
Comput Visual Sci (2010) 13:341–353
DOI 10.1007/s00791-010-0149-x

REGULAR ARTICLE

Simulation and visualization of the Saint-Venant system using
GPUs

André R. Brodtkorb · Trond R. Hagen ·
Knut-Andreas Lie · Jostein R. Natvig

Received: 28 February 2010 / Accepted: 1 October 2010 / Published online: 8 January 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We consider three high-resolution schemes for
computing shallow-water waves as described by the Saint-
Venant system and discuss how to develop highly efficient
implementations using graphical processing units (GPUs).
The schemes are well-balanced for lake-at-rest problems,
handle dry states, and support linear friction models. The first
two schemes handle dry states by switching variables in the
reconstruction step, so that bilinear reconstructions are com-
puted using physical variables for small water depths and
conserved variables elsewhere. In the third scheme, recon-
structed slopes are modified in cells containing dry zones
to ensure non-negative values at integration points. We dis-
cuss how single and double-precision arithmetics affect accu-
racy and efficiency, scalability and resource utilization for
our implementations, and demonstrate that all three schemes
map very well to current GPU hardware. We have also imple-
mented direct and close-to-photo-realistic visualization of
simulation results on the GPU, giving visual simulations with
interactive speeds for reasonably-sized grids.

Keywords GPU · Shallow water · Saint-Venant ·
Conservation laws · Visualization · Finite volume ·
High-resolution scheme

A. R. Brodtkorb (B) · T. R. Hagen · K.-A. Lie · J. R. Natvig
Dept. Appl. Math., SINTEF ICT, P.O. Box 124, Blindern,
0314 Oslo, Norway
e-mail: Andre.Brodtkorb@sintef.no

T. R. Hagen
e-mail: Trond.R.Hagen@sintef.no

K.-A. Lie
e-mail: Knut-Andreas.Lie@sintef.no

J. R. Natvig
e-mail: Jostein.R.Natvig@sintef.no

1 Introduction

Accurate simulations of shallow water waves as described by
the Saint-Venant system are highly important in many appli-
cation areas. Herein, our primary interest is flood simulation
and interactive studies of multiple scenarios for flood pre-
vention, for which a main challenge is simulation time: the
computational power of standard CPUs cannot provide the
performance needed for grids with sufficient resolution. In an
effort to overcome this problem, we present efficient imple-
mentations of three high-resolution schemes for the Saint-
Venant system [7,11,13] on graphical processing units
(GPUs). Leveraging the computational power of a GPU can
potentially provide close to real-time simulation and visuali-
zation, thereby significantly improving user interactivity. Our
work contributes a state-of-the-art implementation of explicit
finite-volume schemes on modern graphics hardware, includ-
ing interactive visualization with photo-realistic effects. The
particular schemes capture steady states like the lake-at-rest
case, support dry states, and include simple source terms
accounting for bottom friction. Verification against analyti-
cal solutions and validation against experimental data for the
Malpasset dambreak are described in a separate paper [4].

Graphical processing units have in recent years developed
from being hardware accelerators of computer graphics into
high-performance computational engines. The use of GPUs
in scientific computing has gone from early proof-of-con-
cept studies around ten years ago (e.g., matrix operations
carried out by using graphics operations [14]), to the current
widespread use. Examples from a wide range of applica-
tions shows how one can obtain a significant computational
speedup by harnessing the computational power of a GPU
[20]. A comprehensive description of current state-of-the-art
GPU technology, including hardware, software, and algo-
rithms, can be found in Brodtkorb et al. [3].

123



342 A. R. Brodtkorb et al.

GPUs are stream processors that operate in parallel by run-
ning a single kernel on multiple instances of a data stream.
This type of parallelization is particularly well suited for the
stencil computations that constitute an explicit high-resolu-
tion scheme. The idea of using GPUs to accelerate (high-
resolution) schemes for systems of conservation and balance
laws is not new. To the best of our knowledge, it was first
suggested by Hagen et al. [7] for the Saint-Venant system
and then later for the Euler equations of ideal gas dynam-
ics [8]. Using OpenGL, the authors demonstrated how the
stencil computations of several classical and high-resolution
schemes could be implemented as operations in the frag-
ment processing units, see [6]. Moreover, for systems of
conservation laws, one could utilize the vector operations
of four-component graphics (RGBA) to obtain acceleration
beyond the number of parallel pipelines. Compared with a
highly tuned CPU implementation, speedup factors in the
range 15–30 were observed. Another important observation
was that explicit schemes for hyperbolic conservation laws
and balance laws are memory bound, and hence larger speed-
ups were observed for high-resolution schemes that are more
compute intensive than classical schemes like Lax–Fried-
richs, Lax–Wendroff, etc. Since then, there have been several
publications devoted to the use of GPUs for the shallow-water
equations and other conservation and balance laws, see e.g.,
[1,2,5,10,15,16,22,26].

In the current paper, we revisit the shallow-water simula-
tions from [7], now using implementations in CUDA rather
than OpenGL to give an up-to-date demonstration of the fea-
sibility of GPU computing for the Saint-Venant system. The
two main points in the paper are: (1) a discussion of how to
implement high-resolution schemes as efficiently as possi-
ble on current GPUs, and (2) a comparison of the efficiency
of GPU implementations of the Kurganov–Levy [11] and
Kurganov–Petrova [13] schemes. In assessing computational
efficiency, it has become quite popular to report speedup fac-
tors compared with a CPU implementation, and the literature
is filled with optimistic figures that report several orders of
magnitude speedups. Unfortunately, most of these findings
are overly optimistic (and not examples of good science); by
comparing theoretical performance numbers for GPUs and
CPUs, it is easy to see that speedup factors exceeding 100 are
very unlikely on current hardware. Herein, we will therefore
instead consider the degree of resource utilization, which in
our opinion is a better measure of how well a particular algo-
rithm maps to the GPU.

2 Model equations

Waves in shallow waters can be described by the following
Saint-Venant system

Fig. 1 Variables in the shallow-water equations in one dimension: h
is the water depth, B is the bathymetry, w is the total water elevation,
and hu is the discharge

⎡
⎣

h
hu
hv

⎤
⎦

t

+
⎡
⎣

hu
hu2 + 1

2 gh2

huv

⎤
⎦

x

+
⎡
⎣

hv

huv

hv2 + 1
2 gh2

⎤
⎦

y

=
⎡
⎣

0
−gh Bx − κ(h)u
−gh By − κ(h)v

⎤
⎦ . (1)

Here h is the water depth, hu is the discharge along the x-axis,
hv is the discharge along the y-axis, g is the gravitational con-
stant, and B is the bathymetry (see Fig. 1). On vector form,
we can write the equation as

Qt + F(Q)x + G(Q)y = H(Q,∇B), (2)

where Q is the vector of conserved variables, F and G are
flux functions, and H represents the source terms. The fric-
tion source term is assumed to be linear in velocity with a
constant of proportionality that depends on h,

κ(h) = αh

1 + βh
. (3)

For all synthetic test cases considered herein, α and β have
been set, rather haphazardly, to 10−2 and 102, respectively.

3 Numerical Schemes

There are many aspects to consider when studying numer-
ical methods for the Saint-Venant system. First of all, it is
important for any numerical method to be conservative. Sec-
ond, the method should be accurate on smooth parts of the
solution and not create spurious oscillations near disconti-
nuities or sharp transitions in the solution. Moreover, many
simulations are perturbations of a steady state. Consider, for
example, a lake at rest, in which the hydrostatic contributions
to the flux in (1) perfectly balances the bathymetry gradient
in the source term. An ideal method should therefore be well
balanced in the sense that source terms and fluxes balance
exactly also in the discretized equations for zero velocities.

Likewise, to simulate inundating (flooding), we require
that the scheme does not break down in the presence of dry
states (h = 0) and that it is well-behaved in shoal zones
(h very small). Solving the Saint-Venant system numerically
with dry states is difficult. To compute numerical fluxes, one
will typically have to divide quantities by the water depth h.

123



Shallow water simulations on GPUs 343

As h approaches zero, we get divisions by very small num-
bers, resulting in large errors in the fluxes. To make matters
worse, if the water depth becomes negative, the whole com-
putation breaks down since the eigenvalues of the system are
u ± √

gh.

3.1 High-resolution schemes

There are many good schemes available in the literature that
satisfy the criteria above. Herein, we are mainly interested in
problems characterized by strong discontinuities, which typi-
cally can be satisfactorily resolved using a well-balanced sec-
ond-order scheme with capabilities for resolving dry states.
For other types of problems involving more smooth phe-
nomena, e.g., the formation of eddies in shelf-slope jets [21],
well-balanced schemes of higher order may be required [17].
In choosing among different second-order schemes, our pre-
vious experience is that the Kurganov–Levy scheme [11],
and its slightly modified version reported in [7], offer a good
compromise between simplicity of implementation and effi-
ciency, accuracy, and robustness for the simulation scenarios
considered herein. In addition, we consider an improved ver-
sion developed by Kurganov and Petrova [13], which allows
discontinuities in the bathymetry, contains less branching,
requires less shared memory, and has been verified against
both analytical and experimental data [24].

The three second-order, semi-discrete, central-difference
schemes considered herein are based on the same basic dis-
cretization principles on a regular Cartesian mesh, using the
generalized minmod flux limiter to obtain a high-resolution
[9,25] non-oscillatory reconstruction. We start by integrating
(1) over each cell in the mesh to obtain a system of evolu-
tionary equations for the cell averages Qi j of the conserved
quantities Q,

d Qi j

dt
= H(Qi j ,∇B) − [

F(Qi+1/2, j ) − F(Qi−1/2, j )
]

− [
G(Qi, j+1/2) − G(Qi, j−1/2)

]

= R(Qi j ). (4)

Here Fi,±1/2, j and Gi, j±1/2 denote the fluxes over the cell
interfaces in the x and y-directions. Then the temporal evolu-
tion of cell averages Qi j in cell i j can be approximated using
a second-order stability-preserving Runge–Kutta method,

Q∗
i j = Qn

i j + �t R(Qn
i j )

Qn+1
i j = 1

2 Qn
i j + 1

2

[
Q∗

i j + �t R(Q∗
i j )

]
. (5)

The timestep in the Runge–Kutta solver is restricted by a
CFL condition,

�t ≤ 1
4 min

{
�x

max�|u ± √
gh| ,

�y

max�|v ± √
gh|

}
(6)

Fig. 2 Reconstruction of surface elevation and bathymetry. For a bilin-
ear reconstruction, the cell averages coincide with the values at the cell
centers. The bathymetry is approximated by its values at the cell vertices

that limits the propagation of waves to one quarter of a grid
cell per timestep.

From (5), we see that we need to compute the flux and
source terms twice for each timestep. To compute fluxes, we
introduce a quadrature rule for the spatial integration over
each cell interface and hence express each flux as a weighted
sum of point values of the flux functions F or G. To compute
these point values, we reconstruct a bilinear approximation of
Q inside each grid cell. The slope in each spatial direction is
computed as a nonlinear combination of the forward, central
and backward differences using the cell averages Qi j , Qi±1, j

and Qi j , Qi, j±1, respectively. In each integration point, we
hence obtain two one-sided point values, reconstructed in the
two cells on opposite sides of the interface. These two val-
ues are combined through a numerical flux function; herein
we use the central-upwind flux [12]. Finally, the source term
can be computed by approximating ∇B from the bathymetry
evaluated at the cell vertices, see Fig. 2. The resulting sten-
cil is obviously highly parallel, arithmetically intensive, and
hence very suitable for GPUs [7].

3.2 Kurganov–Levy (KL02)

To cope with the problem of dry zones, Kurganov and Levy
[11] proposed to use a different reconstruction in shoal and
wet zones. For the wet zones, they proposed to perform recon-
struction and flux calculations based on the variables U =
[h + B, hu, hv] rather than on the conserved variables. By
using special quadrature rules and discretizing the source
term appropriately, reconstruction from these variables leads
to a well-balanced and conservative scheme. However, the
scheme does not guarantee a non-negative water depth h.

To guarantee non-negative values, they use another recon-
struction based on the physical variables W=[h, u, v] in the
shoal zones given by h<K for some small prescribed con-
stant K . The resulting scheme is unfortunately not wellbal-
anced and will cause global errors in conservation. Moreover,

123



344 A. R. Brodtkorb et al.

spuriouswavescanemergeinitiallyintheshoalzones,buthere
the solution rapidly reaches a steady state, in which the fluxes
balance the source terms. The spurious waves therefore only
have a small effect on the global solution.

3.3 Modified Kurganov–Levy (KLL05)

The Kurganov–Levy scheme (KL02) uses one integration
point per cell interfaces to compute fluxes. This limits the
scheme to second-order accuracy. Hagen et al. [7] therefore
proposed a slightly modified scheme that uses a two-point
interior Gaussian quadrature along each interface. This quad-
rature rule is accurate for reconstructions up to fifth order
and thus supports higher-order reconstructions, including the
WENO reconstruction [23], as used in [6] for gas dynamics.

3.4 Kurganov–Petrova (KP07)

Whilst the KL02 and KLL05 schemes avoid negative val-
ues for h by switching to physical variables, the Kurganov–
Petrova scheme [13] is based on adjusting the reconstruction
for cells where the value at the integration points will become
negative. If the reconstructed slope creates negative values
at the integration points, the steepness of the water slope is
adjusted (reduced or increased) so that the negative value at
the integration point becomes zero. This guarantees that all
water depths used in the calculations are non-negative. How-
ever, very small water depths can still create large errors in the
flux calculations. The KP07 scheme handles this by desing-
ularizing the calculated velocity used in the flux calculation
for shoal zones:

u =
√

2h(hu)√
h4 + max(h4, ε)

. (7)

This slope fix will ultimately affect the fluxes in shoal zones
and thus compromise the well-balanced property. However,
as with the KL02 and KLL05 schemes, the fluxes rapidly bal-
ance the source term, and these spurious initial waves have
small effects on the solution. One thing should be noted,
though. The slope fix, and the corresponding errors intro-

duced in the solution, depend strongly on the slope of the
bathymetry. If the slope fix is triggered for a cell with a very
steep bottom slope, one obtains a very steep water slope as
well. Moreover, generalizations of this fix to higher-order
reconstructions are difficult, if possible at all. This is because
one can only alter the slope to guarantee non-negativeness at
one point per cell interface, and higher-order reconstruction
require more integration points.

The KL02 and KLL05 schemes assume that the bathyme-
try B is given as a continuous function sampled at the integra-
tion points. The KP07 scheme, on the other hand, assumes
that the bathymetry is bilinear within each cell. Using this
assumption, discontinuous bottom surfaces can be handled
and approximated by a piecewise bilinear function.

4 Implementation

We have implemented our solver using C++ and NVIDIA
CUDA [18], with heavy use of templates for both the CPU
and GPU-parts of the code. We have grouped computations
into a set of four kernels, as shown in Fig. 3, to best suit the
architecture of current GPUs and still fulfill the requirements
of the algorithm.

Figure 3 illustrates the program flow of our implementa-
tion. We start by initializing the computational domain and
data storage between kernels in 1©. In total, we need sixteen
buffers the size of the computational domain: three to hold
U , three to hold Q, two to hold H , six to hold F and G, one
to hold B at cell vertices, and one to hold B at the cell cen-
ters. We have precomputed B at both cell centers and vertices
as a performance optimization: the flux kernel 3© needs the
vertex values, whilst the Runge–Kutta kernel 5© requires the
value at cell centers to ensure non-negative water depths. We
also need a buffer to hold the eigenvalues computed in the
flux kernel, 3©, and used in the maximum �t kernel, 4©, to
compute the timestep. This buffer, however, is much smaller
than the other buffers, as will be explained later.

After allocating and initializing buffers, we enter the main
simulation loop, which contains one or more Runge–Kutta

Fig. 3 Program flow for the implemented schemes. Each of the four bottom boxes represents a computational kernel that executes on the GPU.
The visualization is also performed directly on the GPU, without copying data over the PCI express bus.

123



Shallow water simulations on GPUs 345

(a) (b) (c)

(d)

Fig. 4 Data needed to compute the flux across the interface at i + 1
2 .

In a, we have the input water elevation and velocities, from which we
reconstruct the slopes (b). We then evaluate the water elevation and

velocities at the integration points from the right and left cell in (c).
Finally, we compute the flux using the values at the integration points
(d)

(a) (b) (c) (d)

Fig. 5 Data needed to compute the source term at cell i and data needed
to perform time integration. In a, we have the input water elevation
from which we reconstruct the slope (b). We then evaluate the source
term using the water elevation and bottom topography slope (c). The
Runge–Kutta substep kernel (d) simply evolves and averages the solu-

tion to the next substep using the original water elevation, computed
fluxes and source term, and the average water depth (computed by sub-
tracting B). We also need the bottom elevation to make sure our evolved
solution gives non-negative water depths

substeps ( 3©– 6©). For each substep, we start by reconstruct-
ing a piecewise planar function for each grid cell and evaluate
the fluxes and source terms in 3©. For the first substep, we
also compute the maximum eigenvalues in 3©, and reduce
them to the global maximum in 4©. Then we can compute
the maximum timestep satisfying the CFL condition (see (6))
and solve the ODEs (5) in 5©. Finally, we can set the values
of the global ghost cells to impose boundary conditions in
6©. After the final substep, we may also opt to visualize the

current solution.
The following describes in detail our implementation

of the kernels used for the KP07 scheme. The other two
schemes, KL02 and KLL05, use similar ideas and optimi-
zations.

4.1 Block decomposition

CUDA uses the concept of blocks to structure computation.
Each block will execute independently of all other blocks
and consists of a specified number of threads, the block size.
Threads are organized in a logical 2D array, where threads
belonging to the same block can communicate and cooperate

using shared memory. Shared memory is an on-chip pro-
grammable cache on NVIDIA GPUs, accessible to threads
within the same block. Its maximum size is dictated by the
physically available memory on each streaming multiproces-
sor, currently 16 KB.

Our finite-volume scheme is in essence a set of complex
stencil computations. The fluxes are computed using a neigh-
borhood of four cells, as shown in Fig. 4, and the source terms
are similarly computed using three cells, shown in Fig. 5.
The Runge–Kutta substep kernel, shown in Fig. 5d, uses the
fluxes and source terms from the previous kernel to evolve the
solution. This means that we need to use blocks with overlap-
ping input domains for these kernels, as shown in Figs. 6 and
7. Finding a good block size is vital for high performance,
but determining what this block size should be is a difficult
problem with many optimization parameters. We have used
a block size of 16 × 14 for the flux kernel, and 16 × 16 for
the Runge–Kutta kernel. For the KL02 and KLL05 schemes,
our block sizes for the flux kernel are even smaller, as they
use shared memory for both the physical and the conserved
variables. For double precision, all block sizes are effectively
cut in half. Our block sizes have been chosen through general

123



346 A. R. Brodtkorb et al.

(a) (b)

Fig. 6 Domain decomposition. In a, we show a single block with ghost
cells for the kernel computing flux and source terms. The seemingly
asymmetric data dependency is because we compute the flux across the
east and north interfaces of each cell, see Fig. 4. In b, we show a single
block with ghost cells for the Runge–Kutta kernel

Fig. 7 Grid decomposition for our flux kernel. Within each block (solid
lines), we compute the source term for all cells and the flux across the
north and east interfaces. The global ghost cells are used to implement
boundary conditions. Notice that our computational domain covers one
of the global ghost cells to bottom and left of the domain. This is because
our kernel computes the flux across the north and east cell interfaces
(see also Fig. 6). Also notice that the blocks read overlapping data from
the global domain to satisfy data dependencies dictated by our stencils

optimization guidelines and experimentation, and the follow-
ing is a rationale behind the choices.

One optimization parameter is shared-memory access.
Shared memory is organized into 16 banks, where one thread
can access each bank every other cycle. When multiple
threads access the same bank (also called bank conflicts),
their access is serialized. Thus, we should ensure that the
block width is a multiple of 17 to avoid bank conflicts hor-
izontally and vertically. We also want to maximize our use
of shared memory, which means that we want the ratio of
internal cells to ghost cells to be as high as possible for each
block. We do this by aiming for a square block size, i.e., try-
ing to equalize height and width. The block size of 16 × 14
gives a shared memory size of 19 × 17 which gives almost
full use of shared memory, and the size is relatively square.
This does not ensure that we have no bank conflicts, but it has
been more important to ensure that the number of threads in

the block is a multiple of 32, since the GPU executes warps
of 32 threads in SIMD fashion.

To optimize memory access, we want to achieve coalesced
reads and writes, which means that the width of data read into
the kernel for each warp must be a multiple of 128 bytes, and
that the starting address is aligned on a 128-byte boundary.
Unfortunately, we cannot fulfill these two requirements at the
same time for all blocks because our scheme requires over-
lapping blocks. To lessen the performance impact of slower
global memory access, we use the texture cache to fetch data
from global memory. It should be noted that the hardware
used in our tests does not support double-precision texture
fetches. Thus, we employ the standard technique of using an
int2 representation during texture fetches, followed by rein-
terpreting the result as a double.

4.2 CUDA Kernels

4.2.1 Flux and Source Term ( 3©)

The kernel that computes flux and source terms is the main
computational kernel in our solver. The kernel starts by
reading data into shared memory, including the overlapping
domain dictated by our stencils, shown in Fig. 6a. Each thread
(i, j) within each block is responsible for calculating the flux
across the east (i + 1

2 , j) and north (i, j + 1
2 ) interface, in

addition to the source term for cell (i, j). By examining the
dependencies required by both the flux and the source term
calculation, we see that we need one ghost cell to the south
and west, and two ghost cells to the east and north.

The kernel begins by reading B and U into shared mem-
ory. From these, we reconstruct the slopes of U and calculate
B at the integration points, totaling to twelve shared-memory
variables. These variables are the ones needed by more than
one thread. We compute the value of the bathymetry at the
integration points in the kernel, as opposed to reading them
from a precomputed buffer. This dramatically lessens the
burden on the memory subsystem, and adds only a few extra
computations. Reconstructing the slope of U is done using
the branchless generalized minmod limiter [6], for which
we use efficient bit operations to compute the sign function.
To guarantee non-negative water depths at the integration
points, we also correct the slopes for affected cells. This is
done consistently in shared memory by choosing the slope
that interpolates the bathymetry (at the negative integration
point) and the average grid cell water elevation.

After reconstructing the slopes, we can evaluate U at the
east and north integration points and compute the flux and the
source term for the cell. If we are at the first Runge–Kutta sub-
step, we also compute the eigenvalues and find the maximum
within each block using reduction in shared memory. This is
very efficient, as we reduce the number of elements the max-
imum �t kernel 4© has to read by a factor 16 × 14 = 224

123



Shallow water simulations on GPUs 347

with our current block size. This also reduces the storage
requirement, as mentioned in the beginning of this section.

4.2.2 Maximum �t ( 4©)

The kernel that computes maximum �t simply finds the max-
imum eigenvalue within the whole computational domain
and computes the timestep �t using (6). We use a single
block, where each thread loops through a strided subset. This
ensures coalescing of data reads, thus maximizing memory
performance of this memory-bound kernel. Once all eigen-
values for each thread have been considered, we perform
in-block reduction between threads using shared memory.
Finally, one thread computes and writes the maximum time-
step to global memory.

4.2.3 Runge–Kutta ( 5©)

The Runge–Kutta substep kernel computes one substep of
the Runge–Kutta ODE integrator (5). It is a memory-bound
kernel that performs few computations, but accesses global
memory many times. First, we read the fluxes F and G into
shared memory. We then read the source term H , the existing
solution U (and Q∗ for the second substep), the bathymetry
B, and finally the timestep �t into registers for each thread.
We then evolve the solution one substep. We also make sure
all water elevations are non-negative, as floating-point round-
off errors might cause negative water elevations.

4.2.4 Boundary Conditions ( 6©)

This kernel is quite similar to the maximum �t kernel 4©.
The kernel is memory bound, as it performs very few com-
putations. We only launch one block, which simply fills the
ghost cells at the boundary with appropriate values. In our
case, we have implemented wall conditions, i.e., we copy the
cells closest to the boundary to the ghost cells and change the
sign of the perpendicular velocity component. As an alterna-
tive to using a separate kernel to set boundary conditions, we
could have used an extra buffer to identify boundary cells.
This, however, would dramatically increase the load on the
memory bus.

4.2.5 Other optimizations

We need to pass a large amount of parameters to each of the
kernels outlined above. For 32-bit operating systems, we can
pass them in the normal fashion. However, for 64-bit sys-
tems, the size of pointers double, and exceed the maximum
size allowed by CUDA. We thus use constant memory, which
is auto-coalesced and cached global memory on the GPU.
This enabled us to pass the parameters on 64-bit systems,

and further proved to be a significant performance boost on
32-bit systems.

4.3 Visualization

The purpose of visualization is to improve our understand-
ing of, and extract information from the simulation results.
Hence, what variables to chose and what visualization tech-
niques to use will strongly depend on what features of the
solution on is interested in. Herein, we focus on producing a
birds-eye view of the water surface and the surrounding ter-
rain. To this end, we have implemented direct visualization
of simulation results in OpenGL [19] with photo-realistic
effects, as shown in Fig. 8d. First, we render the terrain using
a quadrilateral mesh where the nodes are displaced accord-
ing to the height of the bathymetry B. The mesh is then
draped with a texture and we use Phong shading (a method
for calculating light reflected from surfaces by interpolat-
ing surface normals across rasterized polygons) to compute
per-pixel lighting. The water surface is also rendered using a
quadrilateral mesh and displaced according to the water ele-
vation w. We use the Fresnel equations to compute the angle
of reflected and refracted rays, and the amount refraction.
The reflected ray is then used to look up into the environ-
ment map (the skybox)1, and our refracted ray is used to
look up into the terrain texture. Environment mapping com-
bined with reflection is a very good tool to spot discrepancies
in the simulation, as our eyes rapidly detect imperfections in
the mirror-like surface.

We visualize the bathymetry given at the center of each
grid cell as a piecewise bilinear function, and the same is
done for the cell averages of the water elevation. This means
that the visualization is slightly erroneous and can give rise to
visual artifacts where the water depth approaches zero (see
along the shore in Fig. 8d). However, we find it a reason-
able approximation that gives users a good overview of the
simulation results.

For each timestep to be visualized, we start by copying
simulation results from CUDA memory to OpenGL texture
memory. We accomplish this by copying from CUDA sim-
ulation memory to a CUDA mapped pointer of an OpenGL
pixel-buffer object. Then, we synchronize the pixel-buffer
object with an OpenGL texture. One optimization would be
to remove the first of these copies and instead run the simu-
lation using a CUDA mapped pointer to an OpenGL pixel-
buffer object directly. However, this would increase the code
complexity of the simulator and also couple the simulation

1 Skyboxes are used in computer graphics to create the illusion that
the displayed scene is larger than it actually is. The rendered schene is
embedded inside a box, and images of the sky and the distant landscapes
are projected on the faces of the box to illude the unreachable 3D space
surrounding the scene.

123



348 A. R. Brodtkorb et al.

(a) (b) (c)

(d)

Fig. 8 The different test cases used in our benchmarks. a Case 1a: low
water elevation. b Case 1b: high water elevation. c Case 2: discontinu-
ous bathymetry. d Case 3: dambreak simulation. For Cases 1a, 1b and

2, we have a 2D domain with a bell-shaped water elevation at the center
of the domain. Case 3 is an synthetic terrain with a breaking dam. The
height map is superimposed on the image

code with the visualization code. The second copy might also
seem superfluous, but is mandatory in current driver versions
and is very efficient: it is performed entirely on the GPU,
without the need to transfer data over the PCI express bus.

5 Numerical experiments

To assess the performance of our implementation of the three
schemes (KL02, KLL05, and KP07), we consider four dif-
ferent cases, see Fig. 8. Case 1 consists of a bell-shaped water
elevation over a flat bathymetry. In Case 1a, the water ele-
vation is set very low so that the schemes interpret the solu-
tion to be in the shoal zone, in which dry-state reconstruc-
tion is triggered for KL02 and KLL05, and desingularized
flux computation (7) is triggered for KP07. In Case 1b, the
water elevation is so high that the entire solution is in the wet
zone. Case 2 has the same setup, but now with a discontinu-
ous bathymetry; this to illustrate the difference between the

KL02/KLL05 and KP07 schemes. Finally, Case 3 consists
of a synthetic bathymetry that defines a “dambreak” simula-
tion in which a high-altitude dam floods an underlying valley
and lake terrain, creating a combination of wet regions, shoal
regions, and dry states.

5.1 Float versus double precision

Double-precision arithmetics has so far not been supported
very well on GPUs, and when available, has come with a
big performance penalty. Hence, it is advantageous if the
high-resolution schemes can rely solely on single-precisions
arithmetics. We therefore start by investigating how using
single-precision influences the accuracy of our schemes. To
this end, we consider the relative errors in mass conservation,

Ec =
∫
�

h0 dx − ∫
�

hn dx∫
�

h0 dx
, (8)

123



Shallow water simulations on GPUs 349

where h0 is the initial water depth and hn is the water depth
at timestep n (using a fixed timestep). Figure 9 reports this
error for single-precision (sp) and double-precision (dp) ver-
sions of the Kurganov–Petrova scheme (KP07). Likewise,
we report the absolute discrepancy between the two solu-
tions for each timestep. It is interesting to note that single
precision gives round-off errors that violate conservation of
water, both for low and high water elevations, even for flat
bottom topographies. The absolute discrepancy between the
two solutions is also growing for Cases 1a, 1b, and 2. The
two Kurganov–Levy schemes exhibit the exact same behav-
ior and plots are not included.

When dry states and varying bathymetry is included
(Case 3), we see that error increases significantly and that the
overall error of the scheme dominates the effects of single
versus double precision. The increase in error comes from the
switching in the Kurganov–Levy schemes and the slope fix
in the Kurganov–Petrova scheme. Hence, we conclude that
when the schemes are used for the type of problems they were
designed for with shoal zones and dry states, the error induced
by floating-point precision is negligible (as originally stated
in [7], based on CPU simulations in single and double preci-
sion). It is interesting to see that the added integration points
in the modified Kurganov–Levy seems to negatively affect
the conservation. Our explanation to this is that the modified
scheme performs twice the number of flux evaluations, and
should thus experiences more round-off errors.

We have further verified our wall boundary conditions by
checking their effect on conservation. The boundary con-
ditions did not affect the conservation for the wet-bed test
cases.

5.2 Discontinuous bathymetry

The Kurganov–Levy schemes assume a continuous bathym-
etry, and a straightforward sampling of a discontinuous
bathymetry, as in Case 2, will result in very steep gradients in
the bathymetry approximation, which in turn will effect the
CFL number and drive the stable timesteps toward zero. This
effect is illustrated in Fig. 10: when the wave reaches the dis-
continuity in the bathymetry, the timestep in the Kurganov–
Levy schemes decays to zero and even after 5000 timesteps,
the simulation is still at time t ≈ 23. The Kurganov–Petrova
scheme, on the other hand, propagates the wave with nearly
unaffected timesteps past the discontinuity.

5.3 Efficiency

Ever since the first applications on GPUs were published,
there has been a trend to report speedups over the CPU. At
the time when [7,8,6] was written, general-purpose com-
putation on graphics processing units (GPGPU) was still in
its infancy, and an important statement was to demonstrate

that it was possible to use GPUs for general-purpose com-
putation, and to convince the reader that a GPU code could
be much faster than a corresponding CPU code. Gigaflops
and execution-time metrics have been used extensively, and
speedup factors between 2 to 200 are commonly found in
articles, still today. However, by examining the theoretical
performance numbers for GPUs and CPUs, one quickly real-
izes that a speedup of over 100 seems unlikely on current
hardware. Typically, these figures emerge from comparing
an unoptimized (or even worse, claimed to be optimized)
CPU code to a highly-tuned GPU implementation. There are
cases, e.g., for algorithms dominated by expensive trigono-
metric computations, where the use of highly efficient, albeit
less accurate, hardware implementations found on the GPU
can give a speedup larger than what one would expect by only
comparing memory speed, clock frequencies, and number of
arithmetic units. For most algorithms, however, these high
speedups are not attainable. Our view is that quoting such
high speedups has had its mission and is now destructive to
the reputation of GPU computing.

We would like to see less of these speedup figures and
more figures that show efficient hardware utilization and sca-
lability. Reporting utilization of hardware resources will thus
give the user an idea of what to expect, not only on cur-
rent hardware, but also for future hardware generations. We
have measured the efficiency of our implementations on the
NVIDIA GeForce GTX 285 using the CUDA Visual Profiler
supplied with the CUDA SDK. We have used the profiler to
give us detailed statistics over runtime, memory bandwidth
utilization, and instruction throughput. The profiler has also
been actively used during development, to find and remove
bottlenecks.

The flux and source term kernel is the most time-consu-
ming of our kernels. For the KP07 scheme, this kernel takes
up 72% of the GPU runtime. It utilizes only 17.6% of peak
bandwidth for global store because we violate coalescing
rules. For global load, our original version had an efficiency
of 11%. However, when using texture fetches, we saw a large
performance boost. The kernel has an instruction through-
put of 80%, which means we idle 20% of the time. We have
profiled this kernel also on other GPUs with less bandwidth
relative to compute power, and the instruction throughput
has remained at 80%. Our experiments and benchmarks
thus indicate that the idling is caused by data dependencies
and instruction latencies, and not due to waiting on data from
global memory. Thus, we conclude that the flux and source
term kernel is compute bound for the benchmarked GPUs.

For the KL02 and KLL05 schemes, our flux kernel is also
the most time consuming, with 82% and 84% of the total
runtime, respectively. These two kernels have a memory effi-
ciency equivalent to the KP07 kernel, as they perform the
same memory operations. However, the instruction through-
put is at a mere 66%. This can be explained by the number

123



350 A. R. Brodtkorb et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Comparison of single-precision and double-precision versions
of the KP07 scheme on a 1024 × 1024 grid. In a–e, relative errors
in mass conservation (Ec in (8)) are shown together with the discrep-
ancy between single and double-precision simulations. a Case 1a: low

water elevation. b Case 1b: high water elevation. c Case 2: discontinu-
ous bathymetry. d Case 3: dambreak simulation. e Case 3: dambreak ,
semilog scale. Subplot (f) shows the error for all three schemes. f Case
3: dambreak simulation

123



Shallow water simulations on GPUs 351

Fig. 10 Plot of time versus number of timesteps for Case 2

of threads we are able to schedule to each multiprocessor.
Because we are limited by shared-memory usage, we have
fewer threads for these two kernels, meaning we do not have
as many other threads to run whilst we wait for data. This
is often referred to as the occupancy, and our occupancy is
22% for the KP07 scheme, yet only 12.5% for the KL02 and
KLL05 schemes.

The Runge–Kutta substep kernel is our second most time-
consuming kernel, with 28%, 18%, and 16% of the GPU run-
time for KP07, KL02 and KLL05, respectively. This kernel is
heavily memory bound, and penalized for violating the coa-
lescing rules. We achieve 15% global store efficiency, and
11% global load efficiency. However, as with the flux and
source term kernel, we use textures for most reads, which
again showed to give a substantial performance gain. This
kernel has also an instruction throughput of 80%. However,
when profiling on GPUs with less relative bandwidth, we see
that the instruction throughput is proportional to the band-
width. Thus, we conclude that the Runge–Kutta kernel is
memory bound.

The rest of the GPU time is spent, in decreasing order, on
copying data to the GPU, running the maximum �t kernel,
and downloading data to the CPU. As can be seen from the
previously presented numbers, these operations are negligi-
ble for the GPU runtime. However, they do impose a software
overhead. The upload of data is done for each kernel, as we
need to upload the parameters to constant memory before
each kernel invocation. It should be possible to make this a
GPU–GPU copy instead of a CPU–GPU copy, but we have
not pursued this option because of the little time it takes.
The maximum �t kernel has a memory efficiency of 20%
for store, and 40% for load. The kernel obeys all coalescing
rules, but is penalized because of the very few items it con-
siders. Finally, the download to the CPU is to keep track of
the global simulation time, as the maximum �t kernel places
the result in GPU memory.

5.4 Performance and scalability

Figure 11 shows the performance of our schemes for Case 3
on the NVIDIA GeForce GTX 285. The most important grid
sizes are those larger than or equal to 5122, as this is where we
best utilize the hardware. For this grid size, the KP07 imple-
mentation is able to run at 387 iterations per second in float-
ing-point precision, and 45 in double precision, i.e., a factor
8.6 slower. The cause for this massive speed-down is that
the benchmark GPU only has one double-precision unit per
streaming multiprocessor, but eight single-precision units.
Further, the double-precision implementation also imposes
other overheads, such as more register space and a need
for handling texture fetches in a special way. Our double-
precision numbers for other grid sizes are similar.

When we increase the workload by four we would expect
the number of iterations per second to decrease by four as
well. However, going from 5122 to 10242, we get more than
one fourth of the performance for single precision. This is
partly caused by the need to pad our domain to fit an inte-
ger number of blocks, which has a larger impact on the
smaller domain sizes. Going from 10242 to 20482, this penal-
ty becomes negligible, and we attain almost perfect weak
scaling, also reflected in the double-precision results. For
larger sizes, however, we quickly run out of graphics memory,
as our benchmark machine is limited to 1 GB. The maximum
simulation size we have been able to run is a 3900 × 3900
grid, which consumes around 928 MB of graphics memory.

The main reason that the KP07 scheme is faster than KL02
and KLL05 is that the latter needs to reconstruct both from
the positivity-preserving and the conserved variables, as we
do not know, a priori, whether a cell is in the shoal zone or not.
This double reconstruction increases the amount of computa-
tions dramatically. Furthermore, the KP07 scheme consumes
far less shared memory in the flux and source-term kernel.
The shared-memory use dictates the maximum block size,
and for larger block sizes, the relative size of the overlapping
ghost-cell regions goes down, lessening both the number of
computations and the burden on the memory subsystem.

Finally, it is interesting to note that there seems to be no
performance impact for the added integration points for the
KLL05 scheme, which enables the use of higher-order recon-
structions up to degree five. Our explanation to this is that
the Kurganov–Levy based kernels are memory bound so that
we can add more computations without severely affecting
performance.

5.5 Visualization

Our simulator can run both with and without visualization.
When visualization is enabled, we visualize every fifteenth
timestep. This, unfortunately, has a negative impact on the
simulator performance, as both the simulator and visualizer

123



352 A. R. Brodtkorb et al.

100

80

60

40

20

0
64 128 256 512 1024 2048

KL02 SP

KLL05 SP

KP07 SP

KL02 DP

KLL05 DP

KP07 DP

Fig. 11 Performance of the different schemes for Case 3 on grids with
n × n cells running on the NVIDIA GeForce GTX 285. From left to
right, the three columns for each domain size display the performance
of KL02, KLL05, and KP07, respectively. The graph is normalized rel-
ative to single-precision KP07. The figures in bold over each column

indicates the number of timesteps for our KP07 implementation in sin-
gle precision. The superimposed columns are for the same schemes in
double precision, and the figures in bold indicate the number of time-
steps for the KP07 implementation

use the same hardware resources. To make matters worse,
there is an overhead connected with mapping and unmap-
ping OpenGL memory for use with CUDA, in addition to
overheads related to the context switch between CUDA and
OpenGL. For the 5122 grid of Case 3, we achieve 300 time-
steps per second using the KP07 scheme, which is a 22% drop
from the 389 timesteps per second we get without visuali-
zation. Nevertheless, this translates directly to an interactive
20 frames per second. Several examples of the visualization
can be found on YouTube: http://www.youtube.com/user/
babrodtk.

6 Summary

In this paper, we have presented how shallow-water waves, as
described by the Saint-Venant system, can be computed effi-
ciently on graphical processing units using three different
well-balanced, high-resolution schemes. By implementing
direct visualization on the GPU, including various photo-
realistic effects, we have developed a visual and interactive
simulator.

Current GPU hardware is much more efficient when using
single rather than double-precision arithmetics. For simple
computational setups with no transitions between wet and
shoal zones, round-off errors introduced by single-precision
arithmetics cause lack of mass conservation and a significant
deviation from the corresponding double-precision solution.
However, for more complex cases that contain transitions
between wet and shoal zones and/or between shoal and dry
zones, the effect of single-precision arithmetics is masked
by errors inherent in the schemes’ treatment of dry zones.
Hence, single-precision arithmetics can mostly likely be used
for the typical complex cases the schemes were developed

to handle. Preliminary experiments also indicate that use of
mixed-precision arithmetics can be a way out to preserve
both high accuracy and efficiency for single-zone cases.

Of the three schemes considered, the Kurganov–Petrova
(KP07) scheme is our method of choice. This scheme has the
best resource utilization of current GPU architectures and is
hence more efficient, has a better treatment of dry states, and
can handle discontinuities in the bathymetry. On the other
hand, the treatment of dry states in KP07 only applies to
bilinear reconstructions, and hence the scheme cannot be
extended to higher spatial order, which may be important
when studying smooth effects like eddies and other smooth
phenomena.

Our implementations shows relatively high utilization of
computational resources and memory transfer. Still, there is
room for further improvement. Increased memory through-
put can for example be achieved by using Morton order for
texture fetches. We also anticipate that increases in shared-
memory size and a new cache, as in the new Fermi architec-
ture from NVIDIA, will give a significant performance boost.
Likewise, the performance of our visualization is likely to
benefit from new functionality in CUDA 3.0 Beta for more
efficient sharing of data between CUDA and OpenGL.

Our initial interest in simulating shallow-water waves
on GPUs was to use high-resolution schemes as an excel-
lent demonstrator of GPU capabilities and to provide a use
case of interactive visualization. Lately, however, our interest
has moved more towards full-featured shallow-water simu-
lation: realistic dambreak scenarios, storm surges, etc. Veri-
fication, validation, and further algorithmic and implementa-
tional improvements are described in [4]. Moreover, we have
developed a multi-GPU cluster implementation that shows
(nearly) perfect scaling; further details will be provided in
an upcoming paper.

123

http://www.youtube.com/user/babrodtk
http://www.youtube.com/user/babrodtk


Shallow water simulations on GPUs 353

Acknowledgments The authors gratefully acknowledge financial
support from the Research Council of Norway under grants number
180023/S10 and 186947/I30 and the Center of Mathematics for Appli-
cations, University of Oslo. The authors also thank NVIDA for their
continued support.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Brandvik, T., Pullan, G.: Acceleration of a two-dimensional Euler
flow solver using commodity graphics hardware. IMechE Proc C:
J. Mech. Eng. Sci. (2007). doi:10.1243/09544062JMES813FT

2. Brandvik, T., Pullan, G.: Acceleration of a 3D Euler solver using
commodity graphics hardware. In: 46th AIAA Aerospace Sciences
Meeting and Exhibit, AIAA 2008-607 (2008)

3. Brodtkorb, A., Dyken, C., Hagen, T., Hjelmervik, J., Storaasli, O.:
State-of-the-art in heterogeneous computing. Sci. Program. 18(1)
(2010)

4. Brodtkorb, A.R., Sætra, M.L., Altinakar, M.: Efficient shallow
water simulations on GPUs: implementation, visualization, veri-
fication, and validation. In preparation (2010)

5. de la Asunción, M., Mantas, J.M., Castro, M.J.: Simulation of one-
layer shallow water systems on multicore and CUDA architectures.
J. Supercomput. (2010)

6. Hagen, T., Henriksen, M., Hjelmervik, J., Lie, K.A. : How to solve
systems of conservation laws numerically using the graphics pro-
cessor as a high-performance computational engine. In: Hasle, G.,
Lie, K.A., Quak, E. (eds.) Geometrical Modeling, Numerical
Simulation, and Optimization: Industrial Mathematics at SIN-
TEF, pp. 211–264. Springer, New York (2007)

7. Hagen, T., Hjelmervik, J., Lie, K.A., Natvig, J., Henriksen, M.:
Visual simulation of shallow-water waves. Simul. Model. Pract.
Theory 13(8), 716–726 (2005)

8. Hagen, T.R., Lie, K.A., Natvig, J.R.: Solving the Euler equations on
graphics processing units. In: Proceedings of the 6th International
Conference on Computational Science—ICCS 2006, Lect. Notes
Comp. Sci., vol. 3994, pp. 220–227. Springer, Berlin/Heidelberg
(2006)

9. Harten, A.: High resolution schemes for hyperbolic conservation
laws. J. Comput. Phys. 49(3), 357–393 (1983)

10. Klöckner, A., Warburton, T., Bridge, J., Hesthaven, J.: Nodal dis-
continuous Galerkin methods on graphics processors. J. Comput.
Phys. 228(21), 7863–7882 (2009). doi:10.1016/j.jcp.2009.06.041

11. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Ve-
nant system. Math. Model. Numer. Anal. 36, 397–425 (2002)

12. Kurganov, A., Noelle, S., Petrova, G. : Semidiscrete central-
upwind schemes for hyperbolic conservation laws and Hamil-
ton–Jacobi equations. SIAM J. Sci. Comput. 23(3), 707–740
(electronic) (2001)

13. Kurganov, A., Petrova, G.: A second-order well-balanced
positivity preserving central-upwind scheme for the Saint-
Venant system. Commun. Math. Sci. 5, 133–160 (2007)

14. Larsen, E., McAllister, D.: Fast matrix multiplies using graphics
hardware. In: Supercomputing, pp. 55–55. ACM, New York, NY,
USA (2001). http://doi.acm.org/10.1145/582034.582089

15. Lastra, M., Mantas, J.M., na, C.U., Castro, M.J., Garca-Rodrguez,
J.A.: Simulation of shallow-water systems using graphics process-
ing units. Math. Comput. Simul. 80(3), 598–618 (2009). doi:10.
1016/j.matcom.2009.09.012

16. Liang, W.Y., Hsieh, T.J., Satria, M., Chang, Y.L., Fang, J.P., Chen,
C.C., Han, C.C.: A GPU-based simulation of tsunami propaga-
tion and inundation. In: Algorithms and Architectures for Parallel
Processing, Lecture Notes in Computer Science, vol. 5574, pp.
593–603. Springer Verlag, Berlin/Heidelberg (2009). doi:10.1007/
978-3-642-03095-6_56

17. Natvig, J.R., Sebastian, N., Pankratz, N., Puppo, G.: Well-balanced
finite volume schemes of arbitrary order of accuracy for shallow
water flows. J. Comput. Phys. 13(2), 474–499 (2006)

18. NVIDIA: NVIDIA CUDA reference manual 2.3 (2009)
19. OpenGL ARB, Shreiner, D., Woo, M., Neider, J., Davis, T.:

OpenGL Programming Guide: The Official Guide to Learning Op-
enGL, 6th edn. Addison-Wesley (2007)

20. Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., Phillips,
J.: GPU computing. Proc. IEEE 96(5), 879–899 (2008). doi:10.
1109/JPROC.2008.917757

21. Pankratz, N., Natvig, J.R., Gjevik, B., Noelle, S.: High-order well-
balanced finite-volume schemes for barotropic flows. Development
and numerical comparisons. Ocean Model. 18(1), 53–79 (2007)

22. Phillips, E.H., Zhang, Y., Davis, R.L., Owens, J.D.: Rapid aerody-
namic performance prediction on a cluster of graphics processing
units. In: Proceedings of the 47th AIAA Aerospace Sciences Meet-
ing, AIAA 2009-565 (2009)

23. Shu, C.W.: Essentially non-oscillatory and weighted essentially
non-oscillatory schemes for hyperbolic conservation laws. In:
Advanced Numerical Approximation of Nonlinear Hyperbolic
Equations (Cetraro, 1997), Lecture Notes in Mathematics, vol.
1697, pp. 325–432. Springer, Berlin (1998)

24. Singh, J., Altinakar, M., Ding, Y.: 2D numerical model for shallow
transient free surface flows over natural terrain. In: Proceedings
of the International Conference on Hydroscience and Engineering
(2010)

25. Sweby, P.K.: High resolution schemes using flux limiters for
hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–
1011 (1984)

26. Wang, P., Abel, T., Kaehler, R.: Adaptive mesh fluid simulations
on GPU. New Astron (2009). doi:10.1016/j.newast.2009.10.002

123

http://dx.doi.org/10.1243/09544062JMES813FT
http://dx.doi.org/10.1016/j.jcp.2009.06.041
http://doi.acm.org/10.1145/582034.582089
http://dx.doi.org/10.1016/j.matcom.2009.09.012
http://dx.doi.org/10.1016/j.matcom.2009.09.012
http://dx.doi.org/10.1007/978-3-642-03095-6_56
http://dx.doi.org/10.1007/978-3-642-03095-6_56
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1016/j.newast.2009.10.002

	Simulation and visualization of the Saint-Venant system using GPUs
	Abstract
	1 Introduction
	2 Model equations
	3 Numerical Schemes
	3.1 High-resolution schemes
	3.2 Kurganov--Levy (KL02)
	3.3 Modified Kurganov--Levy (KLL05)
	3.4 Kurganov--Petrova (KP07)

	4 Implementation
	4.1 Block decomposition
	4.2 CUDA Kernels
	4.2.1 Flux and Source Term (3)
	4.2.2 Maximum Δt (4)
	4.2.3 Runge--Kutta (5)
	4.2.4 Boundary Conditions (6)
	4.2.5 Other optimizations

	4.3 Visualization

	5 Numerical experiments
	5.1 Float versus double precision
	5.2 Discontinuous bathymetry
	5.3 Efficiency
	5.4 Performance and scalability
	5.5 Visualization

	6 Summary
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


