Skip to main content

Advertisement

Log in

Primary migration of a mini-implant under a functional orthodontic loading

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The objective of this study was to examine whether cortical bone thickness and bone mineral density (BMD) can explain the primary migration of a mini-implant under a functional orthodontic tangential loading at the early stage following implantation.

Materials and methods

Mini-implants were installed in human mandibular sections. A constant tangential load (2 N) was applied to the mini-implant under hydration. Creep, which is a time-dependent viscoelastic displacement in the bone surrounding the mini-implant, was assessed as the change in displacement during 2 h of loading. The total migration was measured as a maximum displacement that combined an initial elastic displacement and creep. After removal of the mini-implant, all specimens were scanned together by cone beam computed tomography. Cortical bone thickness and BMD were measured for the bone voxels surrounding the implant site.

Results

BMD had significant correlations with the displacement parameters (p < 0.019), but the cortical bone thickness did not (p > 0.272). Permanent bone deformation adjacent to the implant was observed to be resulting from substantial creep development under the orthodontic functional loading level.

Conclusions

BMD controls the primary migration of the mini-implant system in mandibular bone. Viscoelastic creep can develop at a small constant functional loading level, leading to migration of the mini-implant.

Clinical relevance

The current results indicated that mini-implant migration can develop under the small level of functional orthodontic load used in clinic. If the active bone remodeling around the mini-implant accelerates the migration, the risk of causing damage in vital organs next to the mini-implant increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen Y, Kyung HM, Zhao WT, Yu WJ (2009) Critical factors for the success of orthodontic mini-implants: a systematic review. Am J Orthod Dentofacial Orthop 135:284–291. doi:10.1016/j.ajodo.2007.08.017

    Article  PubMed  Google Scholar 

  2. Lim HJ, Choi YJ, Evans CA, Hwang HS (2011) Predictors of initial stability of orthodontic miniscrew implants. Eur J Orthod 33:528–532. doi:10.1093/ejo/cjq122

    Article  PubMed  Google Scholar 

  3. Crismani AG, Bertl MH, Celar AG, Bantleon HP, Burstone CJ (2010) Miniscrews in orthodontic treatment: review and analysis of published clinical trials. Am J Orthod Dentofacial Orthop 137:108–113. doi:10.1016/j.ajodo.2008.01.027

    Article  PubMed  Google Scholar 

  4. Lim HJ, Eun CS, Cho JH, Lee KH, Hwang HS (2009) Factors associated with initial stability of miniscrews for orthodontic treatment. Am J Orthod Dentofacial Orthop 136:236–242. doi:10.1016/j.ajodo.2007.07.030

    Article  PubMed  Google Scholar 

  5. Shah AH, Behrents RG, Kim KB, Kyung HM, Buschang PH (2011) Effects of screw and host factors on insertion torque and pullout strength. Angle Orthod 82(4):603–610. doi:10.2319/070111-427.1

    Article  Google Scholar 

  6. Cha JY, Kil JK, Yoon TM, Hwang CJ (2010) Miniscrew stability evaluated with computerized tomography scanning. Am J Orthod Dentofac Orthop 137:73–79

    Article  Google Scholar 

  7. Brettin BT, Grosland NM, Qian F, Southard KA, Stuntz TD, Morgan TA, Marshall SD, Southard TE (2008) Bicortical vs monocortical orthodontic skeletal anchorage. Am J Orthod Dentofac Orthop 134:625–635. doi:10.1016/j.ajodo.2007.01.031

    Article  Google Scholar 

  8. Lemieux G, Hart A, Cheretakis C, Goodmurphy C, Trexler S, McGary C, Retrouvey J-M (2011) Computed tomographic characterization of mini-implant placement pattern and maximum anchorage force in human cadavers. Am J Orthod Dentofac Orthop 140:356–365. doi:10.1016/j.ajodo.2010.05.024

    Article  Google Scholar 

  9. Kim DG, Shertok D, Ching Tee B, Yeni YN (2011) Variability of tissue mineral density can determine physiological creep of human vertebral cancellous bone. J Biomech 44:1660–1665. doi:10.1016/j.jbiomech.2011.03.025

    Article  PubMed Central  PubMed  Google Scholar 

  10. Pollintine P, Luo J, Offa-Jones B, Dolan P, Adams MA (2009) Bone creep can cause progressive vertebral deformity. Bone 45:466–472. doi:10.1016/j.bone.2009.05.015

    Article  PubMed  Google Scholar 

  11. Yamamoto E, Crawford RP, Chan DD, Keaveny TM (2006) Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels. J Biomech 39:1812–1818

    Article  PubMed  Google Scholar 

  12. Wang Y-C, Liou EJW (2008) Comparison of the loading behavior of self-drilling and predrilled miniscrews throughout orthodontic loading. Am J Orthod Dentofac Orthop 133:38–43. doi:10.1016/j.ajodo.2006.01.042

    Article  Google Scholar 

  13. Liou EJ, Pai BC, Lin JC (2004) Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop 126:42–47. doi:10.1016/S0889540604002057S0889540604002057

    Article  PubMed  Google Scholar 

  14. Gustafson MB, Martin RB, Gibson V, Storms DH, Stover SM, Gibeling J, Griffin L (1996) Calcium buffering is required to maintain bone stiffness in saline solution. J Biomech 29:1191–1194

    Article  PubMed  Google Scholar 

  15. Sasaki N, Enyo A (1995) Viscoelastic properties of bone as a function of water content. J Biomech 28:809–815

    Article  PubMed  Google Scholar 

  16. Sasaki N, Nozoe T, Nishihara R, Fukui A (2008) Effect of mineral dissolution from bone specimens on the viscoelastic properties of cortical bone. J Biomech 41:3511–3514

    Article  PubMed  Google Scholar 

  17. Currey JD (1988) The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone. J Biomech 21:131–139

    Article  PubMed  Google Scholar 

  18. Currey JD (2004) Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. J Biomech 37:549–556

    Article  PubMed  Google Scholar 

  19. Holst AI, Karl M, Karolczak M, Goellner M, Holst S (2010) Quantitative assessment of orthodontic mini-implant displacement: the effect of initial force application. Quintessence Int 41:59–66

    PubMed  Google Scholar 

  20. Huja SS, Litsky AS, Beck FM, Johnson KA, Larsen PE (2005) Pull-out strength of monocortical screws placed in the maxillae and mandibles of dogs. Am J Orthod Dentofac Orthop 127:307–313. doi:10.1016/j.ajodo.2003.12.023

    Article  Google Scholar 

  21. Motoyoshi M, Uemura M, Ono A, Okazaki K, Shigeeda T, Shimizu N (2010) Factors affecting the long-term stability of orthodontic mini-implants. Am J Orthod Dentofac Orthop 137:588-e1–588-e5. doi:10.1016/j.ajodo.2009.05.019

    Google Scholar 

  22. Wang Z, Zhao Z, Xue J, Song J, Deng F, Yang P (2010) Pullout strength of miniscrews placed in anterior mandibles of adult and adolescent dogs: a microcomputed tomographic analysis. Am J Orthod Dentofacial Orthop 137:100–107. doi:10.1016/j.ajodo.2008.01.025

    Article  PubMed  Google Scholar 

  23. Kravitz ND, Kusnoto B (2007) Risks and complications of orthodontic miniscrews. Am J Orthod Dentofacial Orthop 131:S43–S51. doi:10.1016/j.ajodo.2006.04.027

    Article  PubMed  Google Scholar 

  24. Wiechmann D, Meyer U, Buchter A (2007) Success rate of mini- and micro-implants used for orthodontic anchorage: a prospective clinical study. Clin Oral Implants Res 18:263–267. doi:10.1111/j.1600-0501.2006.01325.x

    Article  PubMed  Google Scholar 

  25. Kim DG, Huja SS, Lee HR, Tee BC, Hueni S (2010) Relationships of viscosity with contact hardness and modulus of bone matrix measured by nanoindentation. J Biomech Eng 132:024502. doi:10.1115/1.4000936

    Article  PubMed  Google Scholar 

  26. Melsen B, Costa A (2000) Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res 3:23–28

    Article  PubMed  Google Scholar 

  27. Serra G, Morais LS, Elias CN, Meyers MA, Andrade L, Muller CA, Muller M (2010) Sequential bone healing of immediately loaded mini-implants: histomorphometric and fluorescence analysis. Am J Orthod Dentofacial Orthop 137:80–90. doi:10.1016/j.ajodo.2007.12.035

    Article  PubMed  Google Scholar 

  28. Shank SB, Beck FM, D'Atri AM, Huja SS (2012) Bone damage associated with orthodontic placement of miniscrew implants in an animal model. Am J Orthod Dentofac Orthop 141:412–418. doi:10.1016/j.ajodo.2011.10.021

    Article  Google Scholar 

  29. Rath Bonivtch A, Bonewald LF, Nicolella DP (2007) Tissue strain amplification at the osteocyte lacuna: a microstructural finite element analysis. J Biomech 40:2199–2206. doi:10.1016/j.jbiomech.2006.10.040

    Article  Google Scholar 

  30. George WT, Vashishth D (2005) Damage mechanisms and failure modes of cortical bone under components of physiological loading. J Orthop Res 23:1047–1053. doi:10.1016/j.orthres.2005.02.008

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tomas® for donating a portion of the mini-implants and Dr. Amanda Agnew for providing the bone specimens. This study was supported by the student research program of the College of Dentistry, The Ohio State University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Gyoon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pittman, J.W., Navalgund, A., Byun, S.H. et al. Primary migration of a mini-implant under a functional orthodontic loading. Clin Oral Invest 18, 721–728 (2014). https://doi.org/10.1007/s00784-013-1045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-013-1045-9

Keywords

Navigation