Skip to main content

Advertisement

Log in

Bone density changes around teeth during orthodontic treatment

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate bone density changes around the teeth during orthodontic treatment by using cone beam computed tomography (CBCT). CBCT was used to measure the bone densities around six teeth (both maxilla central incisors, lateral incisors, and canines) before and after 7 months of orthodontic treatment in eight patients. In addition, each root was divided into three portions (cervical, intermediate, and apical) to determine whether the bone density change varied with tooth level. The mean reduction in bone density around the measured teeth was 24% after orthodontic treatment. The bone density reduction around teeth was largest for the upper-right and upper-left central incisor (29% and 26%, respectively) and ranged from 20% to 23% for the other four teeth. The mean bone density reduction did not differ significantly between the cervical, portion, and apical portions of the teeth (26%, 22%, and 24%, respectively). CBCT is useful for evaluating bone density changes around teeth during orthodontic treatment. The bone density around the teeth reduced significantly after the application of orthodontic forces for 7 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bridges T, King G, Mohammed A (1988) The effect of age on tooth movement and mineral density in the alveolar tissues of the rat. Am J Orthod Dentofacial Orthop 93:245–250

    Article  PubMed  Google Scholar 

  2. Verna C, Zaffe D, Siciliani G (1999) Histomorphometric study of bone reactions during orthodontic tooth movement in rats. Bone 24:371–379

    Article  PubMed  Google Scholar 

  3. Melsen B (1999) Biological reaction of alveolar bone to orthodontic tooth movement. Angle Orthod 69:151–158

    PubMed  Google Scholar 

  4. Verna C, Dalstra M, Melsen B (2000) The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. Eur J Orthod 22:343–352

    Article  PubMed  Google Scholar 

  5. Simmons DJ, Chang SL, Russell JE, Grazman B, Webster D, Oloff C (1983) The effect of protracted tetracycline treatment on bone growth and maturation. Clin Orthop Relat Res (180):253–259

  6. Russell JE, Grazman B, Simmons DJ (1984) Mineralization in rat metaphyseal bone exhibits a circadian stage dependency. Proc Soc Exp Biol Med 176(4):342–345

    PubMed  Google Scholar 

  7. Cattaneo PM, Dalstra M, Melsen B (2005) The finite element method: a tool to study orthodontic tooth movement. J Dent Res 84:428–433

    Article  PubMed  Google Scholar 

  8. Cattaneo PM, Dalstra M, Melsen B (2009) Strains in periodontal ligament and alveolar bone associated with orthodontic tooth movement analyzed by finite element. Orthod Craniofac Res 12:120–128

    Article  PubMed  Google Scholar 

  9. Liang W, Rong Q, Lin J, Xu B (2009) Torque control of the maxillary incisors in lingual and labial orthodontics: a 3-dimensional finite element analysis. Am J Orthod Dentofacial Orthop 135:316–322

    Article  PubMed  Google Scholar 

  10. Field C, Ichim I, Swain MV, Chan E, Darendeliler MA, Li W, Li Q (2009) Mechanical responses to orthodontic loading: a 3-dimensional finite element multi-tooth model. Am J Orthod Dentofacial Orthop 135:174–181

    Article  PubMed  Google Scholar 

  11. Jager A, Radlanski RJ, Taufall D, Klein C, Steinhofel N, Doler W (1990) Quantitative determination of alveolar bone density using digital image analysis of microradiographs. Anat Anz 170:171–179

    PubMed  Google Scholar 

  12. Drage NA, Palmer RM, Blake G, Wilson R, Crane F, Fogelman I (2007) A comparison of bone mineral density in the spine, hip and jaws of edentulous subjects. Clin Oral Implants Res 18:496–500

    Article  PubMed  Google Scholar 

  13. Oltramari PV, Navarro Rde L, Henriques JF, Taga R, Cestari TM, Janson G, Granjeiro JM (2007) Evaluation of bone height and bone density after tooth extraction: an experimental study in minipigs. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:e9–e16

    Article  PubMed  Google Scholar 

  14. Al Haffar I, Padilla F, Nefussi R, Kolta S, Foucart JM, Laugier P (2006) Experimental evaluation of bone quality measuring speed of sound in cadaver mandibles. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:782–791

    Article  PubMed  Google Scholar 

  15. BouSerhal C, Jacobs R, Quirynen M, van Steenberghe D (2002) Imaging technique selection for the preoperative planning of oral implants: a review of the literature. Clin Implant Dent Relat Res 4:156–172

    Article  PubMed  Google Scholar 

  16. Chen WP, Hsu JT, Chang CH (2003) Determination of Young’s modulus of cortical bone directly from computed tomography: a rabbit model. J Chin Inst Eng 22:121–128

    Google Scholar 

  17. Homolka P, Beer A, Birkfellner W, Nowotny R, Gahleitner A, Tschabitscher M, Bergmann H (2002) Bone mineral density measurement with dental quantitative CT prior to dental implant placement in cadaver mandibles: pilot study. Radiology 224:247–252

    Article  PubMed  Google Scholar 

  18. de Oliveira RC, Leles CR, Normanha LM, Lindh C, Ribeiro-Rotta RF (2008) Assessments of trabecular bone density at implant sites on CT images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:231–238

    Article  PubMed  Google Scholar 

  19. Norton MR, Gamble C (2001) Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res 12:79–84

    Article  PubMed  Google Scholar 

  20. Shahlaie M, Gantes B, Schulz E, Riggs M, Crigger M (2003) Bone density assessments of dental implant sites: 1. Quantitative computed tomography. Int J Oral Maxillofac Implants 18:224–231

    PubMed  Google Scholar 

  21. Shapurian T, Damoulis PD, Reiser GM, Griffin TJ, Rand WM (2006) Quantitative evaluation of bone density using the Hounsfield index. Int J Oral Maxillofac Implants 21:290–297

    PubMed  Google Scholar 

  22. Turkyilmaz I, Tozum TF, Tumer C (2007) Bone density assessments of oral implant sites using computerized tomography. J Oral Rehabil 34:267–272

    Article  PubMed  Google Scholar 

  23. Aranyarachkul P, Caruso J, Gantes B, Schulz E, Riggs M, Dus I, Yamada JM, Crigger M (2005) Bone density assessments of dental implant sites: 2. Quantitative cone-beam computerized tomography. Int J Oral Maxillofac Implants 20:416–424

    PubMed  Google Scholar 

  24. Toms SR, Eberhardt AW (2003) A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofacial Orthop 123:657–665

    Article  PubMed  Google Scholar 

  25. Roberts WE, Roberts JA, Epker BN, Burr DB, Hartsfield JK (2006) Remodeling of mineralized tissues, part I: the Frost legacy. Semin Orthod 12:216–237

    Article  Google Scholar 

  26. Roberts WE, Epker BN, Burr DB, Hartsfield JK, Roberts JA (2006) Remodeling of mineralized tissues, part II: control and pathophysiology. Semin Orthod 12:238–253

    Article  Google Scholar 

  27. Cann CE (1988) Quantitative CT for determination of bone mineral density: a review. Radiology 166:509–522

    PubMed  Google Scholar 

  28. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA (1998) A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 8:1558–1564

    Article  PubMed  Google Scholar 

  29. Hua Y, Nackaerts O, Duyck J, Maes F, Jacobs R (2009) Bone quality assessment based on cone beam computed tomography imaging. Clin Oral Implants Res 20:767–771

    Article  PubMed  Google Scholar 

  30. Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M, Ariji E, Langlais RP (2007) Effects of image artifacts on gray-value density in limited-volume cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:829–836

    Article  PubMed  Google Scholar 

  31. Katsumata A, Hirukawa A, Noujeim M, Okumura S, Naitoh M, Fujishita M, Ariji E, Langlais RP (2006) Image artifact in dental cone-beam CT. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:652–657

    Article  PubMed  Google Scholar 

  32. Draenert FG, Coppenrath E, Herzog P, Muller S, Mueller-Lisse UG (2007) Beam hardening artefacts occur in dental implant scans with the NewTom cone beam CT but not with the dental 4-row multidetector CT. Dento Maxillo Facial Radiol 36:198–203

    Google Scholar 

  33. Lagravere MO, Carey J, Ben-Zvi M, Packota GV, Major PW (2008) Effect of object location on the density measurement and Hounsfield conversion in a NewTom 3G cone beam computed tomography unit. Dento Maxillo Facial Radiol 37:305–308

    Google Scholar 

  34. Weiss M, Yogev R, Dolev E (1998) Occupational sitting and low hip mineral density. Calcif Tissue Int 62:47–50

    Article  PubMed  Google Scholar 

  35. Sidiropoulou-Chatzigiannis S, Kourtidou M, Tsalikis L (2007) The effect of osteoporosis on periodontal status, alveolar bone and orthodontic tooth movement. A literature review. J Int Acad Periodontol 9:77–84

    PubMed  Google Scholar 

  36. Midgett RJ, Shaye R, Fruge JF Jr (1981) The effect of altered bone metabolism on orthodontic tooth movement. Am J Orthod 80:256–262

    Article  PubMed  Google Scholar 

  37. Melsen B (2001) Tissue reaction to orthodontic tooth movement—a new paradigm. Eur J Orthod 23:671–681

    Article  PubMed  Google Scholar 

  38. Verna C, Melsen B (2003) Tissue reaction to orthodontic tooth movement in different bone turnover conditions. Orthod Craniofac Res 6:155–163

    Article  PubMed  Google Scholar 

  39. Banse X, Devogelaer JP (2002) Does peripheral quantitative computed tomography ignore tissue density of cancellous bone? J Clin Densitom 5:403–410

    Article  PubMed  Google Scholar 

  40. Bednar JR, Gruendeman GW, Sandrik JL (1991) A comparative study of frictional forces between orthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop 100:513–522

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Che-Shoa Chang and Prof. Yuh-Yuan Shiau for their suggestions in this study. The authors also wish to thank Li-Na Liao from Biostatistics Center and Department of Public Health, China Medical University for her assistance of statistical analysis.

Conflict of interest

No authors of this study have any financial and personal relationships with other people or organizations that could have resulted in an inappropriate influence on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Ting Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, JT., Chang, HW., Huang, HL. et al. Bone density changes around teeth during orthodontic treatment. Clin Oral Invest 15, 511–519 (2011). https://doi.org/10.1007/s00784-010-0410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-010-0410-1

Keywords

Navigation