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Abstract H2-matrices can be used to approximate dense
n × n matrices resulting from the discretization of certain
non-local operators (e.g., Fredholm-type integral operators)
in O(nk) units of storage, where k is a parameter controlling
the accuracy of the approximation. Since typically k � n
holds, this representation is much more efficient than the
conventional representation by a two-dimensional array. For
very large problem dimensions, the amount of available stor-
age becomes a limiting factor for practical algorithms. A
popular way to provide sufficiently large amounts of storage
at relatively low cost is to use a cluster of inexpensive com-
puters that are connected by a network. This paper presents a
method for managing an H2-matrix on a distributed-memory
cluster that can be proven to be of almost optimal parallel
efficiency.

1 Introduction

In order to explain the basic concepts of H2-matrix tech-
niques we consider a simple model problem: let � ⊆ R

d be
a subdomain or submanifold, and let g : Rd × R

d → R be
a function. The Fredholm integral operator corresponding to
g is given by

G[u](x) :=
∫

�

g(x, y)u(y) dy for all x ∈ �.
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In this context the function g is called the integral kernel. We
discretize G by Galerkin’s method using a finite element basis
(ϕi )i∈I and now have to handle the corresponding matrix
G ∈ R

I×I given by

Gi j =
∫

�

ϕi (x)

∫

�

g(x, y)ϕ j (y) dy dx for all i, j ∈ I.

(1)

In typical applications the kernel g has global support, there-
fore the matrix G will be dense (unless special basis func-
tions are used [1,6,13]). This means that the familiar sparse
matrix techniques cannot be applied and we have to resort
to data-sparse techniques, i.e., representations or approxi-
mations of G that require significantly less than the O(n2)

units of storage needed for the standard representation as a
two-dimensional array.

A very successful approach are panel-clustering techni-
ques [12,15] and the closely related multipole methods [10,
14]. These techniques pick suitable subdomains τ, σ ⊆ �

and replace the kernel g by a degenerate expansion

g(x, y) ≈ g̃τ,σ (x, y)=
k∑

ν=1

k∑
µ=1

sτ,σ,ν,µvτ,ν(x)wσ,µ(y) (2)

with coefficients sτ,σ,ν,µ depending on τ and σ and expan-
sion functions vτ,ν depending only on τ and wσ,µ depending
only σ .

The subsets τ and σ of � correspond to subsets

τ̂ := {i ∈ I : supp ϕi ⊆ τ },
σ̂ := { j ∈ I : supp ϕ j ⊆ σ }
of the index set I, and the degenerate approximation corre-
sponds to the factorized approximation

G|τ̂×σ̂ ≈ Vτ Sτσ W�σ (3)
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238 S. Börm, J. Bendoraityte

for the matrices given by

(Vτ )iν :=
∫

�

ϕi (x)vτ,ν(x) dx, (Sτσ )νµ := sτ,σ,ν,µ

(Wσ ) jµ :=
∫

�

ϕ j (y)wσ,µ(y) dy

for all i ∈ τ̂ , j ∈ σ̂ and ν, µ ∈ {1, . . . , k}. The factorized
approximation requires only (#τ̂+k+#σ̂ )k units of storage,
which can be far better than the (#τ̂ )(#σ̂ ) units required by
the standard array representation if k is small compared to
#τ̂ and #σ̂ .

In most applications, we cannot find a degenerate approxi-
mation of the form (2) for the entire domains τ = σ = �,
but only for subdomains satisfying an admissibility condition
that ensures that g|τ×σ is smooth enough to admit a usable
degenerate approximation. The standard case is a kernel that
has a singularity at x = y and is locally analytic in the rest
of the domain. In this situation, an admissibility condition of
the type

max{diam(�τ ), diam(�σ )} ≤ dist(�τ ,�σ ) (4)

is appropriate, where �τ ⊇ τ and �σ ⊇ σ are subsets of
R

d that ensure that the degenerate approximation converges
exponentially in k: if g̃τ,σ is constructed by Taylor or multi-
pole expansion, these subsets are usually spheres, if tensor
interpolation is used, axis-parallel boxes are preferable.

In order to approximate the entire matrix G, we have to
find a collection of subdomains τ ×σ of �×� such that the
corresponding index sets τ̂×σ̂ form a disjoint block partition
of G. This task is solved by a simple hierarchical approach:
we construct a tree TI of subdomains with root � = � (and
therefore �̂ = I) satisfying the following two conditions:

– for each τ ∈ TI with sons(τ ) 	= ∅, the index set τ̂ is the
disjoint union of the index sets of its sons, i.e.,

τ̂ =
⋃̇

τ ′∈sons(τ )
τ̂ ′ for all τ ∈ TI , sons(τ ) 	= ∅. (5)

– For each τ ∈ TI with sons(τ ) = ∅, the index set τ̂ is
“small”, i.e., there is a constant λ satisfying

#τ̂ ≤ λ for all τ ∈ TI , sons(τ ) = ∅. (6)

A tree with these properties is called a cluster tree, its vertices
are called clusters. Cluster trees for arbitrary geometries can
be constructed by simple general algorithms [9].

We use the cluster tree to construct a partition of the matrix
G into admissible blocks (and a small remainder): given
a pair τ × σ of clusters, we check whether the admissibi-
lity condition is satisfied. If this is the case, we call τ × σ

an admissible block and stop the procedure. Otherwise,

we check whether we can split τ and σ into subdomains
according to the structure of the cluster tree. If τ × σ cannot
be split any further, we call it an inadmissible block and stop
the procedure. Otherwise, we split τ and σ and apply the
procedure recursively to the resulting new pairs.

Starting with the root τ = σ = � and collecting the
admissible and inadmissible blocks in two sets Pfar and Pnear

yields a partition PI×I = Pfar∪̇Pnear with

I × I =
⋃̇

τ×σ∈PI×I
τ̂ × σ̂ ,

i.e., the necessary disjoint partition of I×I into a collection
of admissible and inadmissible subblocks.

Using this partition (cf. Fig. 1), the approximation G̃ (cf.
(3)) of G is defined by

G̃|τ̂×σ̂ :=
{

Vτ Sτσ W�σ if τ × σ ∈ Pfar

G|τ̂×σ̂ otherwise

for all τ × σ ∈ PI×I .
Since we store only the k×k matrix Sτσ for an admissible

block and the small τ̂ × σ̂ matrix G|τ̂×σ̂ for an inadmissible
block, it can be shown [9,3] that the storage requirements for
all of these matrices are in O(nk).

Unfortunately, the same does not hold for the cluster bases
(Vτ )τ∈TI and (Wσ )σ∈TI : given an index i ∈ I, there is a
cluster τ with i ∈ τ̂ on almost all levels of the cluster tree
TI . For each of these clusters, the matrix Vτ contains a row
of k entries corresponding to the index i . In standard situa-
tions, the number of levels is proportional to log n, therefore
we have to store O(k log n) entries per index and a total of
O(nk log n) entries.

We can improve the efficiency by requiring the function
systems (vτ,ν) and (wσ,µ) to be nested: we assume that for
each τ ∈ TI and τ ′ ∈ sons(τ ), there is a transfer matrix

Fig. 1 Cluster tree and block partition for a simple one-dimensional
problem. The clusters corresponding to one admissible block are marked
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Distributed H2-matrices 239

Eτ ′ ∈ R
k×k with

vτ,ν =
k∑

ν′=1

(Eτ ′)ν′νvτ ′,ν′ for all ν ∈ {1, . . . , k}.

Typical polynomial and multipole bases fulfill this require-
ment, which allows us to observe

(Vτ )iν =
∫

�

ϕi (x)vτ,ν(x) dx

=
k∑

ν′=1

(Eτ ′)ν′ν

∫

�

ϕi (x)vτ ′,ν′(x) dx

= (Vτ ′Eτ ′)iν for all i ∈ τ̂ ′, ν ∈ {1, . . . , k}. (7)

This means that we do not have to store Vτ , we only have to
store the transfer matrices Eτ ′ for all τ ′ ∈ sons(τ ) and take
advantage of the nested structure.

Now we can extend this concept to the entire cluster basis
(Vτ ): we store Vτ ∈ R

τ̂×k only in leaf clusters and use the
transfer matrices (Eτ )τ∈TI for all other clusters. Since both
types of matrix are small, it can be proven that an entire
cluster basis in this representation requires only O(nk) units
of storage [3].

We conclude that combining the factorized approximation
of admissible blocks (3) with the factorized nested represen-
tation (7) of the cluster bases (Vτ )τ∈TI and (Wσ )σ∈TI leads
to an approximation of G by an H2-matrix G̃ [3,11].

Due to their good asymptotic complexity, H2-matrix tech-
niques are attractive for large-scale computations dealing
with many degrees of freedom and possibly complicated
geometries. For this type of applications, distributed memory
architectures are attractive, since they offer very good per-
formance at relatively low costs, as long as the computations
can be carried out in parallel and do not require too much data
to be moved. In this paper, we present the first steps towards
the implementation of H2-matrix algorithms on distributed
memory architectures and prove that they can reach almost
optimal parallel efficiency.

2 Original algorithms

Before we consider the parallel algorithms, we first recall
the original sequential counterparts. In this paper, we will
focus on the two most basic operations: the construction of
the H2-matrix approximation and the efficient matrix-vector
multiplication with a matrix in this representation.

A very simple and robust construction of an H2-matrix
approximation of G is based on interpolation [4,8]: we fix
interpolation points (xτ,ν)

k
ν=1 and corresponding Lagrange

polynomials (Lτ,ν)
k
ν=1 for all clusters τ ∈ TI and approxi-

mate g by its interpolant

g̃τ,σ (x, y) :=
k∑

ν=1

k∑
µ=1

g(xτ,ν, xσ,µ)Lτ,ν(x)Lσ,µ(y).

Finding the matrix Sτσ ∈ R
k×k is now straightforward: each

of its entries is just the evaluation of the kernel function in
the k2 tensor interpolation points, which can be assumed to
require O(k2) operations.

For the nearfield matrices and the matrices Vτ , we rely on
quadrature techniques. We assume that one of the integrals
can be approximated in not more than q operations. In simple
situations, q can be a constant, in the general case q depends
on n and k (cf. [5,16]).

Under this assumption, the construction of a nearfield
matrix G|τ̂×σ̂ for τ × σ ∈ Pnear requires the approxima-
tion of (#τ̂ )(#σ̂ ) entries, each of which needs not more than
q operations. Due to our construction, both τ and σ are leaf
clusters, therefore (6) implies #σ̂ ≤ λ and we get a bound of
qλ#τ̂ for the number of operations required for G|τ̂×σ̂ .

The matrices Vτ of the cluster basis are given by

(Vτ )iν =
∫

�

ϕi (x)Lτ,ν(x) dx,

and for standard piecewise polynomial basis functions, the
computation of one of these entries can be carried out by
Gauss quadrature. Since Vτ has (#τ̂ )k entries, a total of qk#τ̂

operations are required.
Since we are using interpolation to construct the approxi-

mation of the kernel, it is straightforward to use the same
approach to construct the transfer matrices: if the same poly-
nomial space is used for all clusters, interpolating Lτ,ν in the
points corresponding to τ ′ yields

Lτ,ν =
k∑

ν′=1

Lτ,ν(xτ ′,ν′)Lτ ′,ν′

and the transfer matrix Eτ ′ for τ ∈ TI and τ ′ ∈ sons(τ ) is
therefore given by

(Eτ ′)ν′ν = Lτ,ν(xτ ′,ν′).

In general, the evaluation of the Lagrange polynomials may
require more than O(1) operations, but in the special case of
tensor interpolation, we can prepare d matrices correspond-
ing to one-dimensional evaluations and use their tensor prod-
uct to compute Eτ ′ in O(k2) operations.

With a few simple assumptions (cf. Sect. 4), these
estimates imply that the entire H2-matrix representation can
be constructed in O((q + 1)nk) operations.

It is not enough to store the matrix, we also have to work
with it, and the simplest and most important operation is the
matrix-vector multiplication, i.e., the computation of y =
G̃x for x, y ∈ R

I .
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240 S. Börm, J. Bendoraityte

Let us consider only the multiplication with one admissi-
ble block

G̃|τ̂×σ̂ = Vτ Sτσ W�σ

for τ×σ ∈ Pfar. Obviously, we can split the computation into
three steps: first we evaluate x̂σ := W�σ x |σ̂ , then we compute
ŷτ := Sτσ x̂σ , and finally we get the result y|τ̂ := Vτ ŷτ .

Due to the nested representation, Wσ is only at our disposal
in leaf clusters. For a cluster σ ∈ TI with sons(σ ) 	= ∅, we
therefore have to use the transfer matrices:

(W�σ x |σ̂ )µ =
∑
j∈σ̂

(Wσ ) jµx j =
∑

σ ′∈sons(σ )

∑
j∈σ̂ ′

(Wσ ) jµx j

=
∑

σ ′∈sons(σ )

∑
j∈σ̂ ′

(Wσ ′Eσ ′) jµx j

=
∑

σ ′∈sons(σ )

k∑
µ′=1

(Eσ ′)µ′µ(W�σ ′x |σ̂ ′)µ′

=
∑

σ ′∈sons(σ )

(E�σ ′ x̂σ ′),

therefore we can compute all vectors (x̂σ )σ∈TI by the simple
recursion

procedure forward(σ );
if sons(σ ) = ∅ then x̂σ ← W�σ x |σ̂
else begin

x̂σ ← 0;
for σ ′ ∈ sons(σ ) do begin

forward(σ ′); x̂σ ← x̂σ + E�
σ ′ x̂σ ′

end end

called the forward transformation algorithm.
In the next step, we have to compute ŷτ . For the sake of

efficiency, we accumulate all contributions to it:

ŷτ :=
∑

σ∈TI
τ×σ∈Pfar

Sτσ x̂σ .

In the last step, we have to evaluate Vτ . We once more use
the transfer matrices in order to deal with non-leaf clusters
and get the recursion

procedure backward(τ );
if sons(σ ) = ∅ then y|τ̂ ← y|τ̂ + Vτ ŷτ

else begin
for τ ′ ∈ sons(τ ) do begin

ŷτ ′ ← ŷτ ′ + Eτ ′ ŷτ ; backward(τ )
end end

called the backward transformation algorithm. These three
steps take care of the admissible blocks; the inadmissible

blocks are small and can be handled directly. Since not more
than two operations are performed for each entry of the H2-
matrix representation, the total number of operations is in the
same class as the total amount of storage, i.e., in O(nk).

3 Parallelization

Our goal is to find parallel variants of the algorithms intro-
duced in the previous section that reduce the total runtime as
far as possible.

We use a simple model of a distributed memory architec-
ture: we assume that we have p ∈ N individual processing
nodes denoted by indices from the set N := {1, . . . , p}, each
of which contains a quantity of local storage and can manip-
ulate this storage by running algorithms, unaffected by the
operations of the other nodes.

In addition, each node can communicate with each other
node by sending and receiving data. To keep the algorithms
simple, we assume that send operations are non-blocking,
i.e., that the sending node does not wait until the matching
receive operation on the target node has been completed. Of
course, the receive operation has to be blocking, i.e., the node
executing it has to wait until the matching send operation has
been completed and its data is available.

In practice, a node will typically be realized as a process on
a networked computer that uses a suitable communications
library (e.g., the MPI standard [7]) to exchange information
between processes on the same or different computers in the
network.

In order to use H2-matrices efficiently on a distributed
memory architecture, we have to parallelize the algorithms
in such a way that the part of the algorithm that executes on a
node has most of the necessary information in local storage
and that receive operations do not have to wait too long for
the matching send operations. Since communication between
the nodes is usually slower than accesses to local storage, we
also would like to keep the number of communication steps
low.

Our approach is motivated by the forward and backward
transformation algorithms: the computation of x̂σ requires
only information connected to the sons of the cluster σ . If
we ensure that most of the sons reside on the same node as
σ itself, only a small number of communication steps are
required.

We therefore follow a cluster-centric approach: we assign
a responsible nodeRτ ∈ N to each cluster τ . The responsible
node for τ stores

– the matrices Vτ and Wτ if τ is a leaf,
– the matrices Eτ ′ for all τ ′ ∈ sons(τ ) if τ is not a leaf,
– the matrices Sτσ for all σ ∈ TI with τ × σ ∈ Pfar and
– the matrices G|τ̂×σ̂ for all σ ∈ TI with τ × σ ∈ Pnear.
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Distributed H2-matrices 241

All algorithms introduced so far work by recursion on sub-
trees of the cluster tree TI . Even if a node α is not responsible
for a cluster τ , and therefore does not have to perform any
computations connected to this cluster, it may have to pass
through τ in order to reach clusters on a deeper level of TI
for which it is responsible.

To put this more precisely, we denote the full subtree of
TI with root τ by T τ

I and call a cluster τ ∗ ∈ TI a descendant
of τ if τ ∗ ∈ T τ

I holds. The node α has to pass through τ if
there is a descendant τ ∗ of τ for which it is responsible. In
this situation, we say that α is active in the cluster τ , and we
denote the set of active nodes by

Aτ := {α ∈ N : there exists τ ∗ ∈ T τ
I with Rτ∗ = α}.

Using responsible and active nodes (cf. Fig. 2), we can now
develop parallel variants of the algorithms introduced in the
previous section.

The cluster bases (Vτ )τ∈TI and (Wσ )σ∈TI can be con-
structed by running the following algorithm on all nodes
α ∈ N :

procedure par_basis(τ );
if α ∈ Aτ then

for τ ′ ∈ sons(τ ) do par_basis(τ ′);
if α = Rτ then begin

if sons(τ ) = ∅ then
Prepare Vτ and Wτ

else
for τ ′ ∈ sons(τ ) do Prepare Eτ ′

end

The algorithm is a straightforward recursion: if the current
node α is active in τ , a recursive call takes care of clusters in
the subtree T τ

I for which α is responsible. If α is responsible
for τ , the matrices of the cluster bases are constructed.

For the admissible and inadmissible blocks (cf. Fig. 3),
we use a similar recursion:

Fig. 2 Responsible (dark blue) and active (light blue) nodes for a sim-
ple one-dimensional cluster tree with p = 4 processing nodes

Fig. 3 Distributed representation of blocks for p = 2 nodes

procedure par_matrix(τ × σ );
if τ × σ ∈ PI×I then begin

if α = Rτ then begin
if τ × σ ∈ Pfar then

Prepare Sτσ

else
Prepare G|τ̂×σ̂

end
end else

if α ∈ Aτ then
for τ ′ ∈ sons(τ ), σ ′ ∈ sons(σ ) do par_matrix(τ ′ × σ ′)

This procedure first checks if it has reached an element of
PI×I . In this case, the relevant matrices are prepared if the
current node α is responsible for the row cluster τ . If τ × σ

is not an element of PI×I and if α is active, we proceed
recursively to the sons of τ and σ .

We can see that a node α ∈ N performs no arithmetic
operations in the algorithms “par_basis” and “par_matrix” if
it is not responsible for the cluster τ . If we can ensure that
each of the nodes is responsible for roughly the same number
of clusters, we can expect very good parallel efficiency.

If we assume that the cluster tree TI and the partition PI×I
are available on all nodes, the construction of the H2-matrix
G̃ is perfectly parallelizable since it requires no communica-
tion and all arithmetic operations can be distributed almost
perfectly among the processing nodes.

The forward transformation, on the other hand, requires
communication: even if a node α is responsible for a cluster
σ , it is not necessarily responsible for all sons of σ , therefore
the vectors x̂σ ′ for σ ′ ∈ sons(σ ) with Rσ ′ 	= α have to be
transferred from the node Rσ ′ to the node α.

We modify the forward transformation algorithm to take
care of the special case:

procedure par_forward(σ );
if α ∈ Aσ then begin

for σ ′ ∈ sons(σ ) do begin
par_forward(σ ′);
if α 	= Rσ and α = Rσ ′ then

Send x̂σ ′ to node Rσ without blocking
end;
for σ ′ ∈ sons(σ ) do (*)
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if α = Rσ and α 	= Rσ ′ then
Receive x̂σ ′ from node Rσ ′

end;
if α = Rσ then begin

if sons(σ ) = ∅ then x̂σ ← W�σ x |σ̂
else begin

x̂σ ← 0;
for σ ′ ∈ sons(σ ) do x̂σ ← x̂σ + E�

σ ′ x̂σ ′
end end

If the current node α is active in σ , recursive calls for the
sons of σ ′ are necessary, since they may contain clusters
for which α is responsible. Communication is required if
different nodes are responsible for σ and a son σ ′: if Rσ 	=
Rσ ′ holds, the node Rσ ′ has to send x̂σ ′ to the node Rσ

(cf. Fig. 5).
The backward transformation algorithm can be treated in

a similar way: if Rτ 	= Rτ ′ holds, the node Rτ has to send
the vector ŷτ ′ to the node Rτ ′ . The parallel backward trans-
formation algorithm takes the following form:

procedure par_backward(τ );
if α = Rτ then begin

if sons(τ ) = ∅ then y|τ̂ ← y|τ̂ + Vτ ŷτ

else
for τ ′ ∈ sons(τ ) do begin

if α = Rτ ′ then ŷτ ′ ← ŷτ ′ + Eτ ′ ŷτ

else y̌τ ′ ← Eτ ′ ŷτ

end
end;
if α ∈ Aτ then begin

for τ ′ ∈ sons(τ ) do
if α = Rτ and α 	= Rτ ′ then

Send y̌τ ′ to node Rτ ′ without blocking;
for τ ′ ∈ sons(τ ) do begin (*)

if α 	= Rτ and α = Rτ ′ then begin
Receive y̌τ ′ from node Rτ ;
ŷτ ′ ← ŷτ ′ + y̌τ ′

end;
par_backward(τ ′)

end end

Here we have to handle a special case: the backward trans-
formation adds the transformed values of the father to the
sons, therefore we need an auxiliary vector y̌τ ′ to receive
the contribution of a father cluster to a son cluster in case the
node is responsible for τ ′ but not for τ .

The parallel forward and backward transformations
require a communication step if different processing nodes
are responsible for father and son clusters, and since commu-
nication can be very time-consuming, we should try to reduce
the number of these situations as far as possible. Therefore,
we are interested in ensuring that nodes are responsible for

entire subtrees, since this means that no communication is
required to perform operations within the subtrees.

The most communication-intensive parts of the matrix-
vector multiplication are the multiplication by the matrices
Sτσ for admissible and G|τ̂×σ̂ for inadmissible blocks τ×σ :
if the processing node α is responsible for τ , but not for σ ,
the vectors x̂σ or x |σ̂ , respectively, have to transferred from
the node Rσ to the node α.

In typical situations, the vector x̂σ may be required for
more than 50 admissible blocks, therefore it is more effi-
cient to broadcast it only once to all “interested parties” in a
separate step.

A node α needs the vector x̂σ if it has to compute the
product Sτσ x̂σ for a cluster τ , and it has to compute this
product if it is responsible for τ and if τ × σ ∈ Pfar. If the
node α is not responsible for σ , the vector x̂σ is not locally
available, and it has to be transmitted from the responsible
node Rσ .

We collect all clusters that have to be sent from a node
β ∈ N to a node α ∈ N in the set

Tαβ :=
{
σ ∈ TI : there exists τ ∈ TI with

τ × σ ∈ PI×I ,Rτ = α,Rσ = β
}

(cf. Fig. 4) and see that now the broadcast step can be easily
handled by the following procedure:

procedure broadcast;
for β ∈ N \{α} do begin

for σ ∈ Tβα do begin
Send x̂σ to node β without blocking;
if sons(σ ) = ∅ then

Send x |σ̂ to node β without blocking
end end;

Fig. 4 Transfer sets Tαβ for p = 2 nodes. Clusters that have to be
obtained from another node are shown in magenta. Magenta arrows
point to the blocks that requires these clusters
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Distributed H2-matrices 243

for β ∈ N \{α} do begin (*)
for σ ∈ Tαβ do begin

Receive x̂σ from node β;
if sons(σ ) = ∅ then

Receive x |σ̂ from node β

end end

For the sake of simplicity, we use non-blocking send oper-
ations to avoid having to worry about possible deadlocks:
since all send operations in all nodes are performed first and
without waiting for completion, no subsequent receive oper-
ations will be starved.

The sets Tαβ describing the necessary transmissions
between nodes can be constructed by a simple recursive pass
through the block partition:

procedure discover(τ × σ );
if τ × σ ∈ PI×I then begin

if α = Rτ then begin
β ← Rσ ; Tαβ ← Tαβ ∪ {σ }

end;
if α = Rσ then begin

β ← Rτ ; Tβα ← Tβα ∪ {σ }
end

end else
if α ∈ Aτ or α ∈ Aσ then

for τ ′ ∈ sons(τ ), σ ′ ∈ sons(σ ) do discover(τ ′ × σ ′)

In a practical implementation, the sets Tαβ can be realized
as lists, and if the lists for Tαβ and Tβα are constructed in
the same order by the “discover” algorithm and processed in
the same order by the “broadcast” algorithm, the send and
receive operations match and no additional synchronization
is required.

Once all necessary vectors x̂σ are available in a node α,
the actual multiplication can take place:

procedure par_multiply(τ × σ );
if α = Rτ then begin

if τ × σ ∈ Pfar then ŷτ ← ŷτ + Sτσ x̂σ ;
if τ × σ ∈ Pnear then y|τ̂ ← y|τ̂ + G|τ̂×σ̂ x |σ̂

if α ∈ Aτ then
for τ ′ ∈ sons(τ ), σ ′ ∈ sons(σ ) do par_multiply(τ ′ × σ ′)

The parallel matrix-vector multiplication consists of four
steps: the forward transformation “par_forward”, the com-
munication step “broadcast”, the actual multiplication step
“par_multiply”, and finally the backward transformation
“par_backward”. In preparation, we need to use “discover”
once to initialize the sets Tαβ on all nodes, but this procedure
is not part of the actual matrix-vector multiplication.

4 Complexity

We have seen that the H2-matrix requires O(nk) units of
storage and that one matrix-vector multiplication can be per-
formed in O(nk) operations.

The distributed H2-matrix approach can be considered
successful if the storage requirements per processing node
and the time required to complete the algorithms is reduced
significantly. We will now prove that our techniques comes
very close to the optimal parallel efficiency if the problem
dimension n is significantly larger than the number p of
processing nodes.

4.1 Assignment of responsible nodes

In order to keep the presentation simple, we restrict our atten-
tion to the analysis of a relatively simple model.

Assumption 1 (Nodes) We assume that p is a power of two,
i.e., that there is an integer � ∈ N0 with p = 2�.

A look at the parallel forward and backward transforma-
tion reveals that communication steps are only required if
different nodes are responsible for father and son clusters.
An ideal situation is a node that is responsible for an entire
subtree, since then all computations within the subtree can
be carried out without any communication.

Therefore, we assume that the cluster tree TI can be split
into p subtrees for the p available processing nodes and a
small prefix that handles the communication between the
nodes. The prefix can be defined easily by splitting TI into
levels: for all τ ∈ TI the level of τ is defined by

level(τ ) :=
⎧⎨
⎩

level(τ+)+ 1 if there exists τ+ ∈ TI
with τ ∈ sons(τ+),

0 otherwise.

Now we can describe our assumptions with respect to the
cluster tree: we require the prefix to be a binary tree and the
subtrees to be of approximately equal size:

Assumption 2 (Tree) We assume that

– the first � levels of TI form a binary tree, i.e.,

# sons(τ ) = 2 for all τ ∈ TI with level(τ ) < �,

– that the sizes of the subtrees starting on level � are com-
parable, i.e., that there is a constant Cst independent of n,
k and p such that we have

#T τ
I ≤ Cst

n

kp
and

#τ̂ ≤ Cst
n

p
for all τ ∈ TI with level(τ ) = �.
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Given a tree satisfying these assumptions, it is an easy task
to assign each cluster to a node while guaranteeing that the
amount of communication steps is minimized: our construc-
tion is based on the set Aτ of active nodes. For the root cluster
�, the obvious choice is A� = N , since a node missing from
A� would not be responsible for any cluster and therefore
perform no computations at all.

Once Aτ has been found for a cluster τ , we can construct
the sets for the sons of τ : if Aτ contains only one node,
the same node will be responsible for the sons of τ . If Aτ

contains more than one node, we split the set into subsets for
the sons of τ . In order to keep the presentation simple, we
restrict our attention to contiguous sets

Aτ = {qτ , . . . , qτ +max{0, pτ − 1}}
for integers qτ and pτ and get the following algorithm:

procedure setup_responsibility(τ , qτ , pτ );
Rτ ← qτ ;
Aτ ← {qτ , . . . , qτ +max{0, pτ − 1}};
if sons(τ ) 	= ∅ then begin
{τ1, τ2} ← sons(τ );
p′ ← �pτ /2�; q1 ← qτ ; q2 ← qτ + p′;
setup_responsibility(τ1, q1, p′);
setup_responsibility(τ2, q2, pτ − p′)

end

This algorithm ensures that subtrees below level � are handled
by exactly one node and that each node is only responsible
for not more than one cluster above level �.

Lemma 1 (Responsibilities) Let τ ∈ TI .

– If level(τ ) ≤ �, we have

Aτ ∩Aσ = ∅ for all σ ∈ TI , level(σ ) = level(τ ).

– If level(τ ) ≥ �, we have

Rτ = Rτ∗ for all τ ∗ ∈ T τ
I .

– For each processing node α ∈ N , there is a unique cluster
τα with

level(τα) = � and Rτα = α. (8)

– For each processing node α ∈ N , we have

#{τ ∈ TI : Rτ = α} ≤ Cst
n

kp
+ log2 p. (9)

Proof Algorithm “setup_responsibility” starts the recursion
with p� = p, and due to Assumption 1, we get

pτ = �p2− level(τ )� = �2�−level(τ )� for all τ ∈ TI .

We consider the results of the algorithm for a cluster τ ∈ TI
with level(τ ) < �. Since τ belongs to a low level, we have
pτ ≥ 2 and therefore p′ = �pτ /2� ≥ 1. We conclude that
the sets Aτ1 and Aτ2 are disjoint. By a simple induction, this
implies the first claim.

Let us now consider a cluster τ ∈ TI with level(τ ) ≥ �.
Due to level(τ ) ≥ �, we have pτ ≤ 1 and therefore #Aτ = 1.
Due to the definition of Aτ , this means that the processing
node Rτ is responsible for all clusters in T τ

I , and we have
proven the second claim.

According to Assumption 2, there are exactly 2� = p
clusters on level �, and we have proven that none of them are
the responsibility of the same node. Since there are not more
than p nodes, this implies the third claim.

Let α ∈ N . The first claim implies

#{τ ∈ TI : α ∈ Aτ , level(τ ) = i} = 1

for all i ∈ {0, . . . , �}. Combining this with the second and
third claim and Assumption 2 yields

#{τ ∈ TI : α ∈ Aτ }
=
∞∑

i=0

#{τ ∈ TI : α ∈ Aτ , level(τ ) = i}

=
�−1∑
i=0

#{τ ∈ TI : α ∈ Aτ , level(τ ) = i} + #T τα

I

≤ �+ Cst
n

kp
= Cst

n

kp
+ log2 p.

This is the estimate we need. ��
In order to find bounds for the storage complexity for the

matrices Sτσ and G|τ̂×σ̂ corresponding to the blocks τ×σ ∈
PI×I , we rely on the concept of sparse partitions [9] to
bound the number of blocks connected to one cluster. By
definition, the matrices are only stored in the processing node
α ∈ N if α is responsible for τ , so the results of Lemma 1
allow us to derive the necessary estimates.

Assumption 3 (Sparsity) For all clusters τ ∈ TI , we let

row(τ ) := {σ ∈ TI : τ × σ ∈ PI×I},
col(τ ) := {σ ∈ TI : σ × τ ∈ PI×I}.

We assume that there is a constant Csp ∈ N independent of
n, p and k such that

# row(τ ) ≤ Csp, # col(τ ) ≤ Csp for all τ ∈ TI .

Estimates for Csp in general situations can be found in [9].

4.2 Storage complexity

In the distributed algorithm, the matrices corresponding to
a cluster τ or only stored in a processing node α if α is
responsible for τ . This allows us to combine Assumption 2
with Lemma 1 to prove estimates for the storage requirements
per node.
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Lemma 2 (Cluster basis) Let α ∈ N be a processing node.
The distributed representation of the cluster basis (Vτ )τ∈TI
requires O(nk/p+ k2 log2 p) units of storage in the node α.

Proof Let τ ∈ TI with Rτ = α. If τ is a leaf, the processing
node α stores the matrix Vτ ∈ R

τ̂×k and requires (#τ̂ )k units
of storage. Due to Assumption 2, leaf clusters cannot appear
on levels less than �, and Lemma 1 yields that τ has to be a
descendant of the cluster τα defined in (8). The leaves of T τα

I
correspond to a disjoint partition of τ̂α , and we conclude that
all matrices Vτ stored in the node α require

∑
#τ̂∈T τα

I
sons(τ )=∅

(#τ̂ )k = (#τ̂α)k ≤ Cst
nk

p
units of storage.

If τ is not a leaf, we have to store the transfer matrices Eτ ′
for all sons τ ′ of τ . If level(τ ) < �, Assumption 2 yields
# sons(τ ) = 2 and the two transfer matrices require 2k2 units
of storage, which leads to a total of

∑
τ∈TI

Rτ=α,level(τ )<�

2k2 = 2�k2 = 2k2 log2 p units of storage.

If level(τ ) ≥ �, α is also responsible for the sons of τ and
we get

∑
τ∈TI

Rτ=α,level(τ )≥�

∑
τ ′∈sons(τ )

k2 =
∑
τ∈TI

Rτ=α,level(τ )>�

k2

< (#T τα

I )k2 ≤ Cst
nk

p
units of storage.

Adding the three estimates yields a bound of

2Cst
nk

p
+ 2k2 log2 p units of storage,

and this is the upper bound we need. ��
In order to find a bound for the storage requirements of

the complete H2-matrix, we need Assumption 3:

Lemma 3 (Block matrices) Let α ∈ N be a processing
node. The distributed representation of the farfield matrices
(Sτσ )τ×σ∈Pfar and the nearfield matrices (G|τ̂×σ̂ )τ×σ∈Pnear

requires O(n(k + λ)/p + k2 log2 p) units of storage in the
node α.

Proof Let τ ∈ TI with Rτ = α. According to Assumption 3,
there are not more than Csp blocks of the form τ × σ for
σ ∈ row(τ ). For one σ ∈ row(τ ), the block τ × σ can be
either admissible or inadmissible. If it is admissible, the node
α has to store the matrix Sτσ , and this requires k2 units of
storage. If it is not admissible, the node stores G|τ̂×σ̂ , and
since inadmissible blocks only appear if τ and σ are leaves,
this requires not more than λ#τ̂ units of storage.

If level(τ ) ≥ �, Lemma 1 implies τ ∈ T τα

I , and we con-
clude that all matrices stored in node α require not more than

∑
τ×σ∈Pfar
Rτ=α

k2 +
∑

τ×σ∈Pnear
Rτ=α

λ#τ̂

≤
∑
τ∈TI
Rτ=α

∑
σ∈row(τ )
Rτ=α

k2 +
∑
τ∈TI

Rτ=α,sons(τ )=∅

∑
σ∈row(τ )
Rτ=α

λ#τ̂

≤ Csp

∑
τ∈TI
Rτ=α

k2 + Cspλ
∑
τ∈TI

Rτ=α,sons(τ )=∅

#τ̂ .

Due to Assumption 2, τ ∈ TI can only be a leaf cluster if
level(τ ) ≥ � holds, and for these levels Rτ = α implies
τ ∈ T τα

I , so we get

λ
∑
τ∈TI

Rτ=α,sons(τ )=∅

#τ̂ ≤ λ
∑

τ∈T τα
I

sons(τ )=∅

#τ̂ = λ#τ̂α ≤ Cst
nλ

p
.

Lemma 1 yields

∑
τ∈TI
Rτ=α

k2 ≤ Cstk
2 n

kp
+ k2 log2 p = Cst

nk

p
+ k2 log2 p.

We add both estimates to complete the proof. ��
Theorem 1 (Distributed storage) The distributed represen-
tation of the H2-matrix G̃ requires O(n(k+λ)/p+k2 log2 p)

units of storage in each processing node.

Proof Combine Lemmas 2 and 3. ��
In typical situations, we have λ ∼ k and conclude that the

distributed representation of an H2-matrix requires O(nk/

p + k2 log2 p) units of storage per node. For sufficiently
large problems, e.g., for n ≥ kp log2 p, we reach the optimal
order nk/p of complexity.

4.3 Time complexity

In order to analyze the performance of our method, it is not
sufficient to count the operations per processing node: if a
node has to wait for data from another node, the runtime of
the algorithm may no longer be proportional to the number
of operations.

We therefore have to use a more sophisticated approach.
The basis of our analysis is similar to the scheme used in
the BSP model [17]: the computation is split into a sequence
of s ∈ N supersteps that are performed independently on
all processing nodes. The (i + 1)th superstep starts on all
nodes simultaneously as soon as all nodes have completed the
previous i th superstep. We assume that all data sent in the i th
superstep is available for corresponding receive operations in
the (i + 1)th superstep.
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Since all operations during one superstep are performed
independently on all nodes, the time ti required for the i th
superstep is the maximum of the times ti,α required by the
nodes α ∈ N to complete their part of the superstep. The
time required for the entire parallel algorithm is the sum of
the times ti required for all supersteps, i.e.,

ttotal =
s∑

i=1

ti =
s∑

i=1

max{ti,α : α ∈ N }.

We measure the time in cycles and assume that one cycle is
enough time to perform one arithmetic operation or send or
receive one floating point number, including memory access,
index computations etc.

Lemma 4 (Construction) The construction of the H2-matrix
representation, i.e., of the cluster bases (Vτ )τ∈TI and
(Wσ )σ∈TI , the matrices (Sτσ )τ×σ∈Pfar and (G|τ̂×σ̂ )τ×σ∈Pnear

requires O((q + 1)nk/p + (q + 1)k2 log2 p) cycles.

Proof The construction of the matrix requires no communi-
cation, therefore it can be completed in one superstep. Due
to the assumptions of Sect. 2, the computation of one entry
of the matrices requires not more than q + 1 operations, and
the number of entries per processing node is bounded due to
the Lemmas 2 and 3. ��
Lemma 5 (Forward transformation) The distributed
forward transformation requires O(nk/p+k2 log2 p) cycles.

Proof We consider the algorithm “par_forward”. It proceeds
from the leaves of the tree TI towards the root to compute
the vectors x̂σ , therefore it is straightforward to use the levels
of TI to define supersteps.

We use a “breakpoint” concept: the first superstep in a
node α ∈ N contains all operations carried out by this node
until the first time it reaches the line marked by (*) with
level(σ ) = � − 1. At this point, no receive operations have
taken place, the vectors x̂σ have been computed for allσ ∈ TI
with level(σ ) ≥ �, and the vectors required for level � − 1
have been sent (the breakpoint is marked by a dashed line in
Fig. 5).

The second superstep contains all operations carried out
until the node reaches the line marked by (*) with level(σ ) =
�− 2. The node receives the vectors x̂σ ′ sent in the previous
superstep, computes x̂σ , and sends it if necessary.

The following supersteps are defined in a similar fashion:
for i ∈ {2, . . . , �}, the i th superstep contains the operations
carried out from the point when the node reaches the line
(*) with level(σ ) = � − i + 1 until it reaches this line with
level(σ ) = � − i . The node receives the vectors from level
�− i + 1 and computes and sends the vectors for level �− i .

The final superstep i = �+ 1 takes care of the remaining
operations in the root cluster with level(σ ) = 0.

Fig. 5 Distributed forward transformation for p = 4 nodes. Send oper-
ations are shown as green arrows, receive operations by red arrows. The
dashed lines indicate the boundaries of the supersteps

In the first superstep, node α computes the vectors x̂σ for
all σ ∈ TI with level(σ ) ≥ � and Rσ = α. According to
Lemma 1, this means that the vectors x̂σ are computed for
all σ ∈ T τα

I .
If σ ∈ T τα

I is a leaf, the computation of x̂σ requires 2k(#σ̂ )

operations for the multiplication with W�σ , and the node α

has to perform a total of
∑

σ∈T τα
I

2k(#σ̂ ) = 2k
∑

σ∈T τα
I

#σ̂ = 2k#τ̂α

≤ 2Cst
nk

p
operations

for all such leaf clusters.
If σ ∈ T τα

I is not a leaf, the computation of x̂σ requires
2k2 operations for the multiplication by the transfer matrix
E�

σ ′ for each son σ ′ ∈ sons(σ ), therefore the node α requires
a total of∑

σ∈T τα
I

∑
σ ′∈sons(σ )

2k2 ≤
∑

σ ′∈T τα
I

2k2

= 2k2#T τα

I ≤ 2k2Cst
n

kp
= 2Cst

nk

p
operations

for all non-leaf clusters.
At the end of the first superstep, node α may send the

vector x̂σ to another node, which takes k operations.
We have assumed that one cycle provides enough time

for one arithmetic or communication operation, so we get a
bound of

t1 := 4Cst
nk

p
+ k

for the maximal number of cycles required in the first super-
step.

Now we consider the other supersteps i ∈ {2, . . . , � +
1}. These supersteps involve only clusters σ ∈ TI with
level(σ ) ≤ �, therefore Assumption 2 implies that these
clusters have exactly two sons. If α is responsible for one
of these clusters σ , Algorithm “setup_responsibility” ensures
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that only one of the sons is the responsibility of another node,
therefore exactly one receive operation for a vector x̂σ ′ with
Rσ ′ 	= α has to be performed. This takes k operations.

Then the vector x̂σ is computed by multiplying by the
transfer matrices E�

σ ′ for all σ ′ ∈ sons(σ ), and since there
are exactly two sons, this requires 4k2 operations.

If we are not in the last superstep, the result may have to
be sent to a different node, which takes k operations, leading
to an upper bound of

ti :=
{

4k2 + 2k if i < �+ 1,

4k2 + k otherwise, i.e., if i = �+ 1

for the maximal number of cycles required in the i th
superstep.

The total run time is bounded by the sum over all super-
steps, i.e., by

�+1∑
i=1

ti = 4Cst
nk

p
+ k + 4k2�+ 2k(�− 1)+ k

= 4Cst
nk

p
+ 4k2�+ 2k� ≤ 4Cst

nk

p
+ 6k2� cycles.

Due to � = log2 p, this is the estimate we had to prove. ��
Lemma 6 (Backward transformation) The parallel back-
ward transformation requires O(nk/p + k2 log2 p) cycles.

Proof As in Lemma 5. Since the backward transformation
works from the root clusters towards the leaves, we only have
to reverse the order of the supersteps. ��
Lemma 7 (Broadcast) The exchange of the vectors x̂σ by the
algorithm “broadcast” requires O(n/p + k log2 p) cycles.

Proof We base the proof on bounds for the cardinalities of
the sets Tαβ . Let α, β, γ ∈ N with β 	= γ , and let σ ∈ Tαβ .
By definition, this means that we can find a cluster τ ∈ TI
with τ × σ ∈ PI×I , Rτ = α and Rσ = β 	= γ , therefore
we conclude σ 	∈ Tαγ and

Tαβ ∩ Tαγ = ∅ for all α, β, γ ∈ N , β 	= γ.

By a similar argument, we prove

Tαβ ∩ Tγβ = ∅ for all α, βγ ∈ N , α 	= γ.

Let now α, β ∈ N . By definition, we have

Tαβ = {σ ∈ TI : there exists τ ∈ TI with

σ ∈ row(τ ),Rτ = α,Rσ = β}
⊆

⋃
τ∈TI
Rτ=α

row(τ ).

Since the sets Tαβ for different β are disjoint, we can use
Assumption 3 to conclude∑
β∈N

#Tαβ ≤ Csp#{τ ∈ TI : Rτ = α} for all α ∈ N .

The same approach can be used to prove∑
β∈N

#Tβα ≤ Csp#{τ ∈ TI : Rτ = α} for all α ∈ N .

We apply Lemma 1 to conclude

∑
β∈N

#Tαβ ≤ Csp

(
Cst

n

kp
+ log2 p

)
for all α ∈ N ,

∑
β∈N

#Tβα ≤ Csp

(
Cst

n

kp
+ log2 p

)
for all α ∈ N .

These estimates provide us with the necessary bound for the
amount of information that has to be transferred between
processing nodes: a node α ∈ N has to send not more than

∑
β∈N

∑
σ∈Tαβ

k ≤ Csp

(
Cst

n

kp
+ log2 p

)
k

= Csp

(
Cst

n

p
+ k log2 p

)

units of data to other nodes, and it has to receive not more
than
∑
β∈N

∑
σ∈Tβα

k ≤ Csp

(
Cst

n

p
+ k log2 p

)

units of data from other nodes.
We split the algorithm “broadcast” into two supersteps: the

first superstep contains all send operations, and we have just
seen that it requires O(n/p + k log2 p) cycles. The second
superstep contains all receive operations, and it also requires
O(n/p + k log2 p) cycles. Combining both yields the esti-
mate we require. ��
Theorem 2 (Distributed evaluation) The distributed compu-
tation of y := G̃x by the algorithms can be accomplished in
O(nk/p + k2 log2 p) cycles.

Proof We have to investigate the substeps “par_forward”,
“broadcast”, “par_multiply” and “par_backward”. The
Lemmas 5, 6 and 7 already imply that three of the four sub-
steps have the necessary complexity, we only have to dis-
cuss the multiplication step of the algorithm “par_multiply”.
For a node α ∈ N , this algorithm performs not more than
two arithmetic operations per element of the matrices Sτσ

and G|τ̂×σ̂ . Therefore, Lemma 3 implies that not more than
O(nk/p + k2 log2 p) operations are required, and since the
algorithm requires no communication, this is also a bound
for the number of cycles. ��

5 Experiments

Since the model used in Sect. 4.3 is an abstraction of a real
parallel computer, we have to verify whether its predictions,
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in particular the complexity estimates of Lemma 4 and The-
orem 2, coincide with practical experiments.

We perform our experiments on a parallel computer con-
sisting of a number of PCs connected by a Gigabit Ethernet.
Our model problem is the approximation of the classical sin-
gle layer potential operator

G[u](x) = − 1

2π

∫

�

log ‖x − y‖u(y) dy

on the unit circle �. We approximate � by a regular polygon
with n ∈ N edges and discretize G using Galerkin’s method
with basis functions that are piecewise constant on each of
these edges. The cluster tree is constructed as in [2, Chap. 2]
with a cardinality-balanced splitting strategy.

This strategy ensures that each cluster has either two or no
sons, therefore the cluster tree satisfies our assumptions if n
is not too small. The partition PI×I is constructed using two-
dimensional bounding boxes (this is the natural choice since
� in embedded in R

2), and the H2-matrix approximation is
derived by tensor-product interpolation of the kernel function
on the bounding boxes [4].

We use an interpolation order of m = 7, which corre-
sponds to k = m2 = 49 Lagrange polynomials. The leaves
τ ∈ TI of the cluster tree satisfy #τ̂ ≤ λ for λ = 32.

In a first experiment, we construct the H2-matrix approx-
imation of the Galerkin matrix using the distributed algo-
rithms “par_basis” and “par_matrix” for p ∈ {1, 2, 4, 8, 16}
processing nodes and n ∈ {214, . . . , 219} degrees of free-
dom. For each p, we measure the total runtime tmat,p and
compute the speedup factor tmat,1/tmat,p compared to the
performance with only one processing node. The result can
be found in Fig. 6: as the total number n of degrees of freedom
increases, the speedup factor approaches the optimal value of
p, as predicted by Lemma 4. Surprisingly, this value is even
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Fig. 6 Speedup factors for the construction of the H2-matrix
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Fig. 7 Speedup factors for the matrix-vector multiplication

exceeded for n = 219, a fact that may be due to cache effects
(the amount of cache increases with the number of proces-
sors, therefore larger parts of the matrix can be accessed more
rapidly as p increases).

In a second experiment, we perform matrix-vector mul-
tiplications on the distributed H2-matrix constructed during
the first experiment. The results are given in Fig. 7: as in the
previous experiment, the speedup factor increases as n grows
larger. We do not see the nearly perfect speedup encountered
in the matrix construction algorithm, but we can see that the
speedup improves significantly as n increases, as predicted
by Theorem 2. For larger values of n, we expect to come
arbitrarily close to the perfect speedup factor.

For the smallest problem size n = 214, the speedup factor
even seems to drop as p increases. This suggests that the com-
putation steps, i.e., the forward and backward transformation
and the multiplication, are far less time-consuming than the
communication steps: for a fixed n, the term k2 log2 p appear-
ing in Theorem 2 can become dominant if p grows large
enough.

We conclude that our theoretical predictions match the
practical experiments: as n grows larger, the speedup factor
approaches the optimal value of p, therefore our algorithm
scales almost perfectly.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
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