the more
realistic model.
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