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Abstract
Query execution techniques in database systems constantly adapt to novel hardware features to achieve high query perfor-
mance, in particular for analytical queries. In recent years, vectorization based on the Single InstructionMultiple Data parallel
paradigm has been established as a state-of-the-art approach to increase single-query performance. However, since concurrent
analytical queries running in parallel often access the same columns and perform a same set of vectorized operations, data
accesses and computations among different queries may be executed redundantly. Various techniques have already been
proposed to avoid such redundancy, ranging from concurrent scans via the construction of materialized views to applying
multiple query optimization techniques. Continuing this line of research, we investigate the opportunity of sharing vector
registers for concurrently running queries in analytical scenarios in this paper. In particular, our novel sharing approach relies
on processing data elements of different queries together within a single vector register. As we are going to show, sharing
vector registers to optimize the execution of concurrent analytical queries can be very beneficial in single-threaded as well as
multi-thread environments. Therefore, we demonstrate the feasibility and applicability of such a novel work sharing strategy
and thus open up a wide spectrum of future research opportunities.

Keywords Database systems · Query execution · SIMD · Vectorization · Work sharing

1 Introduction

Single Instruction Multiple Data (SIMD) is a well-known
parallelism class in Flynn’s taxonomy [15] and characterized
by the fact that multiple processing units perform the same
operation on multiple data elements. Thus, the traditional
usage of SIMD enables data-level parallelism for single
physical query operators, but no parallelism of different
query execution tasks. Such SIMDcapabilities are existing in
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today’s mainstream processors using specific SIMD instruc-
tion set extensions. While Intel provides Streaming SIMD
Extension (SSE) as well as Advanced Vector Extension
(AVX), ARM offers NEON and Scalable Vector Extension
(SVE) [47]. The core principle of these extensions—usually
referred to as vectorization—is thus to execute a single
instruction on a vector of data elements.

Vectorization has become a core technique to improve
query processing performance especially in state-of-the-art
in-memory column store engines [1,2,39]. However, current
approaches mainly focus on vectorizing isolated query pro-
cessing tasks, like selection [14,25,38,51], join [4–6,23,48],
sorting [10,36,45], partitioning [35], and (de-)compression
[3,11,27,53]. Yet, they mainly target the optimization of
single query performance [2,19,39], while relying on a
hardware-conscious way of using SIMD intrinsics [35,39,
55]. Thus, the provided data-level parallelism is fully utilized
for a highly vectorized query-at-a-time execution model.

Moreover, a current hardware trend can be seen in the
increasing complexity of the SIMD instruction sets and the
growth of vector sizes. For instance, while Intel’s AVX2
operates on 256-bit vector registers, Intel’s newest exten-
sion,AVX-512, uses vector registerswith 512-bit. Evenmore
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flexible is ARM’s newest SIMD extension SVE aiming at a
configurable vector register width of up to 2048 bits [47].
The obvious idea behind wider vector registers is to store and
process more data elements within a single instruction and
thus increase the system performance. However, considering
the details of query operator execution, achieving higher per-
formance for single query execution (query-at-time) by just
increasing the vector size is a challenging task for a variety
of reasons: For example, by calculating a hash-based join or
aggregation on an increasing number of elements in parallel
(within a single vector register), the probability of key and
hash collisions within the vector register increases and thus
implies negative effects regarding the overall performance
[33].

Our core contribution Instead of using vectorization
to further optimize traditional query-at-a-time processing in
analytical scenarios, we aim at using vector registers aswork-
sharing resource to optimize the execution of concurrently
running queries. In general, sharing resources in query exe-
cution has a long tradition and a variety of approaches has
been proposed [9,16,20,30,42]. Interestingly and to the best
our knowledge, there is no work considering a vector register
as the unit of work-sharing. To foster this line of research,
we introduce and systematically evaluate an initial approach
adapting known work-sharing concepts for vector registers:
our vector sharing idea is to process data elements of differ-
ent queries together within a single vector register leading to
novel vectorized multi-query operators. This allows to fully
exploit the wide vector registers on the one hand and reduce
the probability of collisions for individual operators at the
other hand.

Detailed contributions and outline To explore our idea
of using large vector registers as the unit of work-sharing,
we start with a simple analytical query template consist-
ing of a filter and aggregation operator. We use a
fully vectorized column-oriented implementation according
to the query-at-a-timeprocessing approach as a starting point.
Based on this representation, we outline our novel vectorized
multi-query operator implementations allowing to evaluate
several queries at once as well as adjustments to different
column-, operator- and query-sharing scenarios. As a final
contribution, we exploit this flexibility to conduct a system-
atic experimental evaluation in single-threaded as well as
multi-threaded environments to better understand vector reg-
isters as work-sharing resource. Thus, the remainder of this
paper is structured as follows:

1. We start with an introduction to vectorization aswell as an
overviewof vectorization andwork-sharing approaches in
database systems in Sect. 2.

2. Section 3 introduces our analytical query template used
throughout the paper as a running example for dif-
ferent implementation styles. We will also discuss the

use within a traditional Single Instruction Single Query
(SISQ) implementation as well as within our novel Single
Instruction Multiple Query (SIMQ) approach to simul-
taneously process different queries within single vector
registers.

3. We present results of our systematic evaluation identify-
ing situations to use vector registers as a work-sharing
resource, i.e., when to share or not to share. As we are
going to explain in Sect. 4, sharing vector registers across
concurrently running queries in a single-threaded as well
as a multi-threaded environment seems to be very benefi-
cial in many cases to increase the query throughput.

Finally, we conclude the paper with a broader discussion in
Sect. 5 and a short conclusion in Sect. 6.

2 Background and related work

This section provides an introduction to key features of
vectorization as general background information. Following
that, we present an overview of the application of vector-
ization in database systems to increase query processing
performance. Then, we finally review available work-sharing
approaches in database systems to cover all necessary areas
for our paper.

2.1 Vectorization in general

Vectorization allows to process a fixed number of values with
a single instruction and in a single register, the so-called
vector register. Hence, vectorization is based on the Single
Instruction Multiple Data (SIMD) parallel paradigm [21].
To increase the single-thread performance as priority goal,
mainstream CPUs are usually equipped with instruction sets
to enable a vectorized processing [21]. An SIMD instruction
set offers two extensions to the basic instruction set: (i) vec-
tor registers, which are larger than traditional scalar registers
being typically 32 or 64 bits wide, and (ii) vector instructions
working on these vector registers.

A vector register contains multiple scalar data elements of
the same data type, but a variety of data types are supported:
long bit vector; 64-bit, 32-bit, 16-bit, and 8-bit integers;
and double-precision floating-point numbers [21]. The data
type that a vector register holds is restricted only to what
vector instructions expect as inputs and outputs. The funda-
mental vector instructions are basic instructions that operate
on multiple data elements. These include arithmetic oper-
ations (addition, subtraction, etc.), Boolean operators (e.g.,
AND, OR, XOR), logical and arithmetic shifts, and data type
conversion. These instructions are characterized by the fea-
ture that they do not have dependencies between the data
elements of the same vector register. Nevertheless, some
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SIMD instructions sets have been enhanced bymore complex
operations like advanced arithmetic instructions operating
horizontally. Horizontal operations combine multiple data
elements from the same vector. For example, if we have a
vector comprising a set of integers, and we want to compute
the sum of those integers, then we may use a horizontal add
operation that sums up all of the data elements in a vector.

In the past years, hardware vendors have regularly intro-
ducednewextensions operatingonwider vector registers. For
instance, Intel’s Advanced Vector Extensions (AVX) oper-
ates on 256-bit and Intel’s newest version AVX-512 uses
even 512-bit vector registers. The wider the vector registers,
the more data elements can be stored and processed in one
vector, which promises significant speedups. For example,
in a 512-bit vector register, we are able to store and process
64 8-bit or 16 32-bit integer values simultaneously providing
a high data-level parallelism. Besides wider vector registers,
Intel has also introduced more complex vector instructions
as well. For example, a new instruction feature set in AVX-
512 is called Conflict Detection (AVX-512CD) and the key
features are: (i) the generation of conflict free subsets, i.e.
subsets that contain no duplicate elements, and (ii) the count
of leading zero bits of the elements in a vector.

From a programming perspective, it is common to use
C/C++ language extensions with compiler SIMD intrinsics
to achieve highly efficient vector code. A compiler SIMD
intrinsic is a function call that maps to a specific vector
instruction or a small sequence of instructions. These also
require additional data types for parameters and/or the return
values, such as types that map to vector registers. With that,
the programmer explicitly directs the compiler to use certain
vector instructions with intrinsics, but relies on the compiler
for optimizations such as register allocation and instruction
scheduling. An alternative way to compiler intrinsics is auto-
vectorization of scalar code [21]. However, this is not as
flexible and powerful as explicitly manipulating SIMD vari-
ables with SIMD intrinsics.

2.2 Vectorization in database systems

Nowadays, vectorization is a state-of-the-art optimization
technique in column-store database systems and typically
applied to isolated database operators [3,35,55] to mainly to
reduce the query latency. Many vectorized implementations
for joins [4–6,23,48] and sorting [10,36,45] have been pro-
posed. Moreover, linear access operators such as scans [14,
25,38,51] and compression techniques [3,11,28,34,38,49,53]
are well investigated; mainly because they represent an easy
target for vectorization. In this context, Damme et al. [11]
systematically evaluated the impact of different Intel SIMD
instruction set extensions with vector sizes of 128, 256, and
512bits on the behavior of compression algorithms.Themain
observation andmotivation for theirwork is that speedups are

lower for larger vector sizes because the algorithms quickly
become memory-bound when the computations are accel-
erated through wider vector registers, and thus processing
more data elements at once does not necessarily pay off.
Nonlinear access operators, such as hash-tables and parti-
tioning, have also been investigated and comprehensively
evaluated [33,35,37]. Interestingly these exhibit a similar
behavior of lower performance increase with growing vector
register sizes.

In addition to isolated operators, vectorization and
prefetching have been combined to minimize cache misses
on the query level [13,31]. Even two analytical query engines
have been recently introduced in which vectorization is inte-
grated within the fundamental design of the systems: VIP
[39] and MorphStore [12,19]. VIP, on the one hand, is
built bottom-up from pre-compiled data-parallel sub-oper-
ators and fully implemented in AVX-512 [39]. On the other
hand, the key feature ofMorphStore is its novel compression-
enabled and highly-vectorized processing model [19]. Aside
from that, Lang et al. [26] presented an approach to vectorize
entire query pipelines using vector refill algorithms.

Nevertheless, all available applications of vectorization
in database systems focus on improving the single query
performance for a query-at-a-time execution. Moreover, the
vectorization is normally done in a hardware-conscious way
via hand-written code using SIMD intrinsics [26,35,39,55].
To enable a hardware-oblivious vectorization approach with-
out sacrificing the performance, we introduced the Template
Vector Library (TVL) for in-memory column-stores [50].
This TVL offers hardware-oblivious but column-store spe-
cific primitives, which are similar to SIMD intrinsics. Thus,
the state-of-the-art vectorized programming approach does
not change, but the explicit vectorization can be done in a
hardware-independent way. Furthermore, the TVL is also
responsible for mapping the provided hardware-oblivious
primitives to different SIMD extensions. For this mapping,
the TVL includes a plug-in concept and each plug-in has to
provide a hardware-conscious implementation for all prim-
itives. In the base case, a TVL primitive can be directly
mapped to a SIMD intrinsic. However, if the necessary SIMD
intrinsic is not available, an efficient hardware-conscious
workaround can be implemented. This implementation is
independent of any query operator and must be done only
once for a specific SIMD extension.

2.3 Work sharing in database systems

In addition to the efficient execution of individual queries, the
optimization of concurrent queries is also highly interesting
for database systems to increase the overall query throughput.
Thus, work-sharing across concurrently executed queries has
been an active research field for many decades, whereby
work-sharing is defined as any operation reducing the total
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amount ofwork in a systemby eliminating redundant compu-
tation or data accesses [22]. The techniques proposed so far
for analytical queries (OLAP) include: (i) cooperative scans,
(ii) multi-query optimization, (iii) materialized views, and
(iv) simultaneous pipelining.

The main idea of cooperative scans is to share data scans
across queries that are executed at the same time. This
cooperative scan technique has been investigated for disk
[24,56,58] aswell as formain-memory oriented database sys-
tems [40,41]. However, these approaches are limited to scans
of single relations. In contrast, CJoin presented an approach
to extend the idea of cooperative scans to join operations,
especially to multi-query star-joins [9].

Another approach is denoted as multi-query optimization
(MQO) [46]. MQO involves (1) the detection of common
sub-expressions in concurrently executed queries, (2) the
evaluation of these sub-expressions only once to avoid redun-
dant work, and (3) reusing the results to answer the queries.
These sub-expressions are usually determined on-the-fly for
a set of concurrently executed queries [54]. In the same vein,
Materialized Views (MV), another work-sharing technique,
persistently store frequently used intermediate results for
reuse in a variety of different queries [43].

Additionally, QPipe [20], CJoin [9], and MQJoin [29]
use pipelines for work-sharing. In QPipe [20], each query
operator is evaluating several queries at once, resulting
in an operator-centric paradigm for work-sharing. CJoin
and MQJoin mainly focus on sharing work in joins. Other
relatedworks in that domain are SharedDB [16,17], BatchDB
[30], and OLTPShare [42]. While SharedDB and BatchDB
consider mixed workloads of analytical (OLAP) and transac-
tional (OLTP) queries, OLTPShare focuses on work-sharing
in pure OLTP scenarios. In SharedDB, for example, incom-
ing queries are batched and compiled into one single query
execution plan. During the execution of this plan, fur-
ther incoming queries are queued. However, none of these
approaches considered vector registers as a work-sharing
resource.

3 Sharing vector registers

The primary goal of this paper is to present a first approach
alongside a systematic and comprehensive evaluation of
whether, when, and how vector registers are suitable for
work sharing. To achieve that, we initially restrict ourselves
to workloads of concurrent analytical queries. For the sake
of simplicity and demonstration of our overall approach, we
assume that every query follows the same template. This
query template is inspired by query 1.1 from the Star-Schema
Benchmark (SSB) [44]. As depicted in Fig. 1, our query
template filters a column (:A) for a predicate (:Pred) and
aggregates all corresponding valid tuples from column (:B).

According to a vectorized query processing in column-store
engines, we assume that (:A) and (:B) contain sequences of
fixed-sized integer values in the range of 8 to 64 bit and
have the same sequence length [1,2,39]. Moreover, a con-
crete query instance of our template requires three inputs,
namely (i) a value for the filter predicate, (ii) an aggregate
function, and (iii) a pair of input columns (:A) and (:B).

Using these tuning knobs, we are able to define individ-
ual workloads with different degrees of data- (by adjusting
the input columns and the predicate) and computation shar-
ing (by adjusting the aggregate function) opportunities. That
means, concurrent queries in a specific workload can have
any combination of aggregate function, columns, predicates,
or nothing in common. A relatively simple example for such
an individual workload is highlighted in Fig. 1, where four
queries share the filter- and the aggregate function but they
apply different predicates on (:A) and access disjoint columns
(:A) and (:B)—denoted by A0,...,A3 and B0,...,B3, respec-
tively. A typical columnar query execution plan for our query
template consists of two physical operators, a filter and
an aggregation, which are executed subsequently. These
operators are executed according to either an operator-at-time
[7,19] or a vector/block-at-a-time processing model [8,31].
In the case of our query template, the main difference is the
size of the intermediate results between the filter and
aggregation-operator. Combined with an assumed posi-
tional addressing scheme, the characteristics of both models
are more or less equivalent and, thus, we do not longer dif-
ferentiate between the execution models.

Generally, the necessary operators for our queries are easy
to vectorize because both operators have a linear access
behavior on the corresponding columns and introduce no
data dependencies between consecutive values. On a very
abstract level, the vectorized filter operator sequentially
reads multiple values from column (:A), applies the filter
predicate, and outputs a mask where a 1-bit indicates that
the corresponding value satisfies the predicate. The subse-
quent vectorized aggregation operator also sequentially
reads multiple values from column (:B), applies an aggrega-
tion function on these values, according to the 1-bits from the
mask of the previous filter operator. Finally, the aggregated
values are passed as a result. Since both columns for each
query have the same physical order, our two query operators
can iterate evenly over both columns.

To illustrate a concrete use-case andwithout loss of gener-
ality, we now assume that our columns contain 64-bit integer
values and vector registers have the size of 256-bit, which
results in four data elements being processed in parallel.
Sincewematerialize at least one byte, the vector mask result-
ing from the filter is an 8-bit value where the lower four
bits are of interest, i.e., one bit per data element in our vector
register. To separate the concerns of data flow control and
actual computations, we split up our physical query opera-
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Fig. 1 Illustration of our use case with 4 different queries including the execution according to SISQ and SIMQ

tors into a proxy and a core: The proxy iterates over the given
input column, retrieves the corresponding vector registers,
and forwards them to the core. Initially, the filter proxy has
to load the query-specific predicates into an additional vector
register. The core subsequently applies the computations on
the vector registers and returns the result. The proxy mate-
rializes the result into the corresponding output buffer for
the next operator. For our two physical query operators, the
operator cores are rather simple, as they only execute a single
vector instruction as follows:

(i) Filter-Core This core calls an intrinsic comparing
two vector registers a and p, producing a vector mask m
(_mm256_cmplt_epi64_mask ). A 1-bit atmi indicates
ai < pi .

(ii) Aggregation-Core This core performs a condi-
tional operation, consequently producing a vector register r.
The operation expects a vector register src, containing the
previous aggregated values, two input vector registers b and
c as well as a vector mask m. In general, the values from b and
c are handled according to the respective aggregation func-
tion if the corresponding bit within m is set to 1. Otherwise,
the corresponding value from src will be used for the result.
As the aggregation is a reduction operator, reducing all valid
elements into a single result, we set c := src. For this paper,
we implemented three different aggregation functions.

SUM:The function calls_mm256_mask_add_epi64.
If a 1-bit is at m[i], r [i] := b[i] + src[i], otherwise
r [i] := src[i] .
MIN:The function calls_mm256_mask_min_epi64.
If a 1-bit is at m[i], r [i] := min(b[i], src[i]), otherwise
r [i] := src[i].
MAX:The function calls_mm256_mask_max_epi64.
If a 1-bit is at m[i], r [i] := max(b[i], src[i]), otherwise
r [i] := src[i].

While our operator cores work utterly unaware of how
their input is generated,we can implement twodifferent prox-
ies to realize two different query execution variants: (i) SISQ
and (ii) SIMQ. The SISQ variant corresponds to the tradi-
tional full vectorization of a single query as done, e.g., in
[7,8,19,31,39]. Following this traditional processing style,
multiple queries in our workload are executed individually
(sequentially in a single-thread case, c.f. Fig. 1 Workload
Execution-SISQ), whereby each query profits from full vec-
torization. Regarding a multi-thread scenario, the queries are
executed on different cores in parallel, following the inter-
query parallelism paradigm. In contrast to this model, our
SIMQ variant uses vector registers as shared resources by
processing multiple queries at once, as shown in the lower
half of Fig. 1. This implies that our operator-proxies handle
columns from different queries and build appropriate vec-
tor registers for work sharing. The general idea is adapted
from QPipe [20]; however, QPipe does not consider vector
registers, but parallelizes over several cores.

3.1 SISQ: Single Instruction Single Query

To realize the traditional full vectorized execution of our sim-
ple query template, the SISQ proxy for the filter-operator
receives a pointer to the column (:A) as well as a single pred-
icate value (:Pred) for the comparison. In the first step, the
predicate value is broadcasted into a vector register using
_mm256_set1_epi64x. Secondly, the proxy iterates over
column (:A). A single proxy-iteration consists of (i) a vector
transfer operation (_mm256_load_si256) loading 256-
bit of data from (:A) into a vector register and (ii) invoking
the filter-corewith the predicate and data vector regis-
ters. That means multiple data values of a single column are
compared with a single predicate value at once. As already
described before, the output of thefilter-core is an 8-bit
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value. Thus, only the lower four bits correspond to the input
of the filter-core. In general, it would be possible to
materialize this value right away, but this would lead to dou-
bling the write operations and memory footprint of the result
in total. Consequently, we call the filter-core twice—
one after another—and pack two resultsmaskit1 andmaskit2
from the filter-core into a single 1-byte value:maskit1
| = (maskit2 << 4). The resulting bitmask is then material-
ized into an output buffer by the filter proxy. After each
iteration, the column pointer is increased by 2 · ec, where
ec denotes the element count (vector register size, i.e., 256,
divided by value size, i.e., 64), and the pointer to the output
buffer is incremented as well.

The SISQ proxy related to the aggregation receives a
pointer to the result buffer of the preceding filter oper-
ator and a pointer to column (:B) on which the aggregation
should be executed. The data are prepared similarly to the
filter operator using a stepwidth of two. As two bit-
masks are encoded in one byte, the input-proxy has to split
them up accordingly: maskit1 = mask&0xF (and maskit2
= mask&0x0F0). The src register, containing the current
aggregation result, is initially set to zero. The loaded data
together with the according bitmask are handed over to
the aggregation-core. Thus, the aggregation is a
reduction operator, and the result of this core is used as the
input for the following iterations.

To execute a workload consisting of multiple concurrent
queries, each query is individually executed using SISQ. In a
single-threaded environment, the execution obviously results
in a sequential execution order enforcing no explicit work-
sharing in the form of data or computation sharing; only
caching may contribute implicitly to workload optimization.
In amulti-threaded environment, several queries are executed
in parallel.

3.2 SIMQ: Single InstructionMultiple Queries

In contrast to the SISQ proxy approach (taking care of the
in- and output for operators with a single query scope), the
SIMQ proxy for an operator is associated with a workload
scope consisting of multiple queries. As illustrated in Fig. 2,
the workload scope may have multiple expressions in terms
of column- and query-sharing opportunities for a vector-
ized multi-query (VMQ) operator such as our filter or
aggregation. In Fig. 2, we again assume a 256-bit vec-
tor register with 64-bit column values as a foundation, such
that we can hold four values within a single vector register.
These four values may come from one, two, or four differ-
ent columns and may be associated with one, two, or four
different queries, respectively.

3.2.1 Design space

From a memory sharing perspective, we have to distinguish
two different cases, namely (i) base data access and (ii)

(a) (b) (c)

Fig. 2 SIMQ: column- and query-sharing opportunities for base data

intermediate data access, while the latter case is equal to
the first case if the considered (sub)queries, which produced
the intermediate, are structurally and functionally equal. The
following describes froma conceptual point of viewwhat dif-
ferent kinds of sharing potentials exist, depending onwhether
base- or intermediate data can be shared across queries.

(i) Sharing access to base data From a base data column
perspective, we can distinguish three column-sharing modes
for the multi-query operators:

No column-sharing Each value within a vector register
originates from a different column, implying that every
value is associated with a different query. As shown in
the left SIMQ proxy of Fig. 2a, each element of a vector
register is used to process a single value from a different
column and, thus, the SIMQ proxy loads only one value
from each column in every iteration. In this case, four
query operators are executed in parallel using a vector
register as a shared resource, whereby the columns are
each processed sequentially.
Full column-sharing In contrast to the previous mode, a
VMQ operator processes only one column for multiple
concurrent queries, whereby the query count can be 1, 2,
or 4 (right SIMQ proxy in Fig. 2c). On the one hand, if
the query count equals 1, we end upwith the SISQ variant
described above by loading four values of the column at
once. On the other hand, if the query count equals 4, then
the SIMQ proxy only loads one columnvalue per iteration
but processes this single value for four different queries
at once. If the query count is 2, then 2 column values are
always loaded and processed for two queries resulting
in vectorized parallel processing of multiple queries. In
general, the advantage of this full column-sharing is that
a loaded column value is processed by multiple queries
simultaneously, which reduces the overall memory foot-
print and improves cache friendliness.
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Partial column-sharing The two previous sharing modes
are corner cases, and partial column-sharing covers
everything in-between as shown in Fig. 2b.

Afterwards, the prepared vector registers are pushed into the
associated core. The result of a core can be a vector regis-
ter or a vector mask. Considering the filter core of our
query template, the core produces a mask, where a 1-bit
indicates that the corresponding element in the vector reg-
ister, hereinafter referred to as lane, satisfied the predicate.
This mask is materialized and can be used for the following
query execution stages. It must be noted here that the order
of the lane-to-query mapping is preserved within the result-
ing bitmask. In the context of our query template, bitmasks
are highly relevant and thus we conducted several bench-
marks investigating how intermediate data from incongruent
preceding stages should be handled. While it is technically
possible to split up bitmasks and store smaller portions in
different locations, it significantly harmed the overall execu-
tion time. This can be explained through the generally higher
costs of store operations compared to load operations on the
one hand. On the other hand, splitting bitmasks incurs the
maintenance of intermediate buffers, which heavily relies
on branching. Thus, we concluded that bitmasks should be
materialized as one unit and split up in the loading phase of
the nextmulti-query operator, according to its sharing mode.
Assuming the example of full column and query sharing, the
first block of four bits of the bitmask is associated with the
first element from the filter input column. Within these
four bits, the first bit corresponds to the first query, the second
bit to the second query, and so forth.

(ii) Sharing access to intermediate dataWhen accessing
intermediate data, not only the column perspective is relevant
for the association of the lanes within a VMQ operator. Fur-
thermore, the order of the previous operator-stage has to be
taken into account. As described before, the output of a VMQ
operator implicitly encodes the column- and query sharing
mode of the according proxy. Without loss of generality, we
assume that a VMQ operator accesses a single column (full
column-share). When considering the preceding distribution
of active operators, we can distinguish three different sharing
modes of our query template:

Full predecessor-sharing The number of participating
queries in the current stage equals the number of the pre-
vious stage. In contrast to the full query- and column
share mode from Fig. 2, the proxy has to load four con-
secutive values from a single source since every value is
specifically linked to a query within the VMQ operator.
Consequently, the proxy behaves as if only a single query
is executed.
Minimal predecessor-sharing As shown in the left upper
part of Fig. 3, only a single query is assigned to a VMQ

Fig. 3 SIMQ: Query-sharing opportunities for intermediate data

operator while the previous stage executed four queries.
When operating on base data, this would be comparable
to SISQ execution. However, the resulting order of the
preceding stage requires a step width equal to four since
only every fourth value is associatedwith the active query.
Partial predecessor-sharingWhile the two previous shar-
ing modes are corner cases, partial predecessor-sharing
covers everything in between.

3.2.2 Design space implementation

Ahighly flexible SIMQ proxy is crucial for efficiently explor-
ing the described design space. This proxy has to build
the appropriate vector registers and masks for the operator
cores depending on the number of accessed columns, active
queries, and the preceding number of queries. Moreover, this
SIMQ proxy has to transfer the different query predicates in
a vector register for the filter operator in an initial
step. Since our general design uses data columns and bit-
masks as in- and output of an operator-stage and both types
have severe differences regarding the addressing and utiliza-
tion, we have to implement the proxies separately.

(i) Column-proxies The SIMQ proxy for base data
columns can be implemented fourfold, leveraging differ-
ent SIMD primitives: SIMQ-GATHER, SIMQ-BUFFER,
SIMQ-SET and SIMQ-BROADCAST. In the following, we
explain each of them in more detail.

SIMQ-GATHER: The most straightforward way of
building a vector register from arbitrary memory loca-
tions is to use a random-access vector load instruc-
tion such as _mm256_i64gather_epi64. Intel, for
example, introduced this feature with AVX2. As depicted
in Fig. 4a, the vector gather takes a base-pointer for the
random access, a vector register representing the posi-
tions that should be transferred by using a relative offset
to the starting address, and a scale factor indicating the
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(a) (b) (c) (d)

Fig. 4 Different SIMQ-proxies building AVX2 vector registers in no column-sharing mode

vector stride, i.e., distance between elements. To receive
the required parameters for the SIMQ-GATHER proxy,
the minimum address of all input columns is determined,
and the relative offsets of all columns are calculated and
initially transferred into a vector register. The overall exe-
cution flow is similar to the SISQ proxy with an iteration
step size 2 · ec

qc , where ec denotes the element count of
a vector register and qc denotes the number of queries.
However, the most crucial drawback is that we linearly
scan the columns with an instruction for random access.
SIMQ-BUFFER: To overcome the drawback of SIMQ-
GATHER, an alternative approach for building a vector
out of different memory locations is to use an interme-
diate buffer and a vector load instruction afterwards (see
Fig. 4b). To do so, no preprocessing steps are needed.
During every iteration within an operator, the data point-
ers of the different columns are de-referenced andwritten
into the buffer in a scalar way. The buffer is then loaded
into a vector register, and the pointers are incremented
appropriately. The drawback of this solution is that we
need an additional buffer mechanism to build the vector
registers.
SIMQ-SET:An alternative yet similar approach, which
avoids an additional buffer and a vector load instruc-
tion, can be realized by setting the values directly. As
shown in Fig. 4c, for every iteration, the columns are de-
referenced and stored in local variables. These variables
are then transferred into a vector register using a vector
set instruction such as _mm256_set_epi64.
SIMQ-BROADCAST:A fourth way is shown in Fig. 4d.
This so-called SIMQ-BROADCAST is based on condi-
tional broadcasting using _mm256_mask_set1_epi
64, which was introduced by Intel with AVX512. This
instruction needs a source vector register, an 8-bit mask,
and a value. The mask is used to indicate at which posi-
tions the specific value should be set within the resulting
vector register. For the remaining parts, the correspond-

ing values are taken over from the source vector register.
Thereby, the conditional broadcasting has to be executed
repeatedly until the input for the core can be retrieved.
To illustrate the procedure, we call a specific conditional
broadcast as the n-th phase. In the first phase, all bits are
set to 1 in the mask (0xFF), resulting in a vector register
only containing the value from the first column. In the
second phase, the mask has the value 0x2 and the vector
register from the first phase is used as the source register.
The conditional broadcast sets the value from the second
column at the second position in the new resulting regis-
ter. All remaining elements are the same as after the first
phase. Consequently, to build up a vector register from
four columns, the broadcast consists of four phases for
256-bit vector registers and 64-bit values. That means,
the effort differs depending on the underlying configu-
ration: vector length, data value size, and the number of
different columns.

(ii) Bitmask-proxies While proxies that operate on
columns handle addressable values, namely with a size of at
least one byte, bitmask-proxiesmay have to reorganize a spe-
cific subset of such values. A possible scenario is depicted in
Fig. 5where four queries produced amask in a previous stage,
and only two queries are executed in the current stage. Given
a 256-bit AVX2 vector register with 64-bit wide elements,
every query occupies two lanes in the current stage, while in
the previous stage, only one lanewas associatedwith a query.
Consequently, the bit-order coming from the preceding stage
cannot be used as-is for the current one without reordering.
As described before, the filter result is packed together by
concatenating two results into one byte. As highlighted in
Fig. 5, the relevant bits (z, y, z, w) have a stride of four. This
stride means that the bits associated with the first query are
at positions 0 and 4, the bits for the second query reside at
positions 1 and 5 within the first byte of the input bitmask.
The core expects a bitmask with a bit order equal to the order

123



To share or not to share vector registers? 1223

Fig. 5 Different SIMQ-proxies building AVX2 vector masks with partial predecessor-sharing

within the vector register. Thus, the bit from position 4 must
be relocated to position 1, and the bits at positions 1 and 5
have to be relocated to positions 2 and 3, respectively. This
relocation can be achieved by a series of bitwise shift and
mask operations followed by logical ORing the updated val-
ues. As this approach is rather cumbersome and error-prone,
we exploit the effect of a carryless multiplication of the value
of interest awith itself. This multiplication results in spread-
ing the bits from a by interleaving it with 0-bits. The new
value a′ then has to be logical ORed with itself shifted by
seven to the right. The resulting bitmask contains the bits in
the correct order and can be used by the core. If the discrep-
ancy of the number of active queries compared to previous
active queries increases, we have to apply the carryless mul-
tiplicationmultiple times based on the previous call to spread
the bits of interest accordingly.

3.3 Summary

To sum up, we outlined an approach to use vector registers as
a work-sharing resource for the optimization of concurrent
analytical queries. In particular, our idea is to process data
elements of different queries together within a single vector
register leading toVMQ operators. As alreadymentioned, the
sharing potential mainly depends on the vector size and the
data value size. The combination of 64-bit data values and a
vector size of 256-bit allows up to 4 concurrent queries on
classic Intel hardware. In the case of 512-bit wide vectors and
a small 16-bit data size, this number may even be increased
to 32 parallel queries. In contrast to single query processing,
we therefore are able to exploit wider vector registers, e.g.,
a maximum vector size of 2048-bit with ARM SVE.

4 Evaluation

To evaluate whether and when vector registers are suitable
as a work-sharing resource, we implemented1 the presented
SISQ and SIMQ approaches for all available SIMD exten-

1 https://github.com/db-tu-dresden/SharedVector.

sions relying on the TVL2 as a vector-hardware abstraction
[50]. Consequently, we had to implement our variants only
once, using TVL-provided hardware-oblivious vector prim-
itives. The actual mappings to vector intrinsics happened at
compile-time. While TVL supports all primitives which are
needed for our approach, some do not have a tangible SIMD
intrinsic counterpart provided by the hardware. The miss-
ing intrinsics are compensated by using scalar workarounds.
However, these workarounds may introduce overhead, mak-
ing it hard to compare the overall behavior of our approach
on different hardware. To mitigate this challenge, we only
evaluated methods that are fully supported by the target
system. That is, for all Intel processors, which provide the
vector lengths of 128-bit (SSE), 256-bit (AVX2), and 512-
bit (AVX-512) and for ARM featuring 128-bit (NEON) wide
vector registers. We ran our experiments on three different
platforms whose specifications are shown in Table 1. We
chose these platforms because of their differences in the
maximum core frequency, the architecture characteristics,
and the available caches. For all experiments, we ensured
that they happened entirely in-memory, we repeated every
experiment 30 times, and averaged the results. To minimize
the influence of unpredictable cache effects, every base data
column in our evaluation had a size of 128 MiB. Thus,
the data processed by a single query did not fit into the
cache as a whole. We implemented two different processing
styles namely operator-at-a-time and vector/block-at-a-time
for SISQ and SIMQ (cf. Sect. 3). For the materialization of
intermediate results, we used bitmasks, where a 1-bit indi-
cates a valid tuple during query execution. Thus, the number
of memory accesses and the number of executed instructions
is independent of the selectivity induced by the predicates.
Consequently, we generated randombase data columnswith-
out any specific distribution which was agnostic to query
execution in this particular scenario. Since SIMQ aims on
workload optimization, we use the query throughput as eval-
uation measure—number of queries that are executed per
second (qps)—and report absolute values as well as rela-
tive improvements of our SIMQ approach compared to the
state-of-the-art SISQ execution to show the possible benefit

2 https://github.com/MorphStore/TVLLib.
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Table 1 Environment specifications used to compare SISQ and SIMQ

Manufacturer Intel Huawei

Architecture x86 MIC ARMv8.2

Processor Name Xeon Gold 6126 Xeon Phi 7250 Kunpeng 920-6426

Frequency 2.6–3.7 GHz 1.4–1.6 GHz 0.2–2.6 GHz

CPU-Count (Threads) 12 (24) 68 (272) 128 (128)

SIMD-Extensions SSE, AVX(2), AVX512
(F, CD, BW, DQ)

SSE, AVX(2), AVX512
(F, CD, ER, PF)

Neon

Cache (L1/L2/L3) 32 KiB/1 MiB/19 MiB 32 KiB/1 MiB/- 8 MiB/64 MiB/256 MiB

RAM 92 GB DDR4-2666 204 GB DDR4-2400 500 GB DDR4-2933

OS CentOS 7.7.1908 Ubuntu 18.04.1 Ubuntu 20.04.2

Compiler Name (Version) clang 9.0.0-2 gcc 9.3.0

Flags -O3 -flto -fno-slp-vectorize -march=native -O3 -flto -fno-tree-vectorize
-march=armv8-a+crypto

of SIMQ. We identified six dimensions to compare SISQ and
SIMQ, and hence our tuning knobs are: (i) the vector register
size, namely 128-bit, 256-bit, and 512-bit, (ii) the number of
accessed column pairs within a specific workload, (iii) the
number of queries within a workload, (iv) the bit-size of sin-
gle entries with a column, (v) the degree of operator variance
for the second stage of our query template and (vi) the batch
size.

4.1 Single-threaded evaluation

We begin our evaluation with purely single-threaded
experiments, becauseSIMDis a hardware-driven approach to
improve single-thread performance. Consequently, all exper-
iments ran on a single core and, thus, in a fully controlled
environment.

Since we expect the behavior of our SIMQ processing
model to depend on the frequency of the CPU cores and the
available caches, we carried out our systematic evaluation on
three different platforms. As depicted in Table 1, we chose
two Intel platforms, where the Xeon Gold 6126 provides a
high base- and maximum core frequency alongside a three-
leveled cache hierarchy and the Xeon Phi with low base- and
maximum core frequency and no L3 cache, respectively. As
a third architecture, we selected a Kunpeng 920-6426, which
is an ARMv8.2 architecture. The base core frequency of the
Kunpeng is lower than both Intel platforms, while the maxi-
mum core frequency is higher than the one of the KNL and as
high as the base frequency of the Xeon Gold. Since the Kun-
peng only supports ARM’s SIMD extension called NEON
with128-bit vector registers,we couldnotmeasure the effects
of bigger vector registers for this platform. In addition, ARM
Neon does not support vectorized random access operations.
Consequently, we did not implement SIMQ-Gather for
this platform, either. However, we are expecting ARM to

prove a suitable platform for evaluating the general applica-
bility of our approach. The achieved throughput results of
our running example scenario are depicted in Fig. 6. Every
dimension of our systematic evaluation is shown in one row,
while we organized the results for every platform column-
wise.

(i) Influence of SIMD-register size To evaluate the
impact of the vector register size, we varied only this dimen-
sion and kept the other dimensions constant. All queries
executed a filter followed by an aggregation-sum
operator. The queries accessed the same column pair for full
column-sharing, and the number of queries was equal to the
number of elements that fit into a vector register. The value
size was fixed to 64-bit. This means two queries were exe-
cuted when using 128-bit vector registers, four queries for
256-bit and eight queries for a 512-bit vector register, respec-
tively. For SISQ, the queries were executed sequentially.

As shown in Fig. 6a1–a3, very good improvements for
the query throughput (qps) for all SIMQ proxy approaches
are achieved. Interestingly, the qps on the Xeon Gold 6126
using SISQ is only marginally affected by the SIMD-register
size due to the high core frequency and the fact that the
execution of our query is memory-bound. Overall around
50 queries were processed per second by the state-of-
the-art vectorized implementation. This holds true for any
adjustment to the overall setting we made (cf. Fig. 6a1–
f1). SIMQ reduces the number of fetched cache lines of
the specific workload by the number of concurrently exe-
cuted queries. The wider the vector registers, the more
queries can be executed simultaneously, and therefore the
achieved query throughput improved in the range of 1.98x
up to 7.18x, compared to SISQ reaching up to 365 queries
per second with 512-bit wide vector registers. Surprisingly,
even the random access SIMQ-GATHER variant, which can
be considered to be rather expensive—compared to linear
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Fig. 6 Evaluation results of our systematic comparison of SISQ and SIMQ using one thread. We report the number of queries that are executed per
second (qps) as bars and the relative improvement of SIMQ compared to SISQ as a range displayed as the text above the bars
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memory access in SISQ—was never slower than the SISQ
baseline except when only two queries are processed, on
the Xeon Gold 6126. When processing two queries with
a vector size of 128-bit, all linear access SIMQ proxies
achieved a similar improvement of 1.98x compared to SISQ.
For wider vector registers SIMQ-BUFFER and SIMQ-SET
perform slightly better compared to their linear access coun-
terpart SIMQ-BROADCAST. For 256-bit vector registers,
SIMQ reached an improvement of around 3.21x. When
using 512-bit wide vector registers, SIMQ-BUFFER and
SIMQ-SET were 7.18x times faster, SIMQ-BROADCAST
achieved improvements of 6.13x. SIMQ-GATHER reached
a peak improvement compared to the sequential execution
when running on 256-bit wide vector registers, whichmay be
a result of reduced core frequency when using 512-bit wide
vector registers [18,52]. This impacts the speed of address
calculation in vector registers which may effect the memory
transfer rate.

Overall, the lower core frequency of the Xeon Phi and the
Kunpeng result in fewer improvements compared toSISQ. As
highlighted in Fig. 6a2, no throughput improvements could
be achieved on the Xeon Phi for 128-bit sized vector regis-
ters executing two queries in parallel. When executing four
queries, using 256-bit vector registers, SIMQ achieves an
improvement of up to 1.32x. Using 512-bit vector registers
as a shared resource leads to an overall workload execu-
tion time improvement of 3.58x. While the improvements
of SIMQ fall short compared to the execution on the Xeon
Gold 6126, it is worth mentioning that the query through-
put of SISQ scales linearly with the vector width, ranging
from 9 qps with 128-bit vectors up to 33 qps for 512-bit vec-
tors.When using vector registers to sharememory access and
computations across multiple queries, we can report a query
throughput of 22 qps using 256-bit wide vector registers and
118 qps for 512-bit vector registers, respectively. Running
our experiments on the Kunpeng with 128-bit vector regis-
ters (cf. Fig. 6a3), SIMQ speeds up the workload execution
by a factor of 1.15x. This is better than the corresponding
results on the Xeon Phi, which is most probably a result of
the higher CPU frequency.

Since vector sizes of 512-bit (AVX-512) deliver the over-
all best improvements, our further evaluation concentrates
on that, except for the Kunpeng, where only 128-bit vector
registers are available.

(ii) Influence of column-sharing mode As a next step,
we evaluated the influence of column-sharingmodes by vary-
ing the number of accessed unique column pairs. We always
executed eight queries per workload. Consequently, we used
64-bit sized data values on Intel platforms and 16-bit sized
data values on the ARM platform. The results are shown
in the Fig. 6b1–b3. As expected, the number of accessed
columns influences the workload performance. While we
achieve the best throughput for one column pair for all eight

queries (full column-sharing), we achieve the worst for eight
unique column pairs for eight queries (no column-sharing)
ending up in a slowdown on all platforms. That means,
the more different columns were accessed, the less physical
memory accesses are omitted when using SIMQ resulting in
reduced query throughput.

Running on theXeonGold,SIMQ-GATHER reached sim-
ilar performance as SISQ with an improvement of 1.07x for
one column per operator and 1.04x for two column pairs
respectively; it ended up slowing down the throughput by
1.06x when accessing four and 1.69x when accessing eight
different column pairs (see Fig. 6b1). Notably, the improve-
ment of linear access SIMQ proxies decreased with more
various locations from 3.52x (2 column pairs) to 1.91x (4
column pairs). While accessing eight different column pairs
from 8 queries is indisputably the worst-case scenario from
a work-sharing perspective, surprisingly, all measured SIMQ
variants except for SIMQ-GATHER could keep up with the
workload execution using SISQ resulting in negligible slow-
downs.Moreover, we see a similar behavior for theXeon Phi,
yet ending up in less query throughput improvement for every
combination (cf. Fig. 6b2).As shown inFig. 6b3, various data
locations harm the performance of our SIMQ approach quite
drastically, ending up in 1.19x lower qps compared to SISQ.

Instead of evaluating eight queries, we can also reduce the
number of queries by increasing the data-level parallelismper
query at the same time.

(iii) Influence of query count To evaluate this query-
sharing impact, we measured a workload consisting of a
varying number of queries, which all operate on the same
pair of columns consisting of 64-bit values. On the Xeon
Gold, we can observe that the overhead of SIMQ-GATHER
deteriorates the performance for one and two queries, while
all other SIMQ variants can keep up with the SISQ execu-
tion model in all cases (see Fig. 6c1). On the one hand, if
the number of concurrent queries grows, the SIMQ process-
ing pays off rather quickly, resulting in an improvement of
around 3.67x for four queries and up to a factor of 7.18x
for executing eight concurrent queries. On the other hand, if
the number of concurrent queries equals one, then SISQ and
SIMQ performmostly equally, underlining the generally low
overhead of SIMQ.

The results for the Xeon Phi are shown in Fig. 6c2. As
already observed in the previous results, the overall through-
put improvement achieved is lower compared to the Xeon
Gold. However, we can see similar overall behavior, where
for at least four queries, our SIMQ approach pays off. Addi-
tionally, while the overall improvements on the Kunpeng are
even lower, compared to the Intel platforms, SIMQ needs at
least four queries to be executed within a workload to benefit
from work-sharing (cf. Fig. 6c3).

To sumup, the achievable improvement grows,whenmore
queries are executed in parallel. However, the maximum
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number of concurrent queries is limited to 8 when working
with 64-bit values with a vector size of 512-bit and 16-bit val-
ues for 128-bit vector registers, respectively. Consequently,
we investigated the impact of smaller value sizes as a next
evaluation step.

(iv) Influence of value size Figure 6d1–d3 shows the vari-
ation of the underlying value size in the spectrum of 8-, 16-,
32- and 64-bit. The number of executed queries depends on
the value sizes in a way that the maximum amount of queries
was executed. Consequently, when using a 512-bit wide vec-
tor register, 8 queries were executed for 64-bit sized values
and up to 64 queries for 8-bit sized values, respectively. On
the one hand, this has a direct effect on the memory which
is processed during workload execution since every query
operates on two 128 MiB sized columns. Thus, the overall
memory footprint of a SISQworkload doubles, when the size
of the data type is halved. On the other hand, the value size
can be expected to have a significant impact on SIMQ. While
there is no change in terms of memory access, the number
of executed SIMD-transfer operations also doubles when the
value size is halved. All queries accessed the same pair of
columns.

Since the Xeon Phi does not support the AVX512-BW
feature set, which is needed to operate on byte- and half-
word sized values within a 512-bit vector register, we did not
conduct any experiments for these datatypes on thatmachine.
The XeonGold can execute all SIMQ-proxies for 32- and 64-
bit sized values but does not support SIMQ-GATHER with
value sizes smaller than that. Thus, SIMQ-GATHER was not
executed for these value sizes. The fact that the number of
executed queries correlates with the value size has an almost
linear impact on the workload execution time of the SISQ
variant, leading to a two-times longer execution time when
the size of the processed values are halved on the Xeon Gold
and Xeon Phi. This underlines our claim that our queries
are memory-bound running on the Xeons using AVX-512
since the overall workload memory footprint that grows with
smaller value sizes does not significantly affect the average
number of finished queries per second. SIMQ-BROADCAST
and SIMQ-SET are the best performing SIMQ proxies for
all value sizes except for 64-bit since they need only a single
instruction to build up the vector register when accessing one
column for the maximum number of queries.

As shown in Fig. 6d2, d3, the value size significantly
impacts the performance of SIMQ compared to SISQ. This
leads to an throughput improvement of up to 5.23x for 32-
bit values on the Xeon Phi and 1.37x on the Kunpeng.
Interestingly, while SIMQ reached the most significant qps
improvements over SISQ when operating with 32-bit values,
the overall qps for SISQ is quite significantly affected by the
value size on theKunpeng,where bigger values lead to higher
query throughputs. Another particularity of SIMQ running
on the Kunpeng is the SIMQ-BUFFER. While the different

proxies establish relatively robust and similar improvements
on Intel, writing data into an intermediate buffer and subse-
quently transferring the data into vector registers does not
pay off in any situation on ARM, except when processing
64-bit values.

So far, every query within the workload executed a
filter core followed by an aggregation-sum core.
However, we assert that our SIMQ approach is also ben-
eficial when queries are only similar in structure, but the
internal functionality differs. Since our approach aims to use
vector registers as a shared resource and vector instructions
for sharing instructions, different operations imply disjoint
and sequential execution. In general, it would be possible to
mitigate this challenge by fusing operators, but this would
be beyond the scope of this paper. To verify our claim, we
implemented two additional aggregation operators and exe-
cuted similar queries with different aggregation operators.

(v) Influence of operator variance Figure 6e1–e3 shows
the results of our experiment investigating the impact of oper-
ator variety. Following our systematic approach, we fixed the
vector size to 512-bit for Intel and 128-bit for ARM, respec-
tively. Furthermore, all operators consume the same column
pair containing 64-bit (16-bit on ARM) sized values. More-
over, theworkload consists of eight queries. The leftmost part
of Fig. 6e1–e3 presents our previous introduced workload,
where all queries execute a filter followed by an aggregation-
sum. If the number of subsequent operators equals two, four
queries within the workload are changed to execute a min-
imum aggregation instead of a sum. When processing this
workloadusing the traditionalSISQ approach, the differences
in the overall performance are negligible. However, when
using our SIMQ approach, the overall query throughput gains
over the sequential counterpart on the Xeon Gold decreases
by 50% (cf. Fig. 6e-1). The gap between an expected slow-
down of approximately 33% and the actual slowdown can
be explained on the one hand through the additional costs
introduced by the carryless multiplication, see Fig. 5. On the
other hand, it can be explained through the increased number
of cache misses, leading to a less efficient cache usage in the
second stage of the query execution. While in the first stage
of the workload execution, the filter is executed with full
query-share mode, in the second stage, two aggregation
operators are executed sequentially, contributing to only four
queries each, i.e., partial query-sharingmode, transferring the
same data into cache twice. However, our SIMQ approach
outperformed a sequential execution of the queries by a fac-
tor of up to 3.3x.

As highlighted in Fig. 6e2, when running on the Xeon Phi,
SIMQ achieves an improvement of up to 1.25x compared to
SISQ. On the Kunpeng, the small vectors lead to a slowdown
of 1.04xwhen the query-sharing is reducedwithin the second
stage (cf. Fig. 6e3).
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For three subsequent operators, the workload consists of
four queries executing an aggregation-sum, and two queries
execute an aggregation-min and an aggregation-max, respec-
tively. Consequently, the possible query-sharing potential
and memory transfer savings of the second query-stage
decreases further and our experiments reflect this. Compared
to the SISQ execution, we observed a maximum throughput
improvement of 1.88x on theXeonGoldwhile slowing down
the workload execution by 1.21x on the Xeon Phi and 1.22x
on the Kunpeng, respectively. The observed behavior shows
that our approach is superior to traditional vectorized pro-
cessing even if the functional sharing potential is only 50%.

(vi) Influence of batch size The general drawback of the
operator-at-a-time model is the full materialization of inter-
mediate results. To mitigate the materialization costs, the
vector-at-a-time processing model has been proposed, i.e.,
working on batches or blocks of data that fit into the pro-
cessor caches [57]. This makes the materialization cheaper
because operators are working on cached results of previous
operators [57]. The batch sizes should be large enough to
limit the function call overhead and small enough to fit in the
CPU caches. As shown in [57], this has a positive effect on
the performance of analytical queries compared to the classi-
cal operator-at-a-time processing. Since our SIMQ approach
aims at optimizingmemory accesses for queryworkloads,we
finally investigated the impact of a vector-at-a-time process-
ing model on the execution time of our workload. Therefore,
we divided an input column into batches and forwarded the
batches to the appropriate operator. Theoperatormaterialized
its output, which is then consumed by subsequent operators.
Consequently, we wrapped our query execution into a loop,
dividing the columns into batches, which either fit into the
first level cache or the last level cache, respectively.

To evaluate the impact of the batch size, we varied only
this dimension and kept the other dimensions constant. Eight
queries executed a filter, followed by an aggregation-sum
operator using 512-bit (128-bit on ARM) vector registers.
The queries accessed the same column pair for full column-
sharing and the value size was fixed to 64-bit. The results of
our experiments are depicted in Fig. 6f1–f3. Surprisingly, the
number of processed values within one batch does virtually
not affect the execution time of SISQ processing. Thus, we
could show that our proposedSIMQ approach can also be suc-
cessfully applied to the vector-at-a-time processing model.
Generally, we observed similar results as for the operator-at-
a-time model leading to the same conclusions.

Lessons learned Analyzing these results, we clearly
showed that our SIMQ concept could increase the workload
performance substantially inmany situations. Aswe use vec-
tor registers as a multi-scalar register, the degree of query
parallelism correlates with the number of available vector
lanes, which equals the quotient of the vector size in bits and
the processed value size in bits. The higher the query par-

allelism, the better the improvements (cf. Fig. 6a, c), while
modern CPU architectures are optimized for 32-bit and 64-
bit wide values, respectively (cf. Fig. 6d).

Since our approach does not omit actual calculations but
reuses cache resident data for multiple queries, the more
queries access the same data in parallel, the better the achiev-
able improvements (cf. Fig. 6b). Interestingly, we found
that—regardless of the sharing potential or variety of mem-
ory accesses—vectorized random access via a gather cannot
compete with other methods using temporal buffers or regis-
ters, even though the actual memory access pattern follows
a linear pattern. We argue that the hardware implementation
of the gather instruction is just too expensive compared to
the other investigated methods to pay off. We also showed
that our approach performs best when the shared operator
consumes base data or the intermediate data is not processed
prior to the execution, e.g., the number of concurrent oper-
ators mismatch the number of the previous one (cf. Fig. 6a,
e).

To better understand the possible use-cases, we use two
metrics to assess our novel approach of sharing vector regis-
ters, namely (i) query latency and (ii) query throughput. Since
our approach aims at reducing physical memory access, we
take the two corner-cases for data-sharing potential into con-
sideration (cf. Fig. 6b). Since our approach executes multiple
queries vector-concurrently, the result of a single query is
completed when all queries are processed, which increases
the latency of a single query compared with a state-of-the-art
vectorized query-at-a-time processing model. Consequently,
considering the latency of a single query on the Xeon Gold
6126, we can report that our approach adds 0.35x to the
latency of a single state-of-the-art vectorized implementation
when all queries share the same data access, up to 7.34xwhen
no physical data access is omitted, respectively. On the Xeon
Phi 7250, results are even worse, adding 1.33x up to 8.65x to
single query latency, and 5.59x up to 12.86x on the Kunpeng
920-6426, respectively. Even though the latency-increase on
the Xeon Phi 7250 is surprisingly low for the optimal case,
considering that with around 35% higher latency, the whole
workload is finished compared to a single query, we argue
that our approach is not a good fit for latency optimization.

However, as described above, using vector registers as
a shared resource offers excellent potential to improve the
query throughput. This advancement is achieved due to bet-
ter cache utilization or physical I/O reduction through SIMQ
since, in contrast to SISQ, every value from a shared col-
umn must be moved into the cache only once for the whole
workload execution.Moreover, even for the corner-case of no
possible data sharing, our approach introduces an arguably
small overhead of 3.1% on the Xeon Gold 6126 (19% on the
Xeon Phi 7250, 81.8% on the Kunpeng 920-6426).

As multi-threaded execution can be considered as a com-
mon approach to increase the overall query throughput, we
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conducted respective experiments as a next step to better
understand how our approach can be used in such an envi-
ronment.

4.2 Multi-threaded evaluation

Besides single-thread performance, modern database sys-
tems try to exploit the available hardware parallelism as
much as possible. Therefore, the thread-level parallelism
and simultaneous multi-threading (SMT) capabilities of the
employed processors should be used to their maximum
potential. With SMT, a single processor core is able to exe-
cute multiple threads concurrently. Hence, we distinguish
between physical and logical cores. Table 1 shows the avail-
able threads per single processor core in brackets. Clearly,
the Kunpeng processor does not feature any SMT capabili-
ties, while the cores of Xeon Gold or Phi can execute 2 or 4
threads concurrently.

Multi-threaded execution features several important use
cases. First, parallel query execution can increase the sys-
tem performance by a factor equal or close to the number of
employed threads. This executionmodel canbeused twofold:
(i) one query is assigned to one thread and multiple queries
run in parallel (inter-query parallelism) and (ii) one query
uses multiple threads to accelerate data-independent opera-
tions (intra-query parallelism). For this paper, we leverage
multi-threading for inter-query parallelism.

With the rise of cloud computing, modern database sys-
tems face a varying availability of compute resources or
a strict limitation to a fixed number of processor cores.
Resource availability can change depending on the current
system load, i.e., over- or under-provisioning due to heavy-
or small load; or simply through throttling the hardware to
save on money. We see this as a second important use case,
where we investigate the effect of SIMQ on the overall query
throughput given a specific budget of computing resources,
compared to traditional SISQ.

In general, in this section, on the one hand, we present
our results comparing our SIMQ approach with inter-query
parallel vectorized processing. On the other hand, we demon-
strate that our SIMQ approach can also benefit when used in
a parallel manner in a multi-threaded architecture.

4.2.1 Parallel SISQ vs. SIMQ

For the experiments in Fig. 7, we set the number of employed
threads for SISQ equal to the number of executed queries
in the SIMQ case. That is, if SIMQ packs 8 queries into
one 512-bit wide register, SISQ is executed with 8 parallel
threads. For the Kunpeng, threads were pinned to succeed-
ing physical cores. Since the Xeon Phi is a MIC (Many
Integrated Core), which is, like the Xeon Gold, designed
to provide heavy parallelism through SMT, we packed the

execution threads densely on a physical core and all of its
corresponding logical cores. All investigated platforms also
exhibit a Non-Uniform-Memory-Access (NUMA) behavior
due to being multiprocessor systems. To avoid unpredictable
NUMA-effects during runtime, we did only allow the usage
of threads and memory of a single socket (i.e., one proces-
sor). In the case of parallel SISQ, we measured the start and
end-time per thread and calculated the overall runtime by
accumulating the time needed for executing the query per
thread. For SIMQ, we can simply measure the runtime of
one operator execution. Consequently, we only used a single
thread to process the specific workload. Our improvement
metrics do not only consider the query throughput of the sys-
tem, but also the overall resource efficiency. That is, if SIMQ
can complete 8 queries using 1 thread in the same time as
SISQwith 8 threads, it exhibits a relative improvement of 8x,
since we only use 1

8 of the resources of SISQ. We organized
the experiments according to the description in Sect. 4.1.

(i) Influence of SIMD-register size Figure 7a1–a3
depicts the relative improvement of SIMQ compared to
SISQ, when differently sized vector registers are used for
processing 64-bit values of a single column. As already
described in Sect. 4.1, we can only report results for 128-
bit wide registers for the Kunpeng processor, since it does
not provide any larger registers. SIMQ can process 2, 4 and
8 queries in one register for 128, 256 and 512-bit wide reg-
isters, respectively. At first sight, we observe that both Intel
platforms generally display the same scaling behavior with
increasing register size. However, we want to point out that
the vector register size correlates with the number of queries
within our workload. Consequently, the number of threads
grows linear with the SIMD-register size for SISQ. Compar-
ing the qps on the Xeon Gold and the Kunpeng for 128-bit
wide registers, executing two queries on two threads concur-
rentlywith a sequential execution (cf. Fig. 6a1),we can report
an improvement of almost 2. The same observation holds for
256-bit and 512-bit wide registers on the Xeon Gold, respec-
tively. As mentioned in the previous section, our queries are
memory-bound on the Xeon Gold 6126; wider vector regis-
ters do not improve the query throughput. Thus, the qps raise
is an immediate consequence of inter-query parallelism.

However, our workload execution using a single thread
heavily benefits from higher data-level parallelism on the
Xeon Phi by nearly doubling the qps when the size of the
used vector register is increased by 2x. Consequently, we
expected a corresponding improvement for the inter-query
parallel processing. Interestingly, a second thread improves
the execution of two queries using SSE by only 1.35x, 1.9x
with four threads using AVX2, and 3.39x with eight threads
and AVX512, respectively. We argue that the absence of an
L3 cache, shared among all cores and can therefore be used to
avoid redundant memory transfers, leads to this suboptimal
improvement.
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Fig. 7 Evaluation results of our systematic comparison of SISQ (1
thread per query) and SIMQ (1 thread total). We report the number
of queries that are executed per second by the system as bars and the

relative improvement of reached qps per thread of SIMQ compared to
SISQ as a range displayed as the text above the bars
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Comparing the average qps of a multi-threaded SISQ exe-
cution with our SIMQ approach, we see that for almost
all cases, inter-query parallelism outperforms our approach
slightly. However, considering the deployed resources, SIMQ
achieves a higher efficiency on all investigated platforms up
to 8.44x.

(ii) Influence of column-sharing modeWe executed the
experiments of Fig. 7b1–b3 with 64-bit data elements within
AVX512 registers and thus eight concurrent queries on the
Intel processors and 16-bit data elements for eight queries on
theKunpeng.As expected, a lower degree of shared columns,
i.e., a higher column count, leads to an overall decrease in
the performance.While this is expected for SIMQ—themore
columns we have to load into one register, the fewer data
can be shared—it also applies for SISQ although to a lesser
extent. This stems from the decrease in implicitly sharable
data access through the shared caches. Here, the scenario of
1 shared column among all threads is expectedly the best
case for SIMQ, with an improvement of 7.78x and 8.44x on
the Xeon Gold and Phi, respectively. Contrary to the Intel
hardware, SIMQ can only outperform SISQ when accessing
less than four columns on the Kunpeng processor.

(iii) Influence of query count This set of experimentswas
executed on AVX512 registers with 64-bit data elements on
Intel processors and with 16-bit elements for Kunpeng; all
are using one column. Figure 7c1 and c2 basically follows the
trend from Fig. 7a1 and a2. We observe that increasing the
query count of SIMQ inside one AVX512 register behaves
almost identical to using the maximum query count for SSE
(128-bit) or AVX2 registers (256-bit). An actual relative
improvement of SIMQ over SISQ on the Kunpeng processor
can be observed for at least 4 concurrent queries. Below that
threshold, the data massage inside the SIMQ proxy creates
too much overhead.

(iv) Influence of value size The value size directly influ-
ences the number of concurrent queries inside a register. We
ran these experiments on 64-, 32-, 16- and 8-bit wide data
elements using AVX512 registers for Intel processors, while
varying the thread count for SISQ between 8, 16, 32 and 64
queries. For the Kunpeng processor, this results in 2, 4, 8,
16 threads, due to narrower register size of ARM Neon. All
queries share one column, i.e., full column-sharing. Notably,
the Intel Xeon Phi does neither support vectorized processing
of 16- or 8-bit elementswith 512-bit vector registers, and thus
we did not run the experiments for these configurations. On
the XeonGold, we see a tremendous increase of qps for SISQ
when operating on smaller values. However, considering the
qps per core,we can report a relative improvement ofSIMQof
up to almost 20x for 8-bit values. Itmust be noted that for 8-bit
values, 64 queries are executed on 64 threads and 32 threads
for 16-bit values, respectively. Since the Xeon Gold has only
12 physical (and 24 logical) cores, every thread executes two
to three queries. Consequently, the query throughput depends

on the thread scheduling to a certain extent. We argue that
this is the main reason for the lower improvements for 8-bit
and 16-bit values. On the Xeon Phi, the SISQ query through-
put is almost increased by 2x when processing 32-bit values
with 16 threads compared to 64-bit values with eight threads.
Surprisingly, SIMQ can keep up with this improvement lead-
ing to a 2x higher relative improvement (15.54x) compared to
64-bit values.OnKunpeng, SIMQ cannot competewith inter-
query parallelism from a pure query throughput perspective.
Especially for smaller values, we see a significant descent of
the query throughput, probably due to the increased overhead
of reorganizing the data. However, when it comes to resource
utilization, SIMQ is slightly better compared to SISQ with a
maximum improvement of 1.35x with 32-bit values.

(v) Influence of operator variance As for the previous
setups, the experiments in Fig. 7e1, e2 use AVX512 with
64-bit data and thus 8 concurrent queries, while Kunpeng
in Fig. 7e3 uses 16-bit data; all three employ full column-
sharing. We expected the query throughput for SISQ to be
unaffected by operator variability. Surprisingly, the experi-
ments show that different operators decrease the performance
significantly. On the one hand, this probably results from the
additional memory which contains the instruction code, pri-
marily when two logical cores execute different code paths
since the L1i-cache has to be flushed whenever a context
switch occurs. On the other hand, the vectorized min/max
vector instructions have a higher latency than the vectorized
sum instruction. Notably, this benefits the relative improve-
ment per core of our SIMQ approach with up to 4.55x better
efficiency on the Xeon Gold, 2.35x on the Xeon Phi, and
1.89x on ARM for three subsequent operators, respectively.

(vi) Influence of batch sizeVarying the batch sizes for our
workload execution does not strongly influence the average
query throughput. Interestingly, the impact on SISQ is con-
trary to SIMQ for the Xeon Gold and Xeon Phi. On the Xeon
Gold, smaller batches of data lead to higher query through-
puts for SISQ while it harms SIMQ. Unlike for the Xeon
Gold, SISQ benefits from bigger batches on the Xeon Phi,
while a batch-at-a-time processing style has no significant
impact on the query throughput of our SIMQ approach.

Lessons learned Inter-query parallelism can be very ben-
eficial in a scale-up system for the overall query throughput.
This seems to be particularly the case when the executed
queries are memory-bound, and the underlying memory bus
system does not work to capacity serving a single thread.
If the workload offers shareable memory access, inter-query
parallelism may benefit more by omitting costly memory
transfers into the cache if the cache is shared across multiple
cores. However, when taking the number of used processing
resources into account, SIMQ improves the overall efficiency
while keeping upwith themulti-threaded state-of-the-art pro-
cessing model in some best-case scenarios.
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4.2.2 Parallelized throughput on a thread budget

The budgeted execution experiment limits the number of
parallel threads to 8, while we used the same thread-to-
core assignment as in the previous experiment. First, we
spawned all threads and synchronized the start of their work-
load executions. Once all threads were ready to go, they were
triggered to infinitely execute our query patterns, but with
continuously varying filter predicates to simulate a more nat-
ural workload scenario. We measured the overall throughput
by incrementing the per-thread query count by 1 after each
complete iteration for SISQ and simply by 8 for SIMQ, since
we pack 8 queries into one register. The experiments were
then executed for 60 seconds each. Figure 8 shows the rel-
ative query throughput of SIMQ compared to SISQ on all
processors.

To compare the different experiments, we divide the total
executed queries of SISQ by the accumulated CPU time of
all SISQ threads in seconds (qpsSISQ). The same applies to
the queries executed using SIMQ (qpsSIMQ). The relative
improvement is then calculated as the quotient of qpsSIMQ

and qpsSISQ.
(i) Influence of SIMD-register sizeAs already described

in the previous sections, in our first experiment, we varied
only the size of the used vector register. All queries accessed
a single pair of columns, consisting of 64-bit values. The
SIMQ variants executed two queries per thread in parallel
when using 128-bit vector registers and four queries for 256-
bit, and eight queries for 512-bit. Consequently, using eight
threads in total, the SIMQ approach executes up to 64 queries
concurrently compared to only eight queries when using the
traditional SISQ approach.

In contrast to the previous experiments (cf. Fig. 7a1), the
query throughput remains nearly unaffected by wider vector
registers when processing one query after another, going up
from 344.15 queries per second to 373.42 qps for 256-bit
vector registers and 375.4 qps for 512-bit vector registers,
respectively. Contrary, when using SIMQ, doubling the vec-
tor size leads to a almost two times higher query throughput,
starting with 478.08 qps when operating on 128-bit vector
registers and 886.11 qps or 1715.98 qps for either AVX2
or AVX512. Consequently, SIMQ achieved an up to 4.57x
higher throughput than its SISQ counterpart on the Xeon
Gold which is shown in Fig. 8a1. On the Xeon Phi tradi-
tional vector processing benefits from wider vector registers.
Using 128-bit vector registers, we observed an average query
throughput for our SISQ implementation of 28.92 qps. When
the vector register size is doubled, the throughput increases
to 62.13 qps, ending up with 108.57 qps for 512-bit vector
registers. As expected, the relative improvement of SIMQ
for wider vector-registers on the Xeon Phi is similar to the
Xeon Gold, yet lower in general. At the maximum, the query
throughput is increased by a factor of 2.57x, resulting in

a query throughput of 278.55 qps using SIMQ-BUFFER.
Running on the Kunpeng, SISQ processing finished on aver-
age 147.34 queries per second while SIMQ carried out up to
193.72 qps resulting in a maximum improvement of 1.33x.

(ii) Influence of column-sharingmodeWhen comparing
Fig. 8b1–b3 to our single-thread experiments (cf. Fig. 6b1–
b3), we can see a similar picture. However, the achieved
improvements of SIMQ are slightly less than their single
threaded counterpart. Surprisingly, on the Xeon Phi the ran-
dom access SIMQ-proxy, i.e.,SIMQ-GATHER, improved the
overall query throughput by up to 1.55x, executing 107.04
qps compared to 69.14 qps for SISQ, as long as there were
some data accesses to share. While on the Kunpeng, we
observed at least the same performance for one and two
accessed columns in the single thread scenario. Accessing
more different columns, however, leads to a decreased query
throughput. As already seen in the previous experiments, the
SIMQ-BUFFER does not pay off in any situation on ARM,
except when processing 64-bit values.

(iii) Influence of query count In this experiment, all
queries used AVX512 registers with 64-bit data elements and
16-bit elements on the Kunpeng, respectively. All queries
operate on one column pair. Figure 8c1, c2 again follows the
trend from Fig. 8a1, a2. The more queries were executed in
parallel using SIMQ, the better the improvements. Notably,
the introduced overhead for preparing the vector registers to
be used via SIMQ processing does not vanish on the Xeon
Phi. This leads to an improvement for one query using SIMQ
of up to 1.7x and 1.77x for two queries, resulting in 148.3
qps and 153.44 qps, respectively. The results of our experi-
ments on the Kunpeng, showed in Fig. 8c3 again show that
on ARM using 128-bit vector registers, SIMQ needs at least
four queries to pay off.

(iv) Influence of value size The results of our experi-
ments investigating the impact of the processed value size
are depicted in Fig. 8d1–d3.As already described, the biggest
available vector register was used. Every query accessed on
column pair and the number of queries executed by our SIMQ
approach depends on the investigated value size.When 64-bit
values are processed, eight queries were executed in parallel
per thread, four queries for 32-bit values, respectively. While
the Xeon Phi only fully supports these two value sizes, the
Xeon Gold and the Kunpeng also support vector processing
on byte and word-sized values. As shown in Fig. 8d1, d2, the
relative improvements on the tested follow the same trend
as from our single-thread evaluation (cf. Fig. 6d1, d2). SISQ
achieved the highest qps when operating with 64-bit values
while SIMQ reached its peak performance on Intel machines
with 32-bit values and with 64-bit values on the Kunpeng,
respectively.

(v) Influence of operator variance The impact of opera-
tor sharing on the Xeon Gold, depicted in Fig. 8e1 is similar
to the single-thread scenario, shown in Fig. 6e1, yet again,
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Fig. 8 Evaluation results of our systematic comparison of SISQ and SIMQ using a thread budget of 8 threads
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the improvements of SIMQ over SISQ are smaller compared
to their single-thread counterpart. On theXeon Phi, this trend
is continuing. However, while SIMQ in the single-thread
case is beneficial for up to two subsequent operators, when
executed in an SMT environment, the queries have to be
structural and functional congruent to be efficiently paral-
lelized via SIMQ. The same applies to the Kunpeng, wherein
the best-case scenario, an improvement of up to 1.21x, which
translates to 115.02 qps compared to 90.27 qps using SISQ,
could be reached. In themeasuredworst-case scenario, SIMQ
reduces the query throughput by up to 1.79x (76.81 qps) for
SIMQ-BROADCAST and 3.7x (37.14 qps) when using the
generally sub-optimal performingSIMQ-BUFFER onARM.

(vi) Influence of batch size As already discussed in the
previous evaluation sections, when executing our queries
using a vector/block-at-a-time processing model, the used
batch size does only slightly affect the overall behavior on
the Xeon Gold and Kunpeng.

Lessons Learned: As expected, SIMQ can also leverage
inter-query parallelism. Consequently, the query throughput
can be significantly improved compared to a state-of-the-
art vectorized processing. As already shown in the previous
experiments, the different SIMQ-proxies perform pretty sim-
ilarly, except for the gather. However, it seems to be the
case that every architecture has a single proxy that per-
forms best, regardless of the particular situation. On the
Xeon Gold, we see that SIMQ-SET performs best, while
it is SIMQ-BROADCAST on the Xeon Phi and Kunpeng,
respectively.

5 Discussion

Existing work-sharing solutions typically aim to decrease
I/O costs by increasing the number of computations on data
in fast memory, e.g., cache, or even wholly omitting redun-
dant memory accesses. The first class is typically carried out
through highly specialized database operators like a Coop-
erative scan. The latter is implemented by reusing common
intermediate results of several queries through plan adjust-
ments and intermediate materialization.

Our approach, however, uses state-of-the-art SIMD exten-
sions to trade hardware-provided data-level parallelism for
query parallelism on a conceptual level. Furthermore, we
designed our prototype as a proxywhichmay replace the data
accessing part of an arbitrary existing vectorized database
operator. Therefore, we argue that our approach could be
compatible with other work-sharing techniques to improve
those even further.

However, to better grasp our approach, we compare it with
two prominent representatives of the work-sharing classes
described above, namely (i)CooperativeScans and (ii)MQO,
respectively.

Cooperative scans are specialized Scan-Operators that
repeatedly iterate over a chunk of data—typically base-
data—and execute multiple scan operations on the loaded
data for every query which registered itself in a dedicated
queue. Cooperative Scans enable diverse predicate compara-
tors and predicate values on the same predicate attribute.

Our approach, however, fundamentally changes the way
of transferring and organizing data into vector registers.
Therefore, a higher degree of freedom in data access can
be achieved than with Cooperative Scans since it is possible
to load from different base data locations and even interme-
diates. However, as already mentioned above, our approach
depends on database operators using the exact vector instruc-
tions.
MQO denotes a class of workload optimization techniques,
where similar (sub)queries within a workload are identified,
and the results are calculated once, materialized, and reused
by other queries. While this can be very beneficial for reduc-
ing a given workload’s compute and memory costs, a crucial
requirement for MQO is sharable (sub)queries where one
subquery produces the same result or at least a superset of
the results required by the other (sub)queries. This neces-
sity makes determining suitable candidates for materializing
intermediate results particularly challenging.

Our approach does not omit any computations but exe-
cutes one database operator of multiple queries at a time
using SIMD data-level parallelism. The results of every exe-
cuted operator are zipped together, producing a superset of
those operators.While this reduces the complexity of finding
suitable sharing candidates, the result size grows linearly by
the number of parallel executed operators. By creating those
zipped supersets of multiple results, two challenges arise. On
the one hand, it may be necessary to partially unzip the com-
bined results if the succeeding operator does not exhibit the
same sharing potential as the prior operators.

This led to a remarkable decline in the overall speedup of
our approach, as depicted in Figs. (6, 7, 8)e. On the other
hand, since our approach can combine and concurrently exe-
cute operators that access different data of various sizes, the
number of concurrent operators may decline over time. It
remains to be examined how those shifts of concurrency
can be addressed efficiently from an algorithmic point of
view. However, we argue that both challenges underline the
necessity of a runtime adaptive proxy design, which enables
workload- and data-dependent adjustments for using vector
registers as a shared resource across multiple database oper-
ators.

Our experiments showed that our novel approach of using
vector registers as a shared resource could substantially
increase the overall query throughput of a workload. How-
ever, we argue that the decision about which query-operators
can be shared and how they should be shared is not trivial
and opens an interesting field for further research.
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6 Conclusion

In this paper, we have presented a novel approach facilitating
vector registers as a work-sharing resource. We imple-
mented and systematically compared a state-of-the-art fully
vectorized single-query (SISQ) executionwith our novel pro-
posed multi-query vectorized (SIMQ) execution approach
for workloads consisting of concurrent queries with a sim-
ilar structure. Our key finding is that SIMQ achieves high
speedups compared to the state-of-the-art SISQ execution in
a single-threaded environment. Furthermore, we observed
a reasonable SIMQ performance without significant draw-
backs compared to SISQ in worst-case scenarios such as (i)
no data-sharing between concurrent queries or (ii) only a sin-
gle query within a workload. In addition, we could show that
SIMQ can be efficiently used to reduce the overall computa-
tion resources needed to execute a workload while keeping
up in terms of execution time in a multi-thread environ-
ment. Also, we demonstrated that using a multi-threaded
multi-query vectorized approach in an environment with
strict limitations to the available compute resources can sig-
nificantly increase the average query throughput. Thus, we
deduce that SIMQ can be very beneficial in single-threaded
as well as multi-threaded environments. Finally, we showed
that there is no single best way of implementing SIMQ and
the advantage depends on the size of used vector registers
as well as workload and query-specific parameters. Thus,
we conclude that vector registers offer great potential as a
work-sharing resource and this potential increaseswith grow-
ing vector sizes which open up a broad spectrum of future
research opportunities.
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