Skip to main content

Advertisement

Log in

In vivo validation of the historical in vitro thermocycling temperature range for dental materials testing

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

In dental research, restorative materials have been regularly subjected to alternating in vitro thermal stress in investigations since the 1950s, in order to simulate in vivo alternating temperature stress and to artificially stress them in vitro. The provocation temperature is mostly 5°C for cold provocation, and 55°C for hot provocation. These temperatures are determined quite arbitrarily based on very few examinations in vivo. Extensive temperature data for the approximal space of teeth, which is decisive for the success of fillings adhesively attached to dentin, has so far not been addressed. The objective of this study was to examine the interproximal temperature characteristics created in the space of all teeth in vivo with thermal alternating stress, and therefore to validate the in vitro standardized thermal alternating stress of 5–55°C. Fifteen study participants with healthy teeth were used to determine the temperature in each inter-dental space, resulting from hot/cold provocation in the upper and lower jaw, from the central incisor to the second molars. This was performed by a thermal element (cable sensor GTF 300, Greisinger Electronic GmbH, Regenstauf, Germany). The temperature sensor was attached with dental floss into the interproximal space and the temperature was recorded by the computer. The participants in the pilot test had to state when they were able to sip an 85°C hot drink. That particular temperature value was taken for hot provocation as maximum temperature reference. Cold ice water (0°C) was used for cold provocation as minimum temperature reference. The respective recordings with a total of 14 measurements for each individual were performed simultaneously in the upper and lower jaw. The study participants were to start with hot provocation, followed by cold provocation. This cycle was repeated at least once with an individual dwell time. The highest recorded approximal space temperature was 52.8°C in the lower jaw, between the first and the second premolar. The lowest temperature of 13.7°C was recorded in two participants in the upper jaw, between the 1st and 2nd incisor, and between the two central incisors. The mean of the maximum temperatures was 43.8±3.7°C, and the mean of the minimum temperatures 24.2±4.6°C. The mean initial temperature was 35.2±1.3°C. None of the recordings reached either the upper threshold (55°C) or the lower threshold (5°C). This study showed that the actual thermal stress in the interproximal space of teeth is slightly lower than the one used in in vitro examinations. For class II cavities, most of the alternating temperature stress limits selected at 5–55°C cover the actually occurring temperature interval quite well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnold M, Cendelin E (1984) Marginale und papilläre Sulcustemperatur. Stomatologie der DDR 34:460–464

    CAS  PubMed  Google Scholar 

  2. Arnold M, Richter K (1979) Objektivierung klinischer Befunde an der Gingiva (Objectifying of clinical diagnostic findings at the gingiva). Stomatologie der DDR 29:141–145

    CAS  PubMed  Google Scholar 

  3. Bachmann A, Lutz F (1976) Schmelzsprünge durch die Sensibilitätsprüfung mit CO2-Schnee und Dichlor-difluormethan- eine vergleichende In-vivo-Untersuchung (Enamel cracks caused by sensitivity tests with dry ice and Dichlorodiflouromethane: a comparative in vivo study). Schweiz Mschr Zahnmed 86:1042–1059

    CAS  Google Scholar 

  4. Barker R, Rafoth R, Ward RW (1972) Thermally induced stresses and rapid temperature changes in teeth. J Biomed Mater Res 6:305–325

    PubMed  Google Scholar 

  5. Bergström J, Varga G (1971) Temperatures of the oral cavity in 50 healthy students. Swed Dent J 64:157–164

    Google Scholar 

  6. Boehm PF (1972) Thermal environment of teeth during open-mouth respiration. J Dent Res 51:75–78

    CAS  PubMed  Google Scholar 

  7. Brown AS, Goldberg MP (1966) Surface temperature and temperature gradients of human teeth in situ. Arch Oral Biol 11:973–982

    Article  CAS  PubMed  Google Scholar 

  8. Brown WS, Jacobs HR, Thompson RE (1972) Thermal fatigue in teeth. J Dent Res 51:461–467

    CAS  PubMed  Google Scholar 

  9. Eakle WS (1986) Effects of thermal cycling on fracture strength and microleakage in teeth restored with bonded composite resin. Dent Mater 2:114–117

    CAS  PubMed  Google Scholar 

  10. Finger W (1974) Die Wärmeausdehnung von Composite-Füllungsmaterialien und ihre klinische Bedeutung (Thermal expansion of composite restoration materials and its clinical significance). Schweiz Mschr Zahnmed 84:630–647

    CAS  Google Scholar 

  11. Fouke J, Wolin A, Bowman F, McFadden R (1990) Effect of facial cooling on mucosal blood flow in the mouth in humans. Clin Sci 79:307–313

    CAS  PubMed  Google Scholar 

  12. Franke J (1951) Über Temperaturmessung in der Zahnumgebung und ihre Bedeutung für die Kenntnis der Durchblutungsverhältnisse des gesunden und erkrankten Parodontiums (Temperature measurement and its significance for acquiring blood circulation rates of healthy and inflamed parodontium in dental environment). Dtsch Zahnärtzl Z 6:1368–1375

  13. Gente M, Sondermann U, Lehmann KM (1985) Linearer thermischer Ausdehnungskoeffizient von Rinderschmelz und Rinderdentin (Linear thermal expansion coefficient of bovine enamel and dentin). Dtsch Zahnärztl Z 40:488–490

    Google Scholar 

  14. Gente M, Sondermann U, Lehmann KM (1986) Untersuchung zur Krümmung von Schmelz-Dentin-Streifen bei Temperaturveränderung (Study of the deflection of enamel-dentin-lines during temperature changes). Dtsch Zahnärztl Z 41:847–852

    Google Scholar 

  15. Gräf W (1960) Die thermische Belastung der Zähne beim Verzehr extrem heißer und kalter Speisen (Thermal exposure of teeth during the consumption of extremly hot and cold food). Dtsch Zahnärztl Z 15:30–34

    Google Scholar 

  16. Hamlet S, Choi J, Zormeier M, Shamsa F, Stachler R, Muz J, Jones L (1996) Normal adult swallowing of liquid and viscous material: scintigraphic data on bolus transit and oropharyngeal residues. Dysphagia 11:41–47

    CAS  PubMed  Google Scholar 

  17. Hellwig E, Klimek J, Attin T (1995) Einführung in die Zahnerhaltung (Introducing operative dentistry). Urban und Schwarzenberg

  18. Hensel H, Mann G (1956) Temperaturschmerz und Wärmeleitung im menschlichen Zahn (Thermal pain and thermal conduction in human teeth). Stoma 9:76–85

    Google Scholar 

  19. Herrmann M (1953) Temperaturverhältnisse an der Mundschleimhaut und den Zähnen (Thermal proportions of oral mucosa and teeth). Dtsch Zahnärztl Z 8:539–543

  20. Holthuis AF, Gelskey SC, Chebib FS (1981) The relationship between gingival tissue temperatures and various indicators of gingival inflammation. J Periodontol 51:187–189

    Google Scholar 

  21. Jacobs HR, Thompson RE, Brown WS (1973) Heat transfer in teeth. J Dent Res 52:248–252

    CAS  PubMed  Google Scholar 

  22. Kidd E (1976) Microleakage: a review. J Dent 4:199–206

    CAS  PubMed  Google Scholar 

  23. Kidd E (1976) Microleakage in relation to amalgam and composite restoration: a laboratory study: Brit Dent J 16:305–310

    Google Scholar 

  24. Klengel S, Arnold M (1992) Abhängigkeit der Gingivatemperatur vom zirkadianen Rhythmus (Temperature-dependence of the gingiva on the circadian rhythm). Zahnärztliche Praxis 9:340–343

    Google Scholar 

  25. Lloyd BA, McGinley MB, Brown WS (1978) Thermal stress in teeth. J Dent Res 57:571–582

    CAS  PubMed  Google Scholar 

  26. Longman C, Pearson G (1987) Variations in tooth surface temperature in the oral cavity during fluid intake. Biomaterials 8:411–414

    Article  CAS  PubMed  Google Scholar 

  27. Mesu FP (1983) The effect of temperature on the compressive and tensile strengths of cements. J Prosthet Dent 49:59–62

    CAS  PubMed  Google Scholar 

  28. Michailesco PM, Marciano J, Grieve AR, Abadie MJM (1995) An in vivo recording of variations in oral temperature during meals: a pilot study. J Prosthet Dent 73:214–218

    CAS  PubMed  Google Scholar 

  29. Mukherjee S (1978) The temperature of the gingival sulci. J Periodontol 49:580–584

    CAS  PubMed  Google Scholar 

  30. Nell A, Loicht Ch, Emmer W, Sperr W (1994) Ergebnisse von Temperaturmessungen im Sulcus gingivae (Results of temperature measurements in the gingival sulcus). Zeitschrift für Stomatologie 91:9–17

  31. Nelsen JN, Wolcott RB, Paffenbarger GC (1952) Fluid exchange at the margins of dental restorations. J Am Dent Assoc 44:288–295

    CAS  PubMed  Google Scholar 

  32. ∅ilo G (1993) Bond strength testing—what does it mean? Inter Dent J 43:492–498

    Google Scholar 

  33. ∅ilo G, Austrheim EK (1993) In vitro quality testing of dentin adhesives. ACTA Odontol Scand 51:263–269

    PubMed  Google Scholar 

  34. Palmer DS, Barco MT, Billy EJ (1992) Temperature extremes produced orally by hot and cold liquids. J Prosthet Dent 67:325–327

    CAS  PubMed  Google Scholar 

  35. Peterson EA, Phillips RW, Swartz ML (1966) A comparison of the physical properties of four restorative resins. J Am Dent Assoc 73:1324–1336

    CAS  PubMed  Google Scholar 

  36. Pfeifer M, Marx R (1989) Temperaturbelastung von Adhäsivbrücken und Ihre Auswirkung auf die Verbundfestigkeit der Klebeverbindung (Thermal exposure of adhesive bridges and its effects on the bonding strength). Schweiz Mschr Zahnmed 99:782–786

    Google Scholar 

  37. Plant C, Jones D, Darvell B (1974) The heat evolved and temperatures attained during setting of restorative materials. Brit Dent J 17:233–238

    Article  Google Scholar 

  38. Retief DH, Woods E, Jamison HC (1982) Effect of cavosurface treatment on marginal leakage in class V composite resin restorations. J Prosthet Dent 47:496–501

    CAS  PubMed  Google Scholar 

  39. Roydhouse RH, Paxon PR (1970) Thermal changes in dimension of restorative cavities. J Dent Res 49:567–571

    CAS  PubMed  Google Scholar 

  40. Schmidt RF, Thews G (1990) Physiologie des Menschen (Human physiology). 24. Auflage, Springer, Berlin Heidelberg New York

  41. Seltzer S (1955) The penetration of microorganisms between the tooth and direct resin fillings. J Am Dent Assoc 51:560–566

    CAS  PubMed  Google Scholar 

  42. Simmons EW, Barghi N, Muscott JR (1976) Thermocycling of pit and fissure sealants. J Dent Res 55:606–610

    CAS  PubMed  Google Scholar 

  43. Spierings T, Peters M, Bosman F, Plasschaert A (1986) The influence of cavity geometry on heat transmission in restored teeth. J Dent 14:47–51

    Article  CAS  PubMed  Google Scholar 

  44. Spierings T, Peters M, Bosman F, Plasschaert A (1987) Verification of Theoretical Modeling of Heat Transmission in Teeth by in vivo Experiments. J Dent Res 66:1336–1339

    CAS  PubMed  Google Scholar 

  45. Stettmaier K, Kinder J, Vahl J, Reinhardt KJ (1978) Untersuchungen des thermischen Verhaltens von Schmelz, Dentin und ausgewählten Dentalwerkstoffen (Evaluation of the thermal reaction of enamel, dentin and selected dental materials). Dtsch Zahnärztl Z 33:474–476

  46. Tanaka T, Kamada K, Matsumura H, Atsuta M (1995) A comparison of water temperatures for thermocycling of metal-bonded resin specimens. J Prosthet Dent 74:345–349

    CAS  PubMed  Google Scholar 

  47. Thews G, Vaupel P (1981) Wärmehaushalt. Grundriß der vegetativen Physiologie (Heat balance. Compendium of vegetative physiology). Springer, Berlin Heidelberg New York, pp 237–253

  48. Tibbetts V, Schnell M, Swartz M, Phillips RW (1976) Thermal diffusion through amalgam and cement base: comparison of in vitro and in vivo measurements. J Dent Res 55:441–451

    CAS  PubMed  Google Scholar 

  49. Volchansy A, Cleaton-Jones P (1994) Variation in oral temperature. J Oral Rehabil 21:605–611

    PubMed  Google Scholar 

  50. Youngson C, Barclay C (2000) A pilot study of intraoral temperature changes. Clin Oral Invest 4:183–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus-Peter Ernst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, CP., Canbek, K., Euler, T. et al. In vivo validation of the historical in vitro thermocycling temperature range for dental materials testing. Clin Oral Invest 8, 130–138 (2004). https://doi.org/10.1007/s00784-004-0267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-004-0267-2

Keywords

Navigation