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Abstract

Risk measures such as expected shortfall (ES) and value-at-risk (VaR) have been
prominent in banking regulation and financial risk management. Motivated by practi-
cal considerations in the assessment and management of risks, including tractability,
scenario relevance and robustness, we consider theoretical properties of scenario-
based risk evaluation. We establish axiomatic characterisations of scenario-based risk
measures that are comonotonic-additive or coherent, and we obtain a novel ES-based
representation result. We propose several novel scenario-based risk measures, includ-
ing various versions of Max-ES and Max-VaR, and study their properties. The theory
is illustrated with financial data examples.
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1 Introduction
1.1 Background

Risk measures are used in various contexts in banking and insurance, such as regu-
latory capital calculation, optimisation, decision making, performance analysis, and
risk pricing. In practice, risk measures have to be estimated from data. Therefore, it is
often argued that one has to use a law-based risk measure (or a statistical functional),
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such as a value-at-risk (VaR) or an expected shortfall (ES), which are both standard
risk measures used in banking and insurance.

However, even assuming that the distribution of a risk is accurately obtained, it
need not be able to comprehensively describe the nature of the risk. From the reg-
ulatory perspective, a regulator is more concerned about the behaviour of a risk in
an adverse environment, e.g. during a catastrophic financial event; see e.g. Acharya
et al. [1] for related discussions. Only the distribution of the risk may be not enough
to distinguish a potentially huge loss in a financial crisis from a potentially huge loss
in a common economy but no loss in a financial crisis. As another simple example,
the profit/loss from a lottery and that from an insurance contract may have the same
distribution, but they represent very different types of risks and can have very dif-
ferent effects on the decision maker or the society. Therefore, it may be useful to
evaluate a risk under different stress scenarios. Summing up these evaluations in a
single number would necessarily lead to a non-law-based risk measure.

Finally, it is usually unrealistic to assume that the distribution of a risk may be
accurately obtained. Model uncertainty is a central component of the current chal-
lenges in risk measurement and regulation, and its importance in practice has been
pivotal after the 2007 financial crisis (see e.g. [36]) in both the banking (e.g. [5]) and
insurance sectors (e.g. [26]). Model uncertainty may be due to statistical/parameter
uncertainty or, more generally, structural uncertainty of the model or of the economic
system. A robust approach should take into account the distribution of the underlying
risk under several plausible model assumptions.

In the framework of Basel III & IV [5], the standard risk measure for market risk
is an expected shortfall (ES,) at level p = 0.975. Thus, the Basel Committee on
Banking Supervision has opted for a law-based risk measure. However, while ES is
the basic building block for market risk assessment, the initial ES estimates are sub-
sequently modified. In particular, two important adjustments are a stress adjustment
and a dependence adjustment [5, pp. 52—-69], which then leads to the capital charge
for modellable risk factors (abbreviated as IMCC in [5]).

The aim of this paper is to present a theoretical approach to the construction of
risk measures that incorporates modifications such as a stress and dependence adjust-
ment of an initial law-based risk measure into the risk measure itself. We call such
risk measures scenario-based risk measures; see Definition 2.2. Our approach has the
advantage that the final result of the risk estimation can be understood theoretically,
and properties such as coherence and comonotonic additivity can be studied not only
for the initial law-invariant risk measure, but for the final risk measure that is the rele-
vant output for further actions and decisions, such as the IMCC in the Basel III & IV
framework.

Before presenting our theoretical framework, let us give some details on the latest
regulatory framework of the Basel Committee on Banking Supervision to illustrate
how they deal with the issues mentioned above.

In the Fundamental Review of the Trading Book (FRTB) of Basel III & IV [5]
for market risk, the time horizon is 10 days (two trading weeks), and each risk po-
sition (random loss) is modelled as a function of risk factors, such as equity prices,
interest rates, credit spreads and volatilities. Each risk factor is adjusted according
to their category of liquidity (see Li and Xing [32] for a precise mathematical for-
mulation). For simplicity, we consider a linear portfolio in the illustration below. Let
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X =", X; be the aggregate portfolio loss on a given day, where X1, ..., X, are
the corresponding risk factors in the aggregation (with weights included). Below we
outline two adjustments that the FRTB uses to calculate the regulatory capital.

(i) Stress adjustment

(a) Specify a set R of reduced risk factors which has a sufficiently long history of
observation (at least spanning back to and including 2007), such that the ratio

{ESF(X) }
6 = max , 1
ESR(X)

is less than 4/3, where ESp(X) =ES,, (Z?zl X;) is the current ES value calculated
using all risk factors, and ESg(X) =ES,, (ZieR X;) is the current ES value calcu-
lated using the reduced risk factors. The ratio 6 is treated like a constant and only
needs to be updated weekly.

(b) Compute ES for a model with the reduced risk factors, “calibrated to the
most severe 12-month period of stress”, and denote this by ESg s(X). The period
of “most severe stress”, also called the stress scenario, corresponds to the rolling
window of data of length one year that leads to the maximum possible value of ES
using the reduced risk factor model [6, p. 6]. Mathematically, ESg s(X) involves
taking a maximum over a set Q of distributions estimated from sequences of data of
length one year (many of them overlapping), namely

ESg s(X) = max ESY X; ).
r,s(X) max p<§ :)

(c) Use the formula
ES(X) =ESg.s(X) x 0

to get the stress-adjusted ES value.

In particular, if the portfolio loss is modelled by only risk factors of sufficiently
long history (spanning back to 2007), then R = {1, ..., n} and the adjusted ES value
is

n
ES(X) = max ES¥ X; | = max ES2(X).
(X) = max ,,(; ) max ES3 (X)

(i) Dependence adjustment

(a) Risk factors in the portfolio are grouped into a range of broad regulatory risk
classes (interest rate risk, equity risk, foreign exchange risk, commodity risk and
credit spread risk). For the stress scenario (see (i)(b)), compute the ES of each risk
class (according to (i)), and denote their sum by I:ZVSC (X). By comonotonic additivity
and subadditivity of ES (see Sect. 2 for details), this calculation is equivalent to using
a model where all classes of risk factors are comonotonic (“non-diversified”), and
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it represents the worst-case value of ES among all possible dependence structures
(e.g. Embrechts et al. [18]).
(b) Use the formula

ES(X) = AES(X) + (1 — MES¢(X),

where A is a constant (right now, X is chosen as 0.5). The quantity ES(X) is called
the IMCC of the portfolio.

Intuitively, the logic behind adjustment (i) is that risk assessment should be made
based on stressed financial periods, and that behind adjustment (ii) is that the depen-
dence structure between risk factors is difficult to specify and a worst-case value is
combined with the original model to protect from overly optimistic diversification ef-
fects in the model specification. In addition to (i) and (ii), the IMCC value will finally
be adjusted by using the maximum of its present calculation and a moving average
calculation of 60 days times a constant (currently 1.5). See Embrechts et al. [18, 19]
for discussions on the aggregation of risk measures under dependence uncertainty.

In summary, in the FRTB, the ES of the same portfolio is estimated under differ-
ent scenarios and models: stress (stressed, non-stressed), and dependence (diversi-
fied, non-diversified). These values are aggregated with mainly two operations (iter-
atively): maximum and linear combination. In Theorem 3.8, we show that these two
operations indeed are the two most crucial operations which lead to coherence in the
sense of Artzner et al. [4] for scenario-based risk measures. Section 5.2 contains a
detailed data analysis for the stress adjustment (i) outlined above.

We briefly mention two other prominent examples of risk evaluation using scenar-
ios. First, the margin requirements calculation developed by the Chicago Mercantile
Exchange [9] relies on the maximum of the portfolio loss over several specified hypo-
thetical scenarios [33, p. 63]. Our data example in Sect. 5.1 is similar to this approach.
The second example comes from the practice of credit rating, where a structured fi-
nance security (e.g. a defaultable bond) is rated according to its behaviour (condi-
tional distributions) under each economic stress scenario. This approach, in different
specific forms, appears in Guo et al. [24, Sect. 5.2].

In this paper, we propose an axiomatic framework of scenario-based risk evalua-
tion which has the three merits mentioned above and is consistent with many existing
risk measurement procedures including the above examples. We shall keep the Basel
formulas as our primary example in mind.

1.2 Our contribution and the structure of the paper

In Sect. 2, we introduce scenario-based risk measures. They include classic law-
based risk measures, non-law-based risk measures such as the systemic risk mea-
sures CoVaR and CoES (Adrian and Brunnermeier [2]), and many practically used
risk calculation principles such as the Basel formulas for market risk, the margin re-
quirements by the Chicago Mercantile Exchange, and the common rating measures
used in credit rating, as mentioned above. Axiomatic characterisations of scenario-
based risk measures are studied in Sect. 3. In particular, we characterise scenario-
based comonotonic-additive as well as coherent risk measures, where many surpris-
ing mathematical challenges emerge. In Sect. 4, we introduce Max-ES and Max-VaR
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and related families of risk measures and study their properties. Data analyses are
given in Sect. 5, highlighting the broad range of possible interpretations of scenar-
ios. In particular, scenario-based risk measures can be easily implemented for stress
analysis and capital calculation.

Our framework builds upon the axiomatic theory of coherent risk measures as
pioneered by Artzner et al. [4]. A comprehensive review on risk measures can be
found in the book of Follmer and Schied [22, Chap. 4].

Distinguished from the literature, the main mathematical challenges in our pa-
per come from the novel framework of treating risk measures as functionals on a
space of random variables (as in the traditional setting) through the distributions of a
random variable under each scenario (probability measure). The mathematical struc-
ture is very different from that with tuples of distributions as inputs, such as the
classic framework of Anscombe and Aumann [3] (see also Gilboa and Schmeidler
[23], Cerreia-Vioglio et al. [8], Hansen and Marinacci [25]) in decision theory under
ambiguity. The distributions of a random variable under each scenario are not arbi-
trary. Shen et al. [41] recently studied the issue of compatibility between distributions
and scenarios; for instance, if Q1 and Q, are mutually equivalent and the distribution
of X is uniform under Q1, then it cannot be normal under Q». If tuples of distri-
butions are used as inputs, the “geometry” (interdependence) of the set of scenarios
does not play a role in the characterisation results. This is in sharp contrast to our
framework, where the interdependence among the set of scenarios plays an important
role in the characterisation of risk measures. See the detailed discussion in Sect. 3.1
and Example 3.1, as well as Theorem 3.8, where the choice of the set of scenarios
clearly matters for the characterisation result.

Kou et al. [29] and Kou and Peng [28] studied properties of risk measures based on
scenarios from different angles than ours. Various scenario-based risk measures also
appear in Zhu and Fukushima [44], Zymler et al. [45], Adrian and Brunnermeier [2],
Righi [37] in different disguises. Our contribution is to study the consequence of the
scenario-based property instead of specific examples; thus our results yield axiomatic
support for specific risk measures in the above literature. For recent developments of
risk measures, including various practical issues of statistical analysis, robustness,
model uncertainty and optimisation, we refer to Fissler and Ziegel [20], Cambou
and Filipovi¢ [7], Krédtschmer et al. [30], Du and Escanciano [15], Embrechts et al.
[17], Wang and Zitikis [42] and the references therein.

2 Scenario-based risk measures
2.1 Definitions

Let (€2, ) be a measurable space and P the set of all probability measures on
(82, F). For any Q € P, write Fx ¢ for the cumulative distribution function (cdf)
of a random variable X under Q, ie., Fx o(x) = Q[X < x] for x € R, and write
X ~¢g Fif F = Fx ¢. For two random variables X and Y and a probability measure

0, we write X gQ Y if Fx o = Fy,o. For any cdf F, its generalised inverse is de-
finedas F~1(t) = inf{x e R: F(x) >t} fort € (0, 1]. Let X' be the space of bounded
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random variables on (€2, F) and ) a convex cone of random variables containing X,
representing the set of random variables of interest, which are possibly unbounded.
We fix & throughout, whereas ) is specific to the functional considered. For instance,
when considering the expectation EZ for some QO € P, its domain ) is often chosen
as the space of Q-integrable random variables, which depends on the choice of Q.
However, it does not hurt to think of ) = X" for the main part of the paper. A proba-
bility measure P € P is chosen as a reference probability measure in this paper, and
it may be interpreted as the real-world probability measure in some applications.

In this paper, we use the term scenario for a probability measure Q € P. The
reason behind this choice of terminology is from the perspective of scenario analysis,
as in the following example. This example will be referred to a few times throughout
the paper.

Example 2.1 Let ® be a random economic factor taking values in a set K and
Qol-1=P[-|® =0], 6 € K, regular conditional probabilities with reference to ©.
The set {® = 6} € F represents a possible economic event for each 6 € K. To anal-
yse the behaviour of a risk X under each scenario {® = 6}, 6 € K, the respective
distributions of X under the probability measures Qy are of interest.

Suppose that there is a collection Q of scenarios of interest. As mentioned in the
introduction, there may be different interpretations for the set Q. In what follows, we
take a collection of scenarios of interest and do not distinguish among the interpreta-
tions. If a risk (random loss) X and another risk Y have the same distribution under all
relevant scenarios in Q, they should be assigned identical riskiness, whatever sense
of riskiness we speak of. This leads to the following definition.

Definition 2.2 For a family of scenarios ) # Q € P, a mapping p : Y — (—00, 0]
is Q-based if p(X) = p(Y) for X,Y € Y whenever X gQ Y forall Q € Q.

To put the above concept into risk management, we focus on Q-based risk mea-
sures. A risk measure is a mapping from ) to (—oo, oo] with p(X) < oo for a
bounded X. We use the term risk measure in a broad sense, as it also includes de-
viation measures (such as the variance) and other risk functionals. To keep things
concise, our main examples are traditional risk measures such as VaR and ES, al-
though our framework includes deviation measures. For the latter, see Rockafellar et
al. [38]. In this paper, we adopt the sign convention as in McNeil et al. [33, Chap. 2]:
for a risk X € ), losses are represented by positive and profits by negative values
of X.

An immediate example of a Q-based risk measure is one that depends on the
joint law of a risk and an economic factor ® as in Example 2.1. By choosing the set
Q={P[-|®=06]:0 € K}, wesee that p is Q-based if and only if p(X) is determined
by the joint distribution of (X, ®). This setting includes the systemic risk measures
CoVaR and CoES, which are evaluated based on conditional distributions of risks
given events (see Adrian and Brunnermeier [2]). For a fixed random variable S (the
system) and p € (0, 1), the systemic risk measure CoVaR of the institution loss X € )
is defined as

CoVaR3 (X) = VaR} (S| X = VaR} (X)),
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and the other systemic risk measure CoES is defined as
CoES3 (X) = EF[S]S > CoVaR3 (X)], Xe.

Since CoVaR and CoES are determined by the joint distribution of (X, S), they are
O-based risk measures for @ = {P[-|S =s]:s5s e R}.

Clearly, Q-based risk measures are generalisations of law-based (single-scenario-
based) risk measures, which are determined by the law of a random variable on
a given probability space. Thus Q-based risk measures bridge law-based ones and
generic ones, by noting the relationship (assuming IP € Q)

m <o <z
law-based Q-based  generic

Some immediate facts about Q-based risk measures are summarised in the following:

(i) All risk measures on ) are P-based. In fact, if X gQ Y for all Q € P, then
X =Y (equality as mappings).

(i) If Q1 € 9y C P, then a Q-based risk measure is also Q,-based.

(iii) For Q1,...,9, C P, let p; : Y — R be Q;-based, i = 1,...,n, and
Q=\Ji_, Q;. Forany f:R" — R, the mapping f o (p1,...,pn) : Y — Ris then
Q-based.

To see that claim (i) holds, let w € @ and choose as Q the Dirac measure in w,
ie., O: F —> R, A+> 14(w). The distributions of X and Y under Q are simply

the point masses at X (w) and Y (w), respectively. Therefore, X iQ Y implies that
X (w) =Y (w).

Next we introduce a special type of collections of probability measures which fits
naturally into the context of Example 2.1.

Definition 2.3 A collection of probability measures Q@ C P is mutually singular if
there exist mutually disjoint sets Ag € F, Q € @, such that Q[Ag] =1 for Q € Q.
We say that a tuple (Q1, ..., Q,) € P" is mutually singular if {Q1, ..., Q,} is mu-
tually singular and any two of Q1, ..., O, are non-identical.

An example of this type would be to take Q;[B] = P[B|A;] for B € F, where
Ay, ..., Ay, is a partition of Q2 with P[A;] > 0 fori =1,...,n. Thatis, each Q; am-
plifies the probability of the events A; of interest, commonly seen e.g. in importance
sampling. In Example 2.1, Q@ = {Qy : 0 € K} is mutually singular.

Remark 2.4 1n this paper, scenarios are treated in a generic sense. They may have dif-
ferent interpretations in different contexts. In a statistical context, they may represent
different values of an estimated parameter in the model of the risk. In a simulation-
based model, they may represent different parameters in the simulation dynamics, or
different probabilities used in importance sampling. In a regulatory framework, they
may represent different economic situations that the regulator is concerned about. In
a financial market, to assess a contingent payoff, one may need to incorporate its dis-
tribution under the pricing measure and under the physical measure, under multiple
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pricing measures or with different heterogeneous opinions about the physical prob-
ability measure; these situations naturally require a risk measure determined by the
distribution of the risk under different measures.

2.2 Preliminaries on risk measures

We adopt the terminology introduced in Follmer and Schied [21]. A risk mea-
sure p: ) — (—o00, 00] is called cash-invariant if p(X 4+ c¢) = p(X) + ¢ for c e R
and X € Y, monotone if p(X) <p(Y) for X,Y € Y with X <Y, positively ho-
mogeneous if p(AX) = Ap(X) for A € (0,00) and X € Y, and subadditive if
p(X+Y)<p(X)+ p((Y) for X,Y € V. A risk measure is called monetary if it
is monotone and cash-invariant, and coherent if it is monetary, positively homo-
geneous and subadditive. Two random variables X and Y on (€2, F) are called
comonotonic if (X (w) — X (') (Y (w) — Y (') > 0 for all w, w’ € Q. A risk mea-
sure p is comonotonic-additive if p(X +Y) = p(X) + p(Y) whenever X and Y are
comonotonic.

Let us recall some classic risk measures based on a single scenario Q € P. The
most popular risk measures in banking and insurance regulation are value-at-risk
(VaR) and expected shortfall (ES), calculated under a fixed probability measure
Q €P. We refer to them as Q-VaR and Q-ES, respectively. For these risk measures,
their domain Y can be chosen as any convex cone of random variables containing X,
possibly the entire set of random variables. For p € (0, 1], VaRg Y — (—00,00] is
defined as

VaR?(X) =inflx eR: Q[X <x] = p}=Fy\o(p). XeV. Q1)

and for p € (0, 1), Esg : Y — (—o00, 00] is defined as
0 1 : 0
ES¥(X)= —— VaR* (X)dgq, Xe). 2.2)
p 1— rJ, q

Since —o0 < Vang(X) < VaRqQ (X) < oo for p < g < 1, the integral (2.2) is well
defined. In addition, we let ESZ (X) = VaR? (X).

For a specified scenario O, Q-VaR and Q-ES belong to the class of distortion risk
measures. Define the sets of functions

G={g:[0,1] — [0, 1] : g is increasing with g(0) =0 and g(1) = 1},

9 ¢

and Goy = {g € G : g is concave}. In this paper, the terms “increasing”, “decreasing”
and “set inclusion” are in the non-strict sense. A Q-distortion risk measure is de-
fined as

0 [ee)
ng(X)=f (goQ[X>x]—1)dx+/0 go O[X > x]dx, X eX, (23)

where g € G is called the distortion function of ,ogQ and X, is the set of random
variables such that the first integral in (2.3) is finite. Then ,ogQ: Xy — (—00,00]is a
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well-defined risk measure. The set X, always contains X'. A Q-spectral risk measure
is a Q-distortion risk measure with a concave distortion function. A Q-distortion
risk measure is always monetary, positively homogeneous and comonotonic-additive.
A Q-spectral risk measure is in addition coherent. Vang has the distortion function

g(x)=1{>1-p), x €[0,1], and ES? has the distortion function

g(x)=(1/(1 = p)) min{x, 1 — p}, x €[0,1].

For the above properties of distortion risk measures, see Follmer and Schied [22,
Sect. 4.7].

3 Axiomatic characterisations

In this section, we establish axiomatic characterisations of Q-based comonotonic-
additive risk measures as well as O-based coherent risk measures. We focus on a
finite collection Q and the set of bounded random variables, that is, )) = X’. The latter
is reasonable when we look for axiomatic characterisation results since properties on
Y 2 X imply those on X.

Throughout this section, n is a positive integer, and Q = (Q1,...,Qp) is a
vector of measures, where Q1, ..., Q, € P are (pre-assigned) probability measures
on (2,F), and Q@ ={Q1,..., Q,} is the set of these measures. The dimensional-
ity of O and the cardinality of Q only differ if some of Qy,..., Q, are identical.
If Q1,..., Q, are distinct, the mutual singularity of Q is equivalent to that of Q.
Write 0 = (0,...,0) e R" and 1 = (1,...,1) € R". We say that P € P dominates
Qif Q <« P forall Q € Q, that is, if Q is absolutely continuous with respect to P
for all Q € Q. We say that Q (or Q) is atomless if (2, F, Q;) is atomless for each
i =1,...,n.Recall that a probability space (2, F, Q) is atomless if and only if there
exists a uniform random variable U on (2, F, Q).

3.1 Novelty and challenges of our framework

We first illustrate the distinction of our framework to other results in the literature,
as this is mathematically quite subtle. The main message is that the interdepen-
dence among Qji, ..., O, (e.g. whether they are mutually singular or not) matters
for the risk measure axioms in our framework, whereas this is irrelevant for results in
the literature on scenario-based functionals (e.g. Cerreia-Vioglio et al. [8], Kou and
Peng [28]).

The following simple example illustrates an interesting feature of scenario-based
risk measures which is in sharp contrast to classic law-based risk measures.

Example 3.1 For P, Q € P, we define the { P, Q}-based risk measure p as
o(X) =2EP[X]-E?[X], XeX.

Note that 2P — Q € P if and only if 2P > Q, and under this condition, p is the
expectation under the probability measure 2P — Q. If 2P > Q fails to hold, then p
is not monotone. Hence p is coherent if and only if 2P > Q.
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To understand the implications of Example 3.1, we look at the notion of the usual
stochastic order. For Q € P and two random variables X, Y, we write X stt Y if
Fx o(x) = Fy,g(x) for all x € R. We say that p is Q-monotone if p(X) < p(Y) for
all X,Y satisfying X jg Y for all Q € Q. Since X <Y implies X stt Y for all
Q € Q, arisk measure p is monotone if it is Q-monotone. As a well-known property,
in the case of Q@ = {P} being a singleton, a {P}-based risk measure is monotone if
and only if it is {P}-monotone. However, the risk measure p in Example 3.1 is in
general not Q-monotone (see Proposition 3.6), but it is monotone and coherent if
2P > Q. This is in sharp contrast to the case of { P}-based risk measures.

The above observation suggests that the relationship among P and Q matters for
the properties of p. To determine whether p is a coherent risk measure, we need
to specify two things: first, how p incorporates the distributions of the risk under
each scenario (i.e., the mapping (Fx, ¢)gecg > p(X)); second, how these scenar-
ios interact with each other. In the case of {P}-based risk measures, the mapping
Fx p+— p(X) solely determines properties of the risk measure, whereas the choice
of the measure P is irrelevant. For instance, ESII; and E? are always coherent risk
measures regardless of the choice of P.

The above discussion is related to the popular notion of consequentialism in de-
cision theory in the framework of Anscombe and Aumann [3]. In the framework of
consequentialism, two random outcomes X and Y (called Anscombe—Aumman acts)
are compared via a preference model which aggregates the tuples of distributions
(Fx,0)0ecg and (Fy,p)pc@, €.g. the well-known robust preference of Gilboa and
Schmeidler [23]. In the framework of [3, 23], axioms are built on the set of tuples
of distributions (e.g. monotonicity is defined with respect to O-stochastic order) in-
stead of the set of random variables. As a consequence, the set of measures Q does
not play a role in the preference model. This is in sharp contrast to our framework.
For instance, Example 3.1 is not allowed as a monotone preference in Gilboa and
Schmeidler [23], whereas it is a coherent risk measure in the classic sense of Artzner
et al. [4] assuming 2P > Q. For risk management relevance, it is natural to impose
economically relevant axioms on the set of random variables. Later, we shall see
that the above discussion plays a significant role in the axiomatic characterisation of
scenario-based risk measures.

3.2 Comonotonic-additive risk measures and Choquet integrals

As mentioned in Sect. 2.2, the most popular class of risk measures in practice are
those that are additive for comonotonic risks. We choose this class as the starting point
to establish an axiomatic theory of Q-based risk measures. It is well known that law-
based monetary risk measures are closely related to the notion of Choquet integrals;
for instance Yaari’s dual utility functionals [43] and Kusuoka representations [31] are
based on Choquet integrals.

Definition 3.2 A set function ¢ : F — R is increasing if ¢(A) < c¢(B) for A C B,
A, B € F, standard if it is increasing and satisfies c(¥) =0 and ¢(2) = 1, and sub-
modular if

c(AUB)+c(ANB) <c(A)+ c(B), A,BeF.
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Definition 3.3 For a standard set function ¢ and X € X, the Choquet integral [ Xdc
is defined as

0 00
/Xdc:f (c(X >x)— l)dx—l—f c(X > x)dx. 3.1)
—00 0

The integral [ Xdc in (3.1) might also be well defined on sets larger than the
set X' of bounded random variables. Generally, depending on different choices of c,
one may choose different domains for the Choquet integral. The Q-distortion risk
measure in (2.3) is exactly a Choquet integral by choosing ¢ =g o Q.

Now we are ready to present the characterisation for Q-based comonotonic-
additive risk measures, which is based on a celebrated result dating back to Schmei-
dler [40]. Because repeated appearances of some Q1, ..., Q, in Q matter for Theo-
rem 3.4 but not for Definition 2.2, we use both the vector g and set Q.

Theorem 3.4 A risk measure p on X is monetary (resp. coherent), comonotonic-
additive and Q-based if and only if

o(X) = / XdoQ), Xe&, (3.2)

for some function ¥ : [0, 11" — [0, 1] such that ¥ o Q is standard (resp. Y o Q is
standard and submodular).

Proof Summarising Follmer and Schied [22, Theorems 4.88 and 4.94], a risk mea-
sure p on X is monetary and comonotonic-additive if and only if p is a Choquet
integral for some standard set function c. In addition, p is coherent if and only if ¢ is
submodular.

Suppose first that ¥ o Q is a standard set function. Then by the result cited above,
the right-hand side of (3.2) defines a comonotonic-additive and monetary risk mea-
sure p. It is coherent if and only if v o Q is additionally submodular. From the defi-
nition of [ Xd(y o Q), we have

0 [ee)
p(X):/ (1//02[X>x]—1)dx+/ Yo O[X > x]dx, 3.3)
o0 0

and hence p is Q-based.

Conversely, by the above representation result, p can be written as a Choquet
integral for some standard set function c. If p is assumed to be coherent, then c is
additionally submodular. By taking X = 14, A € F, we have c(A) = p(14). Since
p is Q-based, p(1,) is determined by the distribution of 14 under Qy, ..., Q,. Let
Rp € [0, 1]" be the range of Q, thatis, Rg = {(Q1[A]l, ..., Qx[A]) : A € F}. Since
p(14) only depends on Q[A], we can define ¥ : Rg — Rby ¥/ (x1, ..., x,) = p(14)
where (x1, ..., x,) = O[A]. Thus ¢(A) = p(14) = ¥ o Q[A] for all A € F. We can
trivially extend the domain of Y to [0, 11" which does not affect the statement that
c =1 o @ is standard. O
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We refer to a risk measure as in (3.2) as a Q-distortion risk measure, which is by
Theorem 3.4 precisely a monetary, comonotonic-additive and Q-based risk measure.
Coherent Q-distortion risk measures are referred to as Q-spectral risk measures. For
a Q-distortion risk measure p as in (3.2), ¥ is called its Q-distortion function, and
it is unique on the range of Q by noting that p(14) =¥ o Q[A] for all A € F. It is
essential to note that the distortion function of a given risk measure depends on 0.
For instance, if we take P, O € P and define p(X) = (1/3)EP[X]+ (2/3)E2[X],
X € X, then p has a (P, Q)-distortion function and a (Q, P)-distortion function
which are different. The classes of Q-distortion and Q-spectral risk measures are the
building blocks for the theory of Q-based risk measures.

Clearly, if n = 1, the concepts of a Q-distortion risk measure, a Q-spectral risk
measure and a Q-distortion function coincide with those defined for a single scenario
in Sect. 2.2. In that case, the representation in (3.2) reduces to

p(X) = / XdWo Q). Xed,

where ¢ € G (and ¢ € Gy if p is coherent).

The condition that ¥ o Q is standard or submodular may be not easy to verify
in general, as it involves the joint properties of ¥ and Q. Next, we establish simple
sufficient conditions based solely on . These conditions are necessary and sufficient
if Q is mutually singular and atomless.

"Recall that a function f:10,1]" — R is called submodular if it holds for all
x,y € [0,1]" that f(min(x,y)) + f(max(x,y) < f(x) + f(y), where min(x,y),
max(x,y) denotes the componentwise minimum and maximum, respectively. By
Miiller and Stoyan [35, Theorem 3.12.2], the function f is componentwise con-
cave and submodular if and only if for all x,y, w,z € [0, 1]" with w <X,y <z and
w+z=Xx+Yy, we have

f®+ Y= fw)+ f@). G4

In addition, if f is two times continuously differentiable, (3.4) holds if and only
if all entries of its Hessian are non-positive. We call f increasing if x <y implies

fx =< f.
Proposition 3.5 Let i : [0, 11" — [0, 1] be a function with ¥ (0) =0, ¥ (1) = 1.

() If ¥ is increasing on the range of Q, then ¥ o Q is standard.

(i) If ¥ is increasing, componentwise concave and submodular, then ¥ o Qs
standard and submodular. More precisely, if ¥ is increasing and satisfies (3.4) on the
range of Q, then Y o Q is standard and submodular.

If Q is mutually singular and atomless, then the range of Q is [0, 11", and the con-
verses of (i) and (ii) are also true.

Proof Part (i) is trivial. For A, B € F and Q € Q, we always have

Q[AUB]+ Q[AN B] = Q[A] + Q[B].
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Therefore, from (3.4), we obtain

¥ o QAU B+ 0 Q[AN B < o Q[A] + ¥ 0 Q[B]

which gives the submodularity of ¥ o Q, showing part (ii).

If Q is mutually singular and atomless, the map Q: F — [0, 1]" is surjective. Let
Ay, ..., A, € F be disjoint sets with Q;[A;] =1 foreach i =1, ..., n. For the con-
verse ofpart (i), take x,y € [0, 11" with x; < yjandx; = y2, ..., x, = y,. Let Be F
with x = (Q1[B],..., Ox[B]). As (A1, F, Q1) is an atomless probability space,
there exists a set C w1th BNA; CCCApand Q1[C] =y (see Delbaen [11, Theo-
rem 1]). We have y = (Q1[C U B], ..., Q,[C U B]), which yields the claim. For the
converse of part (ii), we show the claim for n = 1, and the general case follows easily
due to the fact that Q is mutually singular. Take x, y, w,z € R with w <x,y <z
and w+z=x+ y._Take B,C e Fla, :={BNA|:BeF}, with Q1[B]=x and
Qi[Cl=y. If Q|[BNC]> w, take B C B\C with Q{[B'1=0Q([BNC]—w
and C’ € C\B with Q{[C'] = Qi[BN C] — w. Then C = (C\C') U B’ ful-
fills Qi[C]=y and Q{[BNC]=w. If Q1[BNC]<w, take B’ € (B U C)°
with Q1[Bl=w — Q1[BNC] and C' € C N B with Ql[C]_w— 01[C N B].
Then C = (C\C’) U B’ fulfills Q{[C] = y and Qi[B OC] = w. The equation
w+z=x+y=01[B]+ 01[C1=01[BNC]+ Q;[BUC] holds, and hence
z=Q([BU C]. Now the submodularity of v o Q implies (3.4). Il

Proposition 3.5 implies that it is straightforward to design various comonotonic-
additive Q-based risk measures by choosing increasing functions 1. We remark that
if @ is not mutually singular, in order for ¥ o @ to be standard (resp. submodular),
it is in general not necessary for v to be increasing (resp. componentwise concave
and submodular). In Example 3.1, the distortion function of p is ¥ : (s, 1) > 2s — ¢,
which is not increasing; however, p is still a spectral risk measure if 2P > Q. The
following result shows that in this example, p cannot be Q-monotone unless the range
of O is degenerate in the sense that it has empty interior, which happens if P = Q.

Proposition 3.6 Let p be a Q-distortion risk measure with Q-distortion function V.
The risk measure p is Q-monotone if and only if Y is increasing on the range of Q.

Proof If v is increasing on the range of Q, the Q-monotonicity of p is immediate
from (3.3). Conversely, suppose that x = O[A]<y=(QI[B] for some A, B € F. Then

14 jg 13 for all Q € Q; hence by Q-monotonicity of p, we obtain
Y(x) =9 o Q[A]=p(14) < p(1p) =¥ o Q[B] =¥ (y). 0

We proceed to discuss an integral representation of Q-distortion risk measures. In

Sect. 2.2, for a single scenario Q, a Q-distortion risk measure ,ogQ is defined as

0 00
p2(X) = (goQ[X>x]—1)dx+/0 go O[X > x]dx, XeX. (3.5)
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If g is left-continuous, then ,og has a Lebesgue integral formulation via an integration
by parts (see Dhaene et al. [14, Theorem 6]), that is,

1
ng(X)=f0 VaR?(X)dg(p). XeX, (3.6)

where g(t) =1 — g(1 —¢) for ¢ € [0, 1]. Note that in this case, g is right-continuous
with g(0) =1 — g(1) = 0; thus g is a distribution function on [0, 1]. This property is
key to the integral representation in (3.6). We establish an analogous integral formu-
lation for the case of multiple scenarios under a similar assumption. For a function
¥ 1[0, 11" — [0, 1], we define &(u) =1—-yd—u),uel0,1]".

Proposition 3.7 Suppose that ¥ : [0, 11" — [0, 1] is such that W is a distribution
Sfunction on [0, 11". Let py, : X — R be given by

oy (X) = / max{VaRZ! (X), ..., VaRZ" O}y (u1, ..., up). (3.7)
(0,1

Then py (X) is a Q-distortion risk measure with Q-distortion function vr. Moreover,
if ¥ is componentwise convex, then py is a Q-spectral risk measure.

Proof Let
Y =max{Fyy (U1)..... Fx p (Un)}=max{VaRZ! (X)..... VaRE" (X)},
where (Uy, ..., U,) ~p 1} For almost every x € R, we have
PlY <x]1=P[Fy o (UD) <x,..., Fxly (Up) <x]
=P[U, < Fx,0,(x),..., Uy < Fx g, (x)]
=Y (Q1[X <x],.... Ou[X <x])=1—¢ 0 Q[X > x].

It follows that

0 o)
oy (X) =EP[Y] =/ (PlY > x]— 1)dx +/0 P[Y > x]dx

0 oo
:/ (1//02[X>x]—1)dx—|—/ WOQ[X>x]dx=/Xd(1/fog).
—00 0

Note that any distribution function v is increasing and supermodular. Hence ¥ is
increasing and submodular, and by Theorem 3.4 and Proposition 3.5, we obtain the
desired results. O

Proposition 3.7 provides a convenient way to construct various Q-distortion risk

measures. For instance, one may choose ¥ as an n-copula (see McNeil et al. [33,
Chap. 7]). A direct consequence of Proposition 3.7 is that any Q-distortion risk mea-

sure with Q-distortion function v has a representation (3.7) if ¥ is a distribution
function.
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For a single scenario Q, the distortion function g of a Q-spectral risk measure ,ogQ

in (3.5) is concave, implying that g is automatically a distribution function, and hence
,ogQ always admits a representation as in (3.6). This property does not carry through
to the case of Q-distortion risk measures in general. More precisely, the Q-distortion
function of a Q-spectral risk measure is not necessarily always a distribution function,
because all distribution functions on [0, 17" are supermodular, but not vice versa. As
a consequence, not all Q-spectral risk measures have a representation (3.7). This is
in sharp contrast to the case of a single scenario.

3.3 Coherent risk measures

As a classic result in the theory of risk measures, the Kusuoka representation [31]
states that on an atomless probability space, any single-scenario-based coherent risk
measure admits a representation as the supremum over a collection of spectral risk
measures, which are in turn mixtures of ES.

One naturally wonders whether a similar result holds true for Q-based coherent
risk measures. First, it is straightforward to notice that a supremum over a collec-
tion of Q-spectral risk measure is always a Q-based coherent risk measure. For the
converse direction, we show that a O-based coherent risk measure admits a repre-
sentation as the supremum of a collection of mixtures of Q-ES for Q € Q, but this
needs a non-trivial condition. More precisely, a Q-mixture of ES is a risk measure 0
defined by

n 1
pX)=) wi / ESP'(X)dhi(p), X eX, (3.8)
0

i=1

for some w = (wq, ..., wy,) € [0, 1]" with Z?:l w; = 1 and distribution functions
hi,...,hy on [0, 1]. Clearly, p is a g-spectral risk measure, as each of the Q-ES is.
Its Q-distortion function is given by ¥ (x) = 27: L wigi(x;), x €0, 11", where g; is
foreachi =1, ..., n the distortion function of fol ES,?" (-)dh;(p), and thus

n

1—x; 1
o= u(1-m-xmtx [ ). xew.r.
i=1 o l=p
We denote by ®g the set of all Q-mixtures of ES in (3.8). In the next theorem,
we establish that if Q is mutually singular and atomless, any Q-based coherent risk

measure p can be written as a supremum of Q-mixtures of ES, namely,

p(X) = sup p(X), Xed, (3.9)
ped

for some set ® C ® . Examples of risk measures of the type (3.9) are discussed in
Sect. 4.

Theorem 3.8 (i) If p : X — R is the supremum of some Q-spectral risk measures,
then it is a Q-based coherent risk measure.
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(i) If Q is mutually singular and atomless, then a risk measure on X is a Q-based
coherent risk measure if and only if it is a supremum of Q-mixtures of ES as in (3.9).

Before proving Theorem 3.8, we establish some auxiliary results which might
be of independent interest. First, we discuss the Fatou property (see Delbaen
[11]) which we define with respect to a scenario dominating Q. Such a domi-
nating scenario may be chosen as Q* = (1/n) Y /_, Q;. Formally, a risk mea-
sure p is said to satisfy the Q-Fatou property if for any uniformly bounded se-

quence X1, Xp,... in X, the Q*-a.s. convergence Xj g) X € X implies that
o(X) <liminfy_ » p(Xy). We also introduce on the Q*-equivalence classes of X’
a norm via || - ||g =sup{x > 0: Q*[|X| > x] > 0}, which is the usual L°°-norm
for essentially bounded random variables on (€2, F, Q*). Note that in the def-
initions of the Q-Fatou property and the norm || - ||g, the dominating measure
Q* can be chosen equivalently as any probability measure dominating Q. It is
straightforward to check that all Q-based monetary risk measures are continu-
ous with respect to || - [|g. A quasi-convex risk measure o is one that satisfies
PAX 4+ (1 =21Y) <max{p(X),p(Y)} forallA€[0,1]and X, Y € X.

Lemma 3.9 If Q is mutually singular, then any Q-based quasi-convex risk measure
that is continuous with respect to || - || g satisfies the Q-Fatou property.

Proof Write Q* = (1/n) Y, Q; and note that X g: X € X implies Xi gﬁ X for
eachi =1, ..., n. We show the lemma in a similar way to Delbaen [12, Theorem 30],
which states that a { Q*}-based, || - [|{p+}-continuous and quasi-convex functional sat-
isfies the {Q*}-Fatou property (first shown by Jouini et al. [27] with a minor extra
condition). A Q-based risk measure is not necessarily {Q*}-based, and hence the
above result does not directly apply. Nevertheless, we utilise [12, Lemma 11], which

gives that for each i = 1,...,n, k € N, there exist a natural number Ny and ran-
dom variables Z,’(yl, le<,2’ e Z,’C’ Ny having the same distribution as Xy under Q;,
such that
Ni
. i .
lim Zk’j =X in |- ll{g;-

k=00 Ni 4
J=1

The numbers N; can be chosen independently of i, as explained by Delbaen
[12, Remark 40]. For ke Nand j = 1,...,Ni, let ¥ j = Y1, z;;’jnA,., where
Ay, ..., A, € F are disjoint sets such that Q;[A;]=1fori=1,...,n. It is clear
that for each choice of (i, j, k), i, ; has the same distribution as X under Q;, and
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Therefore, p(Y, ;) = p(Xy). Finally, as p is || - [|g-continuous, quasi-convex and
O-based, we have

Ni

. 1 . o
p(X) = kli?;op(ﬁk X; Yk,j) < 1}(n;£fj=1}}§§Nkp(Yk,j) = l}cn;gfp(Xk).
J:
Thus p satisfies the Q-Fatou property. g

As a direct consequence of Lemma 3.9, if Q is mutually singular, then any
O-based coherent risk measure, such as a Q-spectral risk measure, satisfies the
Q-Fatou property. Next, we present a lemma which serves as a building block for
the proof of Theorem 3.8. For X € X, let

Lx(Q)={YeX:yY<, X forall 0 € Q)

be the set of all random variables identically distributed as X under each measure
in Q. Clearly, X € Lx(Q) and hence Lx(Q) is not empty.

Lemma 3.10 Suppose Q is mutually singular and atomless and P < %Z?:l 0.
Then the functional p : X — R, p(X) = supyer, () EP[Y1, is a Q-mixture of ES.

Proof Let Aq,..., A, € F be disjoint sets with Q;[A;]=1fori =1,...,n. Write
o* = %Z?:l Q; and Z=dP/dQ*. Foreach i = 1,...,n, let U; be under Q; a
uniform random variable on [0, 1] such that Z = F 7. lQ,- (U;) Qj;-almost surely. The
existence of such a random variable U; can be guaranteed for instance by Follmer and
Schied [22, Lemma A.32]. By the Fréchet—Hoeffding inequality (see Riischendorf
[39, Remark 3.25]), we have E¢i[ZY] < EZ [ZFleQi (U] for Y € X. It follows that
forY € Lx(Q),

P Lgo [ 4P L I
E°[Y]=—> E T <= EYZFy U]
i=1 i=l1

On the other hand, it is easy to verify that Z?:] F ; lQl_ (Ui)1y; € Lx(Q) and

! I o)
IEP[Z F;}Qi(wm,} =2 EYZFy o, (UD].

i=1 i=l1

Therefore

1 n
P _ 2 Qi —1 .
sup E7[Y]=-— E [ZFX (U]1.
YeLx(Q) "3 o

Note that

1
EQt’[ZF;}Q,_(U,-)]zfo FJ o, ) Fyp, w)du,

@ Springer



742 R.Wang, J.F. Ziegel

and the function g : [0, 1] — [0, 1], fé FZ_IQ, (u)du, is in G and convex. It fol-

lows that the mapping X — EQi[ZF ; IQI_ (U;)] is a spectral risk measure of the form
(3.6). Therefore, p is a linear combination of Q-spectral risk measures with Q € Q.
Note that each Q-spectral risk measure is a mixture of Q-ES (see Kusuoka [31, The-
orem 4]), and hence p is a Q-mixture of ES. O

Proof of Theorem 3.8 Concerning part (i), it suffices to observe that Q-spectral risk
measures are coherent, and that a supremum of Q-based coherent risk measures is
also a O-based coherent risk measure.

For part (ii), since p is coherent, it has by Lemma 3.9 the Q-Fatou property. From
the classic coherent risk measure representation (see Delbaen [11]), there exists a set
‘R € P of probability measures, absolutely continuous with respect to Q*, such that

p(X) = sup EP[X], XeX. (3.10)
PeR

Now fix X € X'. As p is Q-based, p(Y) = p(X) forall Y € Lx(0Q). It follows that

p(X)= sup sup EF[¥Y]=sup sup EP[Y].
YeLx(Q) PER PeRYeLx(Q)

By Lemma 3.10, for each P € R, the map X — R, X squeLX(Q)EP[Y], is a
mixture of Q-ES for Q € Q. Therefore, p is the supremum of Q-mixtures of ES. [

The representation in (3.9) resembles the risk measure in the Basel FRTB formula;
see Sect. 1. Indeed, it is remarkable that only using maxima and linear combinations
of Q-ES, as done in [5], one arrives at all possible Q-based coherent risk measures
if Q is mutually singular. Certainly, the set of measures Q chosen in [5] is not nec-
essarily mutually singular, allowing more possible forms of coherent risk measures.
Nevertheless, the maximum of linear combinations of Q-ES is the only form that is
coherent for all choices of scenarios, among the general class of scenario-based risk
measures.

The characterisation in Theorem 3.8 on the set of bounded random variables can be
extended to general L7-spaces. In the following, let Q¢ € P be a probability measure
dominating Q and L9(Qy), g > 1, the set of equivalence classes of random variables
with a finite g-th moment under Q.

Proposition 3.11 Suppose that Q is mutually singular and atomless and q > 1. Then
a mapping p : L1(Qo) — R is a Q-based coherent risk measure if and only if it is a
supremum of Q-mixtures of ES as in (3.9).

Proof Clearly, the supremum of Q-mixtures of ES is a Q-based coherent risk mea-
sure. So it suffices to show the “only if” statement. First, is it easy to verify, with
the same arguments as in Theorem 3.8, that Lemma 3.10 holds true with “X — R”
replaced by “L9(Qp) — R U {oo}”. Note that p in Proposition 3.11 is finite-valued
and all finite-valued convex risk measures on L4 are continuous (see Riischendorf
[39, Theorem 7.24]). Therefore p admits a representation in (3.10) with X replaced
by L9(Qp). Using the same argument in the proof of Theorem 3.8 (ii), we conclude
that p is the supremum of Q-mixtures of ES. O
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Remark 3.12 In Proposition 3.11, we have formulated p such that it is real-valued on
L9(Qo). This assumption is useful as not all Q-mixtures of ES are finite on L?(Qy),
and this is because integrability is not preserved among equivalent measures.

Theorem 3.8 is the most technical result of this paper. The mutual singularity
of O is used repeatedly in the proof and is indispensable for part (ii). Without it,
the converse of Theorem 3.8 (ii) is not true. Note that the representation (3.9) is
Q-monotone, and we have seen in Example 3.1 that there are Q-based coherent risk
measures which are not Q-monotone; see also Proposition 3.6.

We expect that an interesting characterisation result for Q-based coherent risk
measures without the assumption of mutual singularity of Q will at least require the
additional assumption of p being Q-monotone, possibly even for a weaker stochastic
order than the usual stochastic ordering. However, even with such an extra assump-
tion, the characterisation problem without assuming mutual singularity is wide open
and seems beyond the reach of current technical tools. The current line of proof re-
quires the understanding of the functional defined in Lemma 3.10. That functional
is easy to understand via the Hardy-Littlewood inequality in the case of mutual sin-
gularity. However, without this assumption, the functional is hard to understand and
need not be the right tool for a characterisation result.

Remark 3.13 Kou and Peng [28] considered Q-based risk measures p with the repre-
sentation p(X) = f(p1(X), ..., pp(X)) for some aggregation function f : R" — R
and risk measures p1, ..., p, each based on one scenario; see [28, Eq. (22)]. They
imposed some axioms on f and py, ..., p,. Our axioms are directly imposed on the
risk measure p and we do not assume a particular functional form.

4 Scenario-based VaR and ES, and other examples

Because of the prominent importance of VaR and ES in external regulatory capi-
tal calculation and internal risk management, we investigate several examples of
scenario-based risk measures which can be seen as natural generalisations of VaR
and ES in a multi-scenario framework. In this section, ) is any convex cone of ran-
dom variables containing X'.

Example 4.1 Let p € (0, 1). For a collection of measures Q, the Max-ES (MES) is
defined as

MES[?(X) = sup ES%(X), Xe), “.1)
0eQ

and the Max-VaR (MVaR) as

MVaR$(X) = sup VaRZ(X), Xe).
QeQ

Max-ES and Max-VaR incorporate information evaluated under each scenario and
make a conservative capital calculation by taking the maximum. We call them max-
type risk measures. They appear in the literature on robust optimisation; see e.g. Zhu
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and Fukushima [44], Zymler et al. [45]. Similarly to the single-scenario-based ES and
VaR in (2.1) and (2.2), Max-ES and Max-VaR have different mathematical properties.

Max-ES is known to be coherent (Zhu and Fukushima [44]); but in general, and
in contrast to the single-scenario-based ES, it fails to be comonotonic-additive, see
Example A.1 in Appendix A.1. Quite surprisingly, the risk measure MVaR[? satisfies
comonotonic-additivity. If Q is finite with n elements, this follows by choosing
as the distribution function of the Dirac measure at (p, ..., p) € [0, 1]"* in Proposi-
tion 3.7. For general sets Q of scenarios, see Appendix A.2.

Remark 4.2 As a classic result (Delbaen [11]), a coherent risk measure p on X with
the Fatou property has a dual representation

p(X) = sup E2[X], XeX,
0eQ

for some set of probability measures Q. Clearly, p is a max-type Q-based risk mea-
sure with a different building block (the expectation) than Max-VaR and Max-ES.
This includes in particular the methodology for margin requirement calculation de-
veloped by the Chicago Mercantile Exchange [33, p. 63]. In addition, Duffie et al.
[16] feature max-type risk measures in the context of calculation of initial margins
for bilateral portfolios.

Other than the max-type, using a finite or continuous mixture is also a convenient
and simple way to construct Q-based risk measures (however, using an infinite mix-
ture requires a measure specified on Q, which is not always easy). Below we present a
few other ways to formulate ES in the framework of Q-based risk measures. One can
also define corresponding versions of VaR or any other law-based risk measure, but
we take ES as a main example in this section due to its relevance in Basel IIl & IV.

Example 4.3 Take p € (0, 1) and a finite Q ={Q1, ..., O}, and define the Average-
ES (AES) as the average of ES across different scenarios, that is,

l & _
AESS(X) = - EES% (X), Xe). 4.2)

It is obvious that AES[? is a coherent and comonotonic-additive risk measure.
Its Q-distortion function ¥ (w) = (n(1 — p))_1 Z?:l min{u;, 1 — p} is increasing,
com_ponentwise concave and submodular. In the case n = 2, the associated function
Y(u)=1—y(1 —u),uec[0,1]", is a componentwise convex distribution function
on [0, 11%; so in this case, AESI? has an integral representation by Proposition 3.7.
Forn >3, 1Z fails to be a distribution function.

Example 4.4 Recall that the single-scenario-based ES in (2.2) is an average of VaR of
probability level beyond p € (0, 1). Utilising this connection, we define the integral
Max-ES (iMES) as the integral of MVaR, that is,
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1 1
IMESS(X) = — / MVaR2(X)dg, X e). (4.3)
pJp

For finite Q with n elements, we can choose I/_f as the distribution function of a
uniform distribution over the diagonal line segment

{(”1’--~aun)€[177 l]n:ulzuzz"'zl/ln}

to obtain the integral Max-ES as a special case of Proposition 3.7. Its Q-distortion
function v is given by ¥ (u) = min{max{ui,...,u,},1 — p}/(1 — p),_u € [0, 17"
This verifies that iMES? is comonotonic-additive. However, v is not component-
wise concave, which implies that iMESI? is not a coherent risk measure for mutually
singular Q by Proposition 3.5. For random variables X such that Fx ¢o,,i =1,...,n,
are stochastically ordered, it holds that iMESI?(X )= MES,?(X ).

Noting that MVaRqQ (X) is increasing in g, one may equivalently write
iIMES2(X) = ESE (MVaR2 (X)) = ESH;( s F;}Q(U)), XeY, (44
where U ~p U[O, 1].

Example 4.5 Another way to utilise the ES and a maximum operator is via inde-
pendent replications of X under different scenarios. Let p € (0, 1), Q1,..., O, be
distinct scenarios and Q ={Q1, ..., Q,}. Define a replicated Max-ES (rMES) as the
ES of a maximum of independent copies, that is,

IMES(X) =ESj( max X;).  Xe, 4.5)

where X; ~p Fx g,,i=1,...,n,and Xy, ..., X, are independent under P. The risk
measure rMES% is defined for a finite collection @ so that the maximum in (4.5)
is well posed. It has some similarity to MINVAR in Cherny and Madan [10]; see
Example 4.9 for more details. The replicated Max-ES grows to the maximum of the
essential supremum of the distributions Fx o, when the number n of scenarios goes
to infinity. Therefore, it is likely to be too conservative or even plainly uninformative
if n is too large; see also Sect. 5.

The replicated Max-ES is comonotonic-additive and coherent. We can determine
its Q-distortion function as follows. Suppose that X1, ..., X, are independent under
P, Z ~p Fx 0,»i=1,...,n,and U ~p U[p, 1]. The distribution function Fp,x of
max{Xi,..., X} under P is x — ]_[;1=1 Q;[X < x]. Moreover, the survival function
of F-1 (U) under P is given by

max
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_ (Fmax(x) — P)+ —1— (l_[:'lzl Oi[X <x]— P)+
l—-p 1-p

_ minfl — [T, 0QilX <x],1}

= - .

x> 1

Hence by letting ¥ : [0, 1]" — [0, 1], u > min{l — [T'_, (1 —u;), 1 — p}/(1 — p),
we have ¢ o Q[X > x] = P[FH_IJX(U) > x], x € R, and hence

/Xd(w 0 Q) =EP[Fl(U)]= Esﬂ;( max xi) — IMES2(X).

1=1,...,
Thus v is the Q-distortion function of iMES% which is componentwise concave and
submodular.

We find that  (u) = (T ui — p)T/( = p),uel0,1]",is a distribution func-
tion; so the replicated Max-ES has an integral representation as in Proposition 3.7.
Indeed, v arises when combining uniformly distributed marginals on [p, 1] with an
Archimedean copula with generator

[0, 1] — [0, 00), t > —log((1 = p)t+ p).

This generator is completely monotone; so we obtain a valid copula for any dimen-
sion n (see McNeil and Neslehova [34]).

The risk measures iMESpQ, and rMES? are connected through the fact that if
X1, ..., Xp in (4.5) are comonotonic instead of independent under P, then (4.5) gives
rise to (4.4). Each of the Q-based risk measures MESS, AESS, iMES and rMES $
may be seen as a natural generalisation of the single-scenario-based risk measure
ESlg. Although using similar ideas, these risk measures have different properties and
values. If Q = {Q}, the above five risk measures are all equal. They are in general
non-equivalent and satisfy an order summarised below. Proposition 4.6 summarises
the results of this section; some are already explained above.

Proposition 4.6 Let Q be a finite collection of scenarios and p € (0, 1).

@) MESPQ is coherent, but in general not comonotonic-additive.

(i1) MVaR% is comonotonic-additive, positively homogeneous and monetary, but
in general not coherent.
(iii) AESI? is comonotonic-additive and coherent.

@iv) iMES% is comonotonic-additive, but in general not coherent.

) rMES[? is comonotonic-additive and coherent.

(vi) AESS (X) < MES$(X) <iMESZ(X) <tMESS$(X) forall X € .
(vii) If Q is a singleton, all inequalities in (Vi) are equalities.

Proof 1t only remains to show (vi). The first inequality is trivial. For the second,

observe that for each Q € Q and U ~p UJO0, 1], we have ES?(X) = ESﬁ(F}ZlQ(U));
hence the claim follows by using (4.4). The third inequality follows by observing
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that the Q-distortion function of iMES is pointwise smaller than the Q-distortion

function of rMES. This holds since max{uy, ..., u,} <1— I—[Ll (1—u;) Eequivalent
to ]_[:’=1 (I—u;) <(1—wuj)forall j =1,...,n, where the latter clearly holds for any
uel0,1]". O

The above examples illustrate that the framework of Q-based risk measures is
flexible and allows a great variety of risk measures to be formulated, even simply
from ES and a fixed p. Parts (i), (ii) and (iv) of Proposition 4.6 also hold true if Q is
infinite; see Appendix A.2.

There is a simple relationship between iMES (MVaR) and ES (VaR) when the
collection of scenarios Q consists of the economic scenarios in Example 2.1.

Proposition 4.7 Let Q ={Qy :0 € K} be as in Example 2.1. For p € (0, 1), we have
MVaR2(X) > VaRE (X) and iIMES2(X) > ESE(X) forall X € .

Proof We show MVaR$(X) > VaRE(X), which implies iMES$(X) > ES} (X).
Take x < VaRg(X) so that P[X < x] < p. As P is a convex combination of
Qp, 6 € K, we must have Qp[X < x] < p for some 6 € K, which implies that
x < VaR$’ (X) < MVaR$(X). Therefore,

MVaR[?(X) > sup{x € R: x < VaR} (X)} = VaR} (X). O

Proposition 4.7 implies that when using the economic scenarios in Example 2.1,
iMES (MVaR) is more conservative than ES (VaR) over the unconditional real-world
probability measure P. Note that MESI?(X ) > ES]E;(X ) does not hold in general (see
Example A.2 in Appendix A.1 for a counterexample), although this inequality almost
always holds empirically, as we shall see in the data analysis in Sect. 5.

Below, we discuss two more connections of our risk measures to the ones in the
literature.

Example 4.8 Recently, Righi [37] studied combinations of risk measures. For a finite
collection of scenarios {Q1, ..., Q,}, these take the form f(p?2!, ..., p@n) for some
function f, where pQ" is {Qj}-based, i =1, ..., n, and this includes the max-type
risk measures. Another scenario-based risk measure of the type f(p?!, ..., p2") is
given by Kou and Peng [28], defined as

n
pPXO= s Dwipl(X).  Xed,
(wi,..., wn)EW i=1
where ,thi" ,i=1,...,n,are Q;-distortion risk measures as in (2.3) and WV is a subset

of the standard simplex {(w1, ..., w,) € [0, 11" : Y7 w; =1}
Example 4.9 In (3.7), by choosing ¥ (u) = [T/, ui foru € [0, 11", we obtain

o(X) =EF[max{Xy,..., X,}], Xe&,
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where Fy, p = Fx o, fori =1,...,n and Xi,..., X, are independent under P.
Then p is a Q-spectral risk measure with corresponding Q-distortion function
Ya)=1-— ]_[:-;] (1 —u;), ue[0,1]". The risk measure p is coherent. The single-
scenario-based risk measure MINVAR (see Cherny and Madan [10]) defined as

MINVAR(X) = EF[max{X1, ..., X,}], XeX,

where X1, ..., X, are i.i.d. copies of X under P, is a special case of p by choosing

Q1=-=0,=P

5 Data analysis for scenario-based risk measures

In this section, we discuss two examples of data analysis for Q-based risk measures.
The two examples are conceptually different with the aim to illustrate different possi-
ble interpretations for the collection Q of scenarios; cf. Remark 2.4. Various versions
of the Q-based expected shortfalls as in Sect. 4 are chosen to illustrate the main ideas;
clearly, the analysis may be applied to other scenario-based risk measures.

5.1 Max-expected shortfalls for economic scenarios

Taking up Example 2.1, we consider Q; =P[-|® =6;],i =1, ...,4, where © is an
economic factor taking values in {61, ..., 604} and P can be interpreted as the real-
world probability measure. While the Q-based expected shortfalls of X are clearly
defined mathematical quantities, it is not completely obvious how to estimate them.
The approach we describe can be justified under suitable assumptions on the data-
generating processes. However, we leave a detailed study of the proposed estimator
for future work.
Here, we assume that we have four data sets

Dy ={XP'. ... X Da={XP ... XZ%

with the property that the empirical distribution of D; is a reasonable estimate of
Fx g;»i=1,...,4. Then we estimate the risk measures ES,, MES,, iMES, and
rMES, given by (4.1), (4.2), (4.3) and (4.5), respectively, by their empirical counter-
parts.

Given a series of returns (X;);cN, we compute for each trading day Q-based ex-
pected shortfalls of X; estimated on a rolling window of length 250. The four scenar-
ios can be interpreted as

{61, ..., 64} = {high volatility, low volatility} x {good economy, bad economy}.

The value of ® is based on the values of VIX (high volatility/low volatility) and
S&P 500 (good economy/bad economy). To be precise, for day 7y, we use the time
window 79 — 250, ..., — 1. Then we use the VIX to split the time period into two
categories depending on whether the VIX is higher or lower than its empirical median
in the time window. We removed a log-linear trend from the S&P 500 since 1950, and
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NASDAQ DAX

m MES
| iMES
m MES
| ES

1990 1995 2000 2005 2010 2015 1990 1995 2000 2005 2010 2015

Apple BMW

1990 1995 2000 2005 2010 2015 1995 2000 2005 2010 2015

Fig. 1 O-based risk measures estimated for data based on economic scenarios with w = 250

then we subdivide the 125 days with high volatility in the current time window into
two categories of (almost) equal size according to whether the S&P 500 residuals
are above or below their median during those 125 days. The same is then done for
the 125 days with low volatility. This results in a split of the time window into four
scenarios of (almost) equal size.

The sets Dy, ..., D4 consist of the values of X; for t = ¢y — 250, ...,1 — 1 de-
pending on which scenario the respective day has been assigned. We considered
return data from the NASDAQ Composite Index, the DAX, Apple Inc. stock, and
BMW stock. The data are freely available and were obtained from https://finance.
yahoo.com. The considered time periods are 1991-2018. We do not consider data
from before 1990 because there is no VIX data available. We chose the confidence
level p = 0.9 for simplicity. For each series of return data, we also computed the
empirical ES, using rolling windows of the same size. The results of the analysis are
summarised in Fig. 1.

The risk measures MES, and iMES, generally yield similar values. This may be
a hint that the empirical distributions under the different scenarios are often stochas-
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tically ordered. One can observe that during times of financial stress, the Q-based
expected shortfalls and ES;, deviate substantially, whereas they are closer during
an economically stable period. For the indices (NASDAQ and DAX), iMES, and
rMES, are closer than for the stock returns (Apple and BMW). The risk measures
iMES , and tMES, are close if the empirical distribution under one scenario strongly
dominates the others in the sense that the quantile function under one scenario is
much larger than under the others. Therefore, this phenomenon may be explained by
the fact that the indices are more closely related to the quantities defining the eco-
nomic scenarios (VIX and S&P 500). It also explains why the ratio between tMES ,
and iMES, is in general larger during financial stress than in economically stable pe-
riods. The ratio between MES, and ES, qualitatively distinguishes the early 2000s
recession from the 2008 financial crisis by being larger during the latter event, except
for the Apple stock. Apple seems to have been more influenced by the dot-com crash
in 2000 than the other stocks and indices.

5.2 The Basel stress adjustment for expected shortfall

In this section, we calculate the stress adjustment for expected shortfall in the Basel
market risk evaluation as outlined in Sect. 1.1. Suppose that there are n securities in

a portfolio and_ let PI,i=1,...,n,teN, denote the time-7 price of security i. Let
X; =—(P!/P/_; — 1) be its daily negative return. Construct a portfolio with price
process V; = Y 1, &; P}, where o; fori = 1,...,n is the number of shares invested

in security i, assumed fixed throughout the investment period. At time t — 1, we need
to calculate the empirical ES of the next day loss of this portfolio. The daily loss is

n
Vi =Vi=) (Pl —P)= Zx'a, P,
i=1

At time ¢ — 1, the values «; and P _, are known, and the random risk factors are

(X [ ¢ ). To calculate the ES over the past 12 months of data, we need to evalu-

ate the quantlty, given the number «; Pt I

n
ESS (Vi1 — V) = Esj;’(ZX;'a,- P;‘1>,

i=1

where p = 0.975 as specified in [5]. For this purpose, the scenario P is modelled
such that the distribution of (X I ¢ ) is equal to its empirical version over the
past 250 observations, i.e., over the period [ — 250, ¢ — 1].

ES should be calibrated to the most severe 12-month period of stress over a long
observation horizon which has to span back to 2007, as specified in [5]. To mimic
this adjustment for the period before the introduction of Basel III, it seems fair for
everyday evaluation to look back 10 years and find the maximum ES over a 12-month
period. For this purpose, we evaluate, while treating «; P["_l as a constant, the Max-
ES given by

n
MES$ (V,_1 — V;) = MES$ < > Xl P;'_1> =
i=1

max ES? (lea,P; 1)

Jj=
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Fig.2 The MES and ES of the US and German portfolios: (left) MES and ES of the portfolio; (right) the
percentage of MES and ES in the value of the portfolio

where N =2251, @ ={Q;};=1,..,n and under Q;, (th, ..., X1 is distributed ac-
cording to its empirical distribution over the time period [t — j —249, ¢ — j]. Using the
same scenarios, we also compute the integral Max-ES, that is, iMES[?(V,_ 1— Vo). It
is not sensible to compute the replicated Max-ES, rMESI? in this case since the num-
ber of scenarios is too large. We choose oy, ..., o, such that each «; Pi’ starts from
$1. We construct a US stocks portfolio (Apple and Walmart) and a German stocks
portfolio (BMW and Siemens).

In Fig. 2, we report ES” MESI? and iMESI? in the left panel, and the percentage
of ESP, MES$ and iMES, that is, ES? (V,_; — V})/ V,_1) and so forth, in the right
panel. The first row concerns the US and the second the German stocks portfolio.

The percentage MES? and the percentage iMES? are relatively stable (between
6% and 9%, respectively 7% and 10%), and the percentage ES ; is changing dras-
tically (between 2% and 9%), very much depending on the performance of the in-
dividual stocks over the past year. This suggests that MESI? and iMESI? have the
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advantage of being more robust since they are computed as worst cases over many
past scenarios. The US portfolio has a quite high percentage MES,? and iMESPQ until
1998, and this is due to the effect of the Black Monday (October 19, 1987) that wears
out after 10 years. The quotient of MES% and iMESI? varies little over time, which
is in contrast to the analysis in Sect. 5.1. Currently, we are lacking a clear theoretical
explanation of this phenomenon.

If the regulatory capital for the market risk is calculated via ESf:, then both port-
folios exhibit serious under-capitalisation right before the 2007 financial crisis, and
their ES 11: values increased drastically when the financial crisis took place. On the

other hand, if MES% or iMES% are used for regulatory capital calculation, then the
requirement of capital for both portfolios only increased moderately during the fi-
nancial crisis. From the data analysis, we do not see a clear advantage of MES?

over iMES[?, or vice versa. However, iMES[? seems preferable from a theoretical
perspective since it is comonotonic-additive.

6 Concluding remarks

In this paper, we propose a framework for scenario-based risk evaluation where dif-
ferent scenarios (probability measures or models) are incorporated into the procedure
of risk calculation. Our framework allows flexible interpretation of the scenarios and
is in particular motivated by the Basel calculation procedures for the expected short-
fall, the Chicago Mercantile Exchange and the credit ratings, as explained in Sect. 1.1.
Several theoretical contributions are made. We introduce new classes of risk mea-
sures including Max-ES, Max-VaR and their variants, and study their theoretical
properties. Axiomatic characterisation of scenario-based comonotonic-additive and
coherent classes of risk measures are obtained, and they are connected to the Basel
formulas for market risk. Finally, we present data analyses to illustrate how scenario-
based risk measures can be estimated, computed and interpreted.

Given the pivotal importance of model uncertainty and scenario analysis in mod-
ern risk management, scenario-based risk measures can be useful in many disciplines
of risk assessment, not limited to financial risk management.

We remark that for various interpretations of the scenarios, the estimation proce-
dures of a scenario-based risk measure may exhibit different properties, as illustrated
in Sect. 5. This calls for future research in statistical theory for scenario-based risk
functionals. A challenging open question is the characterisation of scenario-based
coherent risk measures for general scenarios without assuming mutual singularity.

Appendix A
A.1 Examples and counterexamples
Example A.1 MES[? is not comonotonic-additive. To see this, fix p € (0, 1) and take

01,00€P, Ay, Ay € F such that we have A; C Ay, Qi[A1] > OQ2[A] and also
01[A32] < 02[A2] <1 — p. The existence of such Q1, O», A1, A2 can be shown

@ Springer



Scenario-based risk evaluation 753

by taking (€2, F, Q1) and (€2, F, Q») as atomless probability spaces. Define the set
Q=1{01,02}, X =14, and ¥ = 14,. It is clear that X and Y are comonotonic.
Recall that for a Bernoulli random variable Z under Q with parameter g, we have
ESZ(Z) = q/(1 — p). We have

ESY'(X +Y)=ES?' (X) +ESJ(¥) = L 0ilA+ QilAa)
l-p

1
— 0 0
< 7 p(Ql[Al] + Os[A2)]) = rQneaxESp (X)+ gleaxESp Y),

and similarly,

o 0 0yy — MESQ o)
ES22(X +7Y) < gleaéEsp (X) + IQIlEaéESp (Y) =MESS(X) + MESS (V).

Then we have
MES$ (X +Y) = max{ESZ' (X +¥), ES?2(X + ¥)} < MESP(X) + MES(Y).

Thus MES% is not comonotonic-additive.

Example A.2 We have MES%(X ) < ES]E(X ) for Q in Example 2.1. Consider a
set Q2 ={wi,...,ws} with eight pairwise distinct elements, and let P be the uni-
form probability measure on 2. Write Qi = {w1,...,ws4} and © = 1g,. Let
O1l-1=P[- 10 =1], Q2[-]=P[-|®=0] and X = 1g, + 21,. It is easy to see
that ES%(X) =1.25 and Esg1 (X)= ES%Z(X) = 1. Thus MES[?(X) < ES];D(X).

A.2 Extension of Proposition 4.6

We show here that parts (i), (ii) and (iv) of Proposition 4.6 also hold if Q is infinite.
Concerning (i), ESI(,2 is coherent for Q € Q. Since MES,? can be written as a
supremum of coherent risk measures and taking a supremum preserves all properties
of coherent risk measures, MES? is also coherent. An example showing that MES[?
is not comonotonic-additive is given in Example A.1. Concerning (ii), VaRg is mon-
etary for Q € Q, and hence MVaRpQ as a supremum of monetary risk measures is
monetary as well. It remains to show that MVaR[? is a comonotonic-additive risk
measure. Using Denneberg’s lemma [13, Proposition 4.5], for comonotonic random

variables X and Y, there exist increasing continuous functions f and g such that
X=f(X+Y)and Y = g(X +Y). Therefore, for any Q € Q, we have

MVaR$(X) = sup VaRZ(f(X +7))
QeQ

= sup f(VaRZ(X +¥)) = f( sup VaRS(X + 1)),
QeQ 0eQ
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and similarly,
MVaR 2 () = g( sup VaR? (X + Y)).
0eQ

Note that f(z) + g(z) = z for z in the range of X + Y, and by continuity, f and g
also satisfy f(z) +g(z) =zforz= SUppeQ VaRg (X +7Y). Hence we have

MVaR$(X +Y) = sup VaR2(X +Y)

0eQ
= f( sup VaR? (X + Y)) ¥ g( sup VaR? (X + Y))
0eQ 0eQ
=MVaRZ(X) + MVaR$(Y).

The statement that MVaR% is not necessarily coherent comes from the well-known

fact that VaRg is not coherent for any Q € P such that (2, F, Q) is atomless. Con-

cerning (iv), it suffices to note that iMES[(;2 is a mixture of comonotonic-additive risk
measures and hence is comonotonic-additive as well.
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