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Abstract
Clustering is a fundamental primitive in manifold applications. In order to achieve valuable results in exploratory clustering
analyses, parameters of the clustering algorithm have to be set appropriately, which is a tremendous pitfall. We observe
multiple challenges for large-scale exploration processes. On the one hand, they require specific methods to efficiently
explore large parameter search spaces. On the other hand, they often exhibit large runtimes, in particular when large datasets
are analyzed using clustering algorithms with super-polynomial runtimes, which repeatedly need to be executed within
exploratory clustering analyses. We address these challenges as follows: First, we present LOG-Means and show that it
provides estimates for the number of clusters in sublinear time regarding the defined search space, i.e., provably requiring less
executions of a clustering algorithm than existingmethods. Second,we demonstrate how to exploit fundamental characteristics
of exploratory clustering analyses in order to significantly accelerate the (repetitive) execution of clustering algorithms on
large datasets. Third, we show how these challenges can be tackled at the same time. To the best of our knowledge, this is
the first work which simultaneously addresses the above-mentioned challenges. In our comprehensive evaluation, we unveil
that our proposed methods significantly outperform state-of-the-art methods, thus especially supporting novice analysts for
exploratory clustering analyses in large-scale exploration processes.

Keywords Exploratory clustering analysis · Exploration · Clustering · Centroid-based clustering

1 Introduction

Clustering is a fundamental primitive for exploratory tasks.
Manifold application domains rely on clustering techniques:
In computer vision, image segmentation tasks can be formu-
lated as a clustering problem [21,48]. Documents may be
clustered to support faster information access and retrieval
[10,36]. For business purposes, clustering may be used for
grouping customers, for workforce management or for plan-
ning tasks [32,45]. In biology, clustering is applied to study
genome data amongst others [9].
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Jain identified three main general purposes of cluster-
ing throughout these and many more application domains,
which emphasize the exploratory power of clustering anal-
yses [37]: (i) Assessing the structure of the data. Here, the
goal is to exploit clustering to gain a better understanding
of data, to generate hypotheses, or to detect anomalies. (ii)
Grouping entities. Clustering aims to group similar entities
into the same cluster. Thus, previously unseen entities can be
assigned to a specific cluster. (iii) Compressing data, i.e., to
use the clusters and their information as summary of the data
for further steps.

Due to their apparently linear runtime behavior, centroid-
based clustering algorithms [13], such as k-Means [40,41],
k-Medians [11,38], or k-Mode [35] are commonly used
[53]. However, the expected number of clusters k has to be
provided prior to the execution of these algorithms. Espe-
cially for arbitrary, previously unknown datasets, estimating
this number is a tremendous pitfall and requires particu-
lar caution. Wrong values for k lead to questionable results
regarding the above-mentioned purposes, i.e., wrong struc-
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Fig. 1 Exploratory clustering analysis for valuable clustering results.
Within an exploration iteration, the centroid-based clustering algorithm
is executed

turings, groupings or compressions are performed, making
the clustering results unusable in the worst case.

1.1 Problem statement

Several methods have been proposed to estimate the num-
ber of clusters in arbitrary datasets [12,15–17,30,44,46,49,
51,52]. These methods rely on a search space R, which is
typically defined by analysts and is thus highly influenced
by their domain knowledge. Hence, we have to distinguish
between experienced and novice analysts: Experienced ana-
lysts may use their strong domain knowledge to reduce R
to a manageable size. In contrast, novice analysts typically
lack in-depth domain knowledge and therefore often define
larger search spaces, because of the underlying uncertainty.

Figure 1 shows the typical procedure of exploratory clus-
tering analyses as they are performed by commonly used esti-
mation methods. Exploratory clustering analyses comprises
an exploration process (depicted in blue), which performs
several exploration iterations. Each iteration includes steps
to (1) define execution settings, i.e., choosing the param-
eter value k within the given search space R, (2) execute
the centroid-based clustering algorithm (depicted in green),
and (3) evaluate the clustering result. Depending on the esti-
mation method, several execution settings may be defined,
i.e., the centroid-based clustering algorithm is typically exe-
cuted multiple times with varying parameter values k ∈ R.
The centroid-based clustering algorithms used in step (2)
performseveral clustering iterations,where eachof these iter-
ations consists of three steps: (2a) k centroids are initialized.
These centroids are centers of gravity for a certain cluster,
such as the mean value of the cluster for k-Means. (2b) In
the “improve clustering” step, entities from the dataset are
assigned to the closest centroid. (2c) Check for convergence,
i.e., check if an entity changed its membership to another
cluster. If not, the algorithm converges. However, if an entity
changed its membership, another clustering iteration is per-
formed. Hence, in step (2a), the centroids are moved to the
center of each corresponding cluster.

Existing estimationmethods commonly use two strategies
to explore the search space: (i) An exhaustive search inR is
often conducted. Awell-known estimationmethod following

this search strategy is the elbow method [50]. (ii) R can be
explored in a non-exhaustivemanner, i.e., stopping the search
as soon as the clustering results of subsequent values for
k ∈ R differ only marginally. A common method following
this approach is X-Means [44].

We observe three main challenges regarding exploratory
clustering analyses:

Challenge 1 (C1) The runtime complexity of the explo-
ration process (depicted in blue in Fig. 1) lies in O(|R|) for
a search space R. That is, in the worst case, a clustering
algorithm needs to be executed for each value of k ∈ R.
Note, that this worst-case scenario also holds true for non-
exhaustive estimation methods. Hence, existing estimation
methods do in particular not address an efficient exploration
in large search spaces.

Challenge 2 (C2) Regarding the repetitive execution of
the centroid-based clustering algorithm (depicted in green in
Fig. 1), we face the following problem: Typically, k-Means is
used as an instantiation of a centroid-based clustering algo-
rithm due to its simplicity and apparently appealing runtime
behavior in contrast to other clustering algorithms, which
have higher runtime complexities per se. Yet, as an in-depth
analysis of the k-Means algorithm unveils, it has a super-
polynomial runtime in the input size in the worst case [4].
Hence, each single execution of a clustering algorithm may
become very time-consuming on large datasets.

Challenge 3 (C3) Related work proposes novel methods
to address either C1 or C2, yet they ignore their interde-
pendencies. However, these interdependencies are of high
relevance for exploratory clustering analyses, since novice
analysts typically define large parameter search spaces while
using large datasets. This results in large-scale exploration
processes. Hence, there is currently no feasible support for
novice analysts in order to achieve valuable clustering results
in large-scale exploration processes in a reasonable time.

1.2 Our contributions

In this work, we address the aforementioned challenges.
Regarding C1, we present LOG-Means, which is able to
overcome the pitfalls of existing estimation methods. Simi-
larly to existing methods, LOG-Means draws on individual
clustering results from R, yet aims for significantly fewer
executions of a clustering algorithm until an estimation can
be made. Thus, it is of particular interest for large search
spaces, as they might be defined by novice analysts. To
address C2, we exploit specific characteristics of the proce-
dure of exploratory clustering analyses (cf. Fig. 1) in order to
accelerate the repetitive executions of a centroid-based clus-
tering algorithm. Finally, we address C3 by unveiling how
existing estimation methods, as well as LOG-Means, can be
significantly accelerated, thus supporting novice analysts in
large-scale exploration processes. To the best of our knowl-
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edge, there is no prior work, which (i) exploits characteristics
of exploration processes in order to accelerate estimation
methods, (ii) systematically analyzes these interdependen-
cies with several commonly used estimation methods, and
(iii) thus unveils strong benefits for large-scale exploration
processes.

The contributions of this paper are partially based on our
previous works to address C1 [23] and C2 [24,25] inde-
pendent from each other. We significantly extend our prior
work by presenting additional contributions related to C3,
i.e., exploratory clustering analyses in large-scale exploration
processes. Overall, the contributions are as follows:

– We describe our estimationmethod LOG-Means and dis-
cuss it in comparison to existing estimation methods.

– We analyze LOG-Means and demonstrate that it provides
better estimates and scales sublinearly with the search
space, thus being a strong fit for large search spaces.

– We present Delta Initialization, which uses results of a
previous execution of a centroid-based clustering algo-
rithm to enhance subsequent executions.

– We summarize our Generic Qualitative Approximation
to reduce the clustering iterations, while still achieving
high qualitative clustering results.

– We show how Delta Initialization and Generic Quali-
tative Approximation can seamlessly be integrated into
the generic procedure of exploratory clustering analyses,
e.g., into existing estimation methods.

– In our evaluation on an Apache Spark cluster, we unveil
that several estimationmethods highly benefit fromDelta
Initialization and Generic Qualitative Approximation,
i.e., speedups of 6× were achieved, while also achiev-
ing more accurate estimates.

– Finally, we show that LOG-Means and Generic Quali-
tative Approximation significantly outperform state-of-
the-art approaches for exploratory clustering analyses,
as speedups of more than 34× (more than 7 hours)
are achieved, while simultaneously achieving up to
50× more accurate estimates. Hence, especially novice
analysts highly benefit when exploring large-scale explo-
ration processes. To the best of our knowledge, this is the
first systematic evaluation addressing C3 in detail.

1.3 Structure of this work

The remainder of this paper is structured as follows: In
Sect. 2, we present related work, i.e., existing estimation
methods andmethods to accelerate centroid-based clustering
algorithms.We reveal the procedure ofLOG-Means inSect. 3
and analyze it in detail. In Sect. 4, we address the repetitive
execution of a centroid-based clustering algorithm and show
howDelta Initialization andGeneric Qualitative Approxima-
tion can seamlessly be integrated into the generic procedure

of exploratory clustering analyses to accelerate these execu-
tions. In Sect. 5, we discuss the results of our experimental
evaluationunveiling thebenefits ofLOG-Means andour prior
work regarding efficiently performing exploratory clustering
analyses for valuable clustering results. Finally, we conclude
this work in Sect. 6.

2 Related work

As shown in Fig. 1, exploratory clustering analysis relies on
a repetitive execution of a clustering algorithm with varying
execution settings. Since there is currently no work address-
ing C3, we divide relatedwork into two categories, according
to challenges C1 and C2: First, we investigate fundamental
characteristics of estimation methods for the number of clus-
ters, since they perform an exploratory clustering analysis in
a (semi-)automated manner. Second, we examine how clus-
tering algorithms can be accelerated, since they are at the
core of exploratory clustering analyses.

2.1 Estimationmethods

Estimation methods require a prior definition of the search
space R for the expected number of clusters. R is a dis-
crete range of values for k ∈ N where the actual number of
clusters is expected to be in. Since clustering groups sim-
ilar entities together, this search space is in the worst case
R = [2; n − 1], where n is the number of entities in the
dataset. An experienced analyst may be able to significantly
reduce the search space based on prior domain knowledge.
However, especially for novice analysts, advanced estima-
tion methods are of paramount interest to efficiently estimate
the number of clusters. Such estimation methods follow a
common procedure of three steps, which we dub exploration
iteration (cf. Fig. 1, depicted in blue): (1) Define execution
settings, i.e., which parameter inR to execute on which sub-
set of the data, (2) execute the clustering algorithm with the
defined execution settings, and subsequently (3) evaluate the
clustering result.

In general, estimation methods can be divided into dif-
ferent categories: They are either exhaustive, meaning they
perform an exhaustive search and execute the clustering algo-
rithm for each k ∈ R, or they are non-exhaustive in the sense
that they do not perform an exhaustive search. Moreover,
these methods either work in an automated or in a semi-
automaticmanner, i.e.,with user interaction. In the following,
we briefly present related work for these categories. For a
more detailed discussion of estimation methods, we refer to
our previous paper [23].

Exhaustive estimation methods These methods execute a
clustering algorithm for each k ∈ R and subsequently evalu-
ate each result, e.g., according to a clusteringvaliditymeasure
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Fig. 2 Elbow graph. Red circles depict possible bends that may be
selected by analysts [23]

[12,15–17,46,49]. Finally, the best result is selected as an
estimation for k. Estimation methods in this category mainly
differ in the validity measures they use to evaluate the quality
of a single clustering result, e.g., they use clustering validity
measures or approaches from information theory [22].

Non-exhaustive estimationmethodsNon-exhaustivemeth-
ods perform an ascending search in R and stop as soon as
subsequent clustering results differ only marginally accord-
ing to a certain evaluation criterion. Typical criteria used
by non-exhaustive estimation methods are clustering valid-
ity measures [51], criteria from information theory [44], or
criteria addressing the data distribution within the resulting
clusters [30].

Semi-automatic methods While all the estimation meth-
ods presented above are purely automated, there is also the
group of semi-automated methods. Undoubtedly, the elbow
method [50] is themost commonlyusedmethodof this group.
The elbow method was first discussed by Thorndike [50]. It
comprises four steps: (i) Execute a centroid-based clustering
algorithm, e.g., k-Means, for each k ∈ R, (ii) calculate the
variance of each clustering result, e.g., sum of squared errors
(SSE) for k-Means, (iii) plot the results in a graph, and (iv)
select the bend in the graph. As the first two steps are straight-
forward and do not differ from existing exhaustive estimation
methods, we focus on the latter two steps. Figure 2 shows an
example of an elbow graph as it is created in the third step.

Here, k ∈ R is depicted on the x-axis and the correspond-
ing SSE values are shown on the y-axis. The intuition of this
graph is to visually show after which k ∈ R the reduction
of the SSE becomes negligible with an increasing value for
k. This point can be seen as a “bend” in the graph, similarly
to the bend of the human’s elbow. That’s why practitioners
coined the name elbow method for this estimation method.
It is the task of an analyst to select this bend in the fourth
step, which is however often very ambiguous (possible bends
depicted in red in Fig. 2). By selecting a bend, the analyst
prevents an overfitting of the clustering to the data in terms
of a too high value for k, where no crucial additional benefits
are achieved. In conclusion, the elbow method consists of
automated parts (steps i - iii) and parts that require human
interaction (step iv) in order to estimate the number of clus-
ters in a dataset.

As this overview shows, existing estimation methods rely
on the excessive execution of a clustering algorithm. Exhaus-
tive methods execute such an algorithm for each element
in R. Even non-exhaustive methods typically draw on an
excessive execution of a clustering algorithm until they stop.
Furthermore, there is no theoretical guarantee that they stop at
all, i.e., in the worst case, they perform an exhaustive search.
Hence, these approaches are not feasible for large parameter
search spaces, since they are costly to perform. In Sect. 3,
we present our novel estimation method LOG-Means, which
addresses this problem of exploring large search spaces by
drawing on a more elaborated search strategy.

2.2 Accelerating clustering algorithms

Since centroid-based clustering algorithms are at the core
of the above-mentioned estimation methods, we focus on
their procedure in the following. These algorithms proceed
in an iterative manner, which means that the same sequence
of steps is repeated until a given convergence criterion is
met. As shown in step (2) in Fig. 1 (depicted in green), each
clustering iteration comprises the following three steps: (2a)
initialize or change the position of the centroids, which are
centers of gravity for a specific cluster, (2b) improve the clus-
tering by (re-)assigning entities to the closest centroid, and
(2c) check for convergence. Many centroid-based clustering
algorithms terminate when no entities change their member-
ship anymore.

Typically, k-Means is used as instantiation of a centroid-
based clustering algorithm across researchers and practition-
ers due to its runtime behavior and its simplicity [53]. The
runtime complexity of k-Means is O(ndωk) [29], where n
denotes the number of entities, d is the number of dimen-
sions, ω is the number of clustering iterations performed,
and k denotes the expected number of clusters. Next, we will
discuss these four influencing factors for exploratory cluster-
ing analyses.

In order to reduce the number of entities n in a dataset,
sampling or coresets [6,7] can be used to ultimately reduce
the runtime of a clustering algorithm. Similar observations
apply to (i) dimensionality reduction techniques, e.g., PCA
or SVD, (ii) embeddings, or (iii) sketches, which all together
aim to reduce the number of dimensions d of a dataset [1].

While n and d are dependent on dataset characteristics,
a prior work from Arthur and Vassilvitskii unveiled, that k-
Means requires in the worst case a super-polynomial number
of clustering iterations until convergence, i.e., ω = 2Ω(

√
n)

[4].Hence, addressing the number of clustering iterationsω is
crucial in order to accelerate clustering algorithms, especially
on large datasets.

There are three aspects of related work, which address
the internals of a clustering iteration: (a) It has been shown
that the initialization of centroid-based clustering algorithms
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is crucial to reduce the number of clustering iterations
[5,8]. The initial centroids of state-of-the-art initialization
techniques are close to their optimum position, therefore
requiring less clustering iterations until convergence than
seeding these initial centroids at random. However, these
approaches typically require more time for the initialization
step as rather simple approaches. (b) Several works address
how a single clustering iteration can be accelerated, e.g., by
making distance calculations faster [18,39] or by caching
previously calculated distances [28]. This mostly addresses
the “improve clustering” step. (c) Undoubtedly, reducing ω

is crucial since it subsumes approaches from (a) and (b).
Therefore, we argue that the “check for convergence” step is
of paramount interest when aiming to reduce ω to a reason-
able size and thereby reducing the runtime of the clustering
algorithm. Note however, that a combination with the other
improvements is possible to achieve additional speedups.

As each clustering iteration comprises many distance cal-
culations, it is not feasible to perform a clustering algorithm
on large datasets until convergence due to the excessive
runtime. Given the importance of the number of clustering
iterations, the question arises when to terminate the algo-
rithm earlier than convergence. An easy approach to reduce
the runtime of the clustering algorithm is to allow a fixed
number of clustering iterations. However, it is challenging to
choose a promising value for this threshold: Too few itera-
tions lead to an imprecise result, whereas too many iterations
lead to a long runtime. A generic threshold for all datasets is
not feasible, because of too many influencing factors, such
as the feature space or data distribution.

Mexicano et al. provide amore generic approach by focus-
ing on the displacement of the centroids after each iteration
[43]. They assume that the maximal centroid displacement
happens in the first iteration. Hence, they propose to stop the
clustering algorithm once the centroid displacement is less
than 5 % of the maximum centroid displacement. Thereby,
they neglect to explicitly set amaximumnumber of iterations.
However, they did not address why the coefficient is set to
5 % and how their approach correlates to the final clustering
quality.

While all of these works consider the acceleration of a sin-
gle execution of a centroid-based clustering algorithm, there
is only little work regarding the acceleration of several exe-
cutions with different parameter values, such as it is common
in exploratory clustering analyses. These few works propose
an improvement regarding two aspects [27,54]: Firstly, they
address the “initialize centroids” step by reusing centroids
and adding randomly selected centroids, such that k cen-
troids are achieved in total for the next exploration iteration.
While this seems like a straightforward approach, several
works have proven - theoretically and empirically - that a
completely random-based initialization leads toworse results
thanmore sophisticated initialization techniques [5,8,14,20].

Secondly, they exploit the triangle inequality in the “improve
clustering” step to reduce the number of distance calcula-
tions. While this is a promising approach as several previous
works have already shown [18,28,31], we argue that this
improvement can be combined with our methods, which
address the remaining steps outlined in Fig. 1. Hence, even
faster exploratory clustering analyses can be conducted.

Summarizing existing approaches to accelerate cluster-
ing algorithms, they mostly address the downsizing of the
dataset, as well as making clustering iterations faster. For
exploratory clustering analyses, there are only very few
works addressing specific steps and unveil only moder-
ate accelerations between 5× to 9× [27,54]. In Sect. 4,
we present our approaches, which accelerate clustering
algorithms tremendously by exploiting fundamental charac-
teristics of exploration processes.

3 LOG-Means

In this section, we present LOG-Means, our novel estima-
tion method for the number of clusters, which particularly
addresses challenge C1. In contrast to existing estimation
methods (cf. Sect. 2.1), LOG-Means proceeds in a greedy
manner, thereby efficiently reducing the number of explo-
ration iterations and thus the number of executions of
centroid-based clustering algorithms. To this end, it exploits
fundamental properties of the elbowmethod, since the elbow
method is commonly used by researchers and practitioners
from several domains. However, as the elbow method has
severe drawbacks, such as the manual selection of the bend,
and suffers thereby from the ambiguity of the term “bend”
(cf. Fig. 2), LOG-Means aims to overcome these problems.

Before detailing on LOG-Means, we briefly summarize
the basics of centroid-based clustering algorithms. Let X be
a dataset with n entities and d dimensions, i.e., X ⊂ R

d .
The goal of centroid-based clustering algorithms is to group
X into k disjoint clusters, such that each entity is assigned
to the closest centroid c ∈ C. As this problem is NP-hard
[3,26], several heuristics exist which aim to approximate the
solution. One of these heuristics is the k-Means algorithm
[40,41]. The goal of k-Means is to find the set C of k centroids
which minimizes the objective function in Equation 1.

φX (C) =
∑

x∈X
min
c∈C

‖x − c‖2 (1)

Here, the Euclidean distance from an entity x ∈ X to the
closest centroid c ∈ C is calculated. φX (C) denotes the sum
of these distances over all entities in X . This sum is also
called the sum of squared errors (SSE). Algorithms like k-
Means move these k centroids to a better position in each
clustering iteration, until their position converges, i.e., until
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(b) Procedure of LOG-Means for i = 1, 2 and the last iteration.

SSE SSE ratio Executing Already executed

Fig. 3 Relation between SSE and SSE ratios is shown. LOG-Means
iteratively halves areas with the highest ratios [23]

no more changes occur. In order to measure the quality of a
clustering result, the SSE can be used. This validity measure
denotes the variance of the resulting clusters, i.e., the smaller
the SSE, the more compact the clusters.

3.1 Intuition

The elbow graph provides valuable properties, which can
be exploited by specialized search strategies. The intuition
of LOG-Means relies in particular on two specific properties
of this graph. Since these properties are valid independent of
datasets and the size of search spaces, LOG-Means preserves
generality by exploiting these properties.

Property 1 In general, the sum of squared errors (SSE) fol-
lows a decreasing trend with an increasing value for k. This
can be shown based on the objective function in Equation 1,
assuming that a global optimum can be found by the clus-
tering algorithm. We proof this property by induction, where
the base case is |C| = |X |, i.e., we cluster with as many clus-
ters as entities in X . The goal of centroid-based clustering
algorithms is to assign entities x ∈ X to centroids c ∈ C,
which are closer to ci than to any other c j with ci �= c j ∈ C.
Hence, for the base case of the induction, each entity x is its
own centroid c, thus having no errors regarding the objective
function, i.e.,φX (C) = 0. Proving the induction step is trivial

based onEquation 1:We argue that if we remove one centroid
from an arbitrary C′ with 1 < |C′| ≤ |X |, the SSE increases,
since the distance between entities and their closest centroids
increases. Turning these observations the other way around,
we conclude that the SSE decreases with an increasing value
for k. A more detailed discussion, which also addresses pos-
sible local optima of the clustering algorithm, is deferred to
Sect. 3.3.

Property 2 The bend describes a significant change in the
elbow graph. Thorndike describes the bend as the sudden
drop of the SSE between two adjacent values for k [50], yet
left a clear definition for the terms “sudden” and “drop” open.
Following his statement on the visual representation of the
bend, we formalize the decrease of the SSE as SSEratiok =
SSEk−1/SSEk . This ratio can be exploited to investigate the
SSE throughout R. The most significant bend is denoted by
max(SSEratiok). Figure 3a shows the SSE ratio for all k ∈
R for an exemplary search space R. Here, the highest SSE
ratio is between k = 8 and k = 9, i.e., the most significant
bend is at k = 9.

Putting both properties together, we aim to avoid an
exhaustive search by calculating the SSE ratio (cf. property
2) for areas of non-directly adjacent values of k ∈ R. Due
to the decreasing character of the elbow graph (cf. property
1), these areas provide a meaningful insight of the SSE ratio.
Hence, the SSE ratio can be used to iteratively shrink these
areas in a greedy manner and subsequently find the bend
efficiently without an exhaustive search inR.

The general idea of LOG-Means is depicted in Fig. 3b.
For each iteration i , crosses show for which values k ∈ R a
clustering algorithm is executed,whereas dots indicatewhere
the SSE is available from previous iterations. After each exe-
cution of the clustering algorithm, the corresponding SSE
value is calculated. Since the SSE ratio is a relative measure
between two clustering results, it is updated whenever new
adjacent SSE values for k ∈ R become available.

For i = 1, k<1>
low = min(R) − 1 and k<1>

high = max(R)

and the clustering algorithm is executed for these two values.
Note, that min(R) must be reduced by one in order to keep
the possibility to predictmin(R) as the value for k due to the
definition of the SSE ratio. Next, the middle element k<1>

mid
halves the area between k<1>

low and k<1>
high . Subsequently, k-

Means with k = k<1>
mid is executed and the SSE ratios of

adjacent values of k<1>
mid are calculated, i.e., the ratios for

(k<1>
low , k<1>

mid ) and (k<1>
mid , k<1>

high ). This allows to identify the
next area with the highest SSE ratio. In Fig. 3b, the highest
ratio is found in the area of (k<1>

low , k<1>
mid ). Hence, for i = 2,

the ratios (k<2>
low , k<2>

mid ), (k<2>
mid , k<2>

high ) and (k<2>
high , k<1>

high ) are

calculated, where the latter is equal to (k<1>
mid , k<1>

high ) (note the
different y-axes). Note, that previously calculated ratios are
kept, if they are not adjacent to k<i>

mid . Subsequently, the same
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procedure is iteratively applied to the area with the highest
ratio.

The search stops as soon as the low and high elements
are directly adjacent. In this area, the SSE ratio in the elbow
graph is expected to be the highest. We denote the value for
k with the highest SSE ratio of klow and khigh of the last
iteration as kbend , since we expect the bend here.

It can be seen that no exhaustive search in the search space
is conducted. However, the idea is to approach the area of the
bend from the left- and the right-hand side of the elbow graph
by following principles from logarithmic search. To this end,
the search space is efficiently narrowed down around the
highest SSE ratio and the clustering algorithm is executed
with only few selected values from R.

As our evaluation in the previous paper unveiled, an
optional additional step may further increase the accuracy
[23]. The reason for this is that kbend may be only a local
optimum. Yet, the global optimum, i.e., max(SSERatio),
is typically within a small ε environment. To this end, the ε

environment around kbend can be optionally evaluated in an
exhaustive manner.

The general procedure of LOG-Means can also be applied
to other centroid-based clustering algorithms, since they also
minimize their specific notion of variance. Yet, we use k-
Means, since it is the most commonly used algorithm of this
family [53].

3.2 Algorithm

Algorithm 1 outlines the pseudo code for LOG-Means. As
LOG-Means draws on executions of a centroid-based clus-
tering algorithm, we assume k-Means as an instantiation
thereof. Furthermore, we do notmake any assumptions about
its execution, i.e., improvements of k-Means (cf. Sect. 2.2)
can be used in the corresponding steps. The algorithm of
LOG-Means is separated into 5 parts:

In the first part, key-value data structures are defined (lines
2 and 3). These data structures keep track of already evaluated
valueswithinLOG-Means.K stores tuples of executedvalues
for k and the corresponding SSE value. M stores tuples of
k and the corresponding SSE ratio between k and the left
adjacent value.

In the second part, i.e., from lines 4 to 7, k-Means is exe-
cuted for klow and khigh . The clustering results are evaluated
according to the SSE and stored in K.

The third part ranges from lines 8 to 20 and narrows down
the search space around the estimated bend in the elbow
graph. Here, the middle element is defined, k-Means is exe-
cuted, the SSE is calculated and stored in K (lines 9-11).
Subsequently, the SSE ratios are calculated in lines 12 and
13. These calculated SSE ratios are stored in M (lines 14
and 15). Since the area with the highest SSE ratio is halved
in each iteration, the corresponding values in M are either

Algorithm 1: LOG-Means [23]
Input:X - dataset, klow - minimum number of desired clusters, khi gh -

maximum number of desired clusters, ε - number of neighbors to
evaluate

Output: kest - estimated number of clusters for X
1 klow ← klow − 1;
2 K ← ∅;
3 M ← ∅;
4 SSElow ← SSE from k-Means with klow ;
5 K ← K ∪ {(klow, SSElow)};
6 SSEhigh ← SSE from k-Means with khigh ;
7 K ← K ∪ {(khigh , SSEhigh )};
8 while ( klow and khigh are not directly adjacent ) {
9 kmid ← �(khigh + klow)/2
;

10 SSEmid ← SSE from k-Means with kmid ;
11 K ← K ∪ {(kmid , SSEmid )};
12 ratiole f t ← SSElow/SSEmid ;
13 ratioright ← SSEmid/SSEhigh ;
14 M ← store or update {(kmid , ratiole f t )};
15 M ← store or update {(khigh , ratioright )};
16 khigh ← k with highest ratio from M;
17 klow ← left adjacent value of khigh from K;
18 SSEhigh ← SSE for khigh from K;
19 SSElow ← SSE for klow from K;
20 }
21 if ε > 0 then
22 kbend ← k ∈ [klow, khigh ] with highest ratio inM;
23 klow ← kbend − �ε/2
;
24 khigh ← kbend + �ε/2
;
25 for ( ∀k ∈ [klow; khigh ] ) {
26 SSEkprev ← SSE of kprev from K;

27 if k ∈ K then
28 SSEk ← SSE for k from K;
29 else
30 SSEk ← SSE from k-Means with k;
31 K ← K ∪ {(k, SSEk )};
32 end
33 ratiok ← SSEkprev /SSEk ;

34 M ← store or update {(k, ratiok )};
35 }
36 kest ← k ∈ [klow, khigh ] with highest ratio in M;
37 return kest ;

stored or updated, if calculated previously. At the end of each
iteration, new values for klow and khigh are set in such a way
that the area between these values localize the highest SSE
ratio (lines 16 and 17). Subsequently, the SSE values for klow
and khigh are retrieved fromK for the calculation of the SSE
ratios in the next iteration (lines 18 and 19). The loop stops
as soon as klow and khigh are directly adjacent.

The fourth part ranges from lines 21 to 35 and is optional,
if an ε > 0 environment is given. To this end, the highest
SSE ratio between klow and khigh is retrieved from M in
line 22. As the bend is expected to be here, this point is
called kbend . Subsequently, the ε environment around kbend
is defined (lines 23 and 24). Within this ε environment, the
SSE values are determined for each value of k. If available
inK, the corresponding SSE is retrieved, otherwise it will be
calculated and stored in K (lines 27-32). Subsequently, the
SSE ratio is calculated and stored inM (lines 33-34).

Finally, the algorithm provides an estimate in line 36 by
selecting the value for k with the highest SSE ratio in M.
Note, that with ε = 0, this would be the same result as when
ignoring the optional fourth step from lines 21 to 35.
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3.3 Analysis

Property 1 states that the elbow graph follows a decreasing
trend for increasing values of k ∈ R. However, as k-Means
is solely a heuristic to the NP-hard centroid-based clustering
problem, the objective function in Equation 1 may com-
prise local optima, i.e., the centroids are not at the globally
best position. Hence, the SSE does not necessarily decrease
monotonously. Yet, it has been proven that enhanced initial-
ization algorithms, such as k-Means++ [5] or k-Means‖ [8],
provide an O(log k)-approximation to the optimal cluster-
ing result w.r.t. the error (SSE) from the objective function in
Equation 1 independent of dataset characteristics, thus sup-
porting this property in most cases.

Despite these local optima, the SSE ratio (property 2) still
provides crucial insights into how the elbow graph changes
between two values for k ∈ R. TheO(log k)-approximation
becomes more noticeable the closer the values for k ∈ R
are evaluated: For far-distant values for k, the approximation
error has only slight impact on the SSE ratio, thus predict-
ing large areas with high SSE ratios mostly correct. Hence,
LOG-Means can efficiently narrow down large search spaces
around areas with high SSE ratios.

For closer distant values for k, especially for direct neigh-
bors of k ∈ R, the SSE and therefore the SSE ratio can be
more strongly influenced by local optima of the clustering
algorithm. This can be seen for example in Fig. 3a at k ≈ 5,
where the SSE does not tend to decrease between two subse-
quent values for k, before it decreases rather strong at k = 6.
SinceLOG-Means keeps all areas and compares them in each
iteration regarding their SSE ratio, we argue that using these
“false” elbows for an estimation is rather unlikely.

Yet, since the areas become smaller in each iteration,
LOG-Means becomes most sensitive towards the O(log k)-
approximation in the last iteration, resulting solely in aminor
deviation from the optimum number of clusters. We argue
and show in the evaluation in Sect. 5 that with theO(log k)-
approximation of state-of-the-art approaches of k-Means,
LOG-Means is able to provide reasonable accurate estimates,
yet no perfect estimates in every scenario. In our previous
paper, we showed that by analyzing an optional ε environ-
ment around the expected bend, the effect of the local optima
of the clustering algorithm can be further reduced [23].

Complexity analysis

As shown in Fig. 1, estimation methods proceed in three
steps: (1) Defining execution settings, e.g., identifying which
parameter to consider next, (2) executing k-Means with the
determined parameter, and subsequently (3) evaluating the
result. As discussed in Sect. 2, existing estimation methods
typically perform an ascending or even worse an exhaus-
tive search in the search space R. Hence, the complexity of

existing estimation methods lies inO(|R|). Furthermore, the
evaluation step can be costly due to a complex metric, which
may lead to an even worse complexity class. Hence, these
strategies require a huge overall runtime until an estimation
can be made. On the contrary, LOG-Means promises a better
runtime behavior regarding R. To analyze this complexity,
we focus on LOG-Means with ε = 0 and address the above
mentioned three steps.

(1) Identifying which parameter to execute next can be
done in O(1) when exploiting matching data structures. In
Algorithm 1, these observations apply to lines 16 and 17,
where the highest SSE ratio is identified. Themiddle element
in this area is calculated in line 9, which can also be done in
O(1), since it is only an arithmetical division.

(2)Executing k-Means.Due to the principle of logarithmic
search, only O(log|R|) executions of the clustering algo-
rithm are required. However, as we do not eliminate areas
with lower SSE ratios, LOG-Means could proceedwith loga-
rithmic search in eliminated and non-eliminated areas within
each iteration. That is,O(log|R|+log|R|) = O(2∗log|R|)
executions of k-Means are performed at highest, which can
be reduced to O(log|R|) again.

(3) Evaluating a single clustering result via the SSEmetric
can be done in linear time for a single clustering result with
k = |C| clusters, because the SSE depends linearly on the
number of clusters in the dataset (cf. Equation 1), i.e., the
complexity lies in O(k). However, since solely O(log|R|)
clustering results are evaluated, the complexity of evaluating
the results also lies in O(log|R|).

Concluding, the overall complexity of LOG-Means is
O(1+log|R|+log|R|), which can be reduced toO(log|R|).
Therefore, LOG-Means outperforms existing estimation
methods, which have a worst-case complexity of O(|R|).

4 Accelerating centroid-based clustering
algorithms in exploratory clustering
analyses

As shown in the previous section, LOG-Means proceeds
very efficiently in order to estimate the number of clusters
in datasets. However, the repetitive execution of centroid-
based clustering algorithms with varying values for k (cf.
Fig. 1) is still at the core of LOG-Means. As already men-
tioned, k-Means as commonly used centroid-based clustering
algorithm requires in the worst-case a super-polynomial
runtime until convergence (cf. Sect. 2.2), thus making the
overall exploration process on large datasets infeasible in
a reasonable time frame. Therefore, the question remains
whether certain characteristics of exploration processes,
which address the repetitive execution of centroid-based
clustering algorithms, can be exploited in order to address
challenge C2.
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As discussed in Sect. 2.2, especially the initialization step
as well as the convergence step of centroid-based clustering
algorithms are crucial in order to reduce the number of clus-
tering iterationsω, thus avoiding a super-polynomial runtime
in the worst-case. Note, that several improvements have been
proposed to accelerate each clustering iteration by exploit-
ing the triangle inequality for example [18,27,28,31,54]. Yet,
still a super-polynomial number of clustering iterations is
required in the worst case.

In the following, we briefly present two prior works from
us in this area, which aim to reduce the number of cluster-
ing iterations. In Sect. 4.1, we present Delta Initialization,
which focuses on the initialization step of centroid-based
clustering algorithms and aims to re-use clustering results
from previous exploration iterations for an enhanced initial-
ization. In Sect. 4.2, we detail on the Generic Qualitative
Approximation, which aims to reduce the number of cluster-
ing iterations for an execution of a centroid-based clustering
algorithm. This approach provides a trade-off between the
achieved clustering quality and the required runtime. Finally,
we show in Sect. 4.3 that these two works can be seamlessly
integrated into exploration processes, such as they are typi-
cally performed by estimation methods, in order to perform
these exploration processes efficiently on large datasets.

4.1 Delta Initialization (DELTA)

Existing initialization strategies for centroid-based clustering
algorithms aim to select initial centroids, which are close
to the entities in X . Therefore, several strategies exist with
different characteristics.

On the one hand, there are fast initialization strategies,
which require only a single pass over the datasetX , yet solely
achieve a very limited quality. A common initialization strat-
egy following this approach is a random initialization [19].
Here, randomly chosen entities from X are selected as ini-
tial centroids. However, there is no guarantee regarding the
quality of the chosen centroids, i.e., they can be very close
to each other, resulting in (i) long runtimes of the clustering
algorithm until convergence, and (ii) questionable clustering
results.

On the other hand, there are slower initialization strategies,
which require several passes over X , yet with a guaran-
teed quality. Common initialization strategies following this
approach are k-Means++ [5] and k-Means‖ [8]. Here, only
the first initial centroid is chosen at random, whereas the
remaining k − 1 centroids are chosen in a greedy manner
by addressing the underlying data distribution. Note, that k-
Means++ is inherently sequential and thus requires k rounds
overX . In contrast, the authors of k-Means‖ showed that their
approach can be performed in parallel and requires solely
O(log ψ) rounds over X , where ψ denotes the SSE after
the first randomly chosen centroid. Therefore, less than k

rounds are typically necessary. Furthermore, both strategies
provably achieve an O(log k)-approximation to the optimal
clustering result, resulting in (i) short runtimes of the actual
clustering algorithm until convergence, and (ii) more valu-
able clustering results compared to random initialization.

While k-Means++ and k-Means‖ achieve more valuable
clustering results in contrast to random-based approaches,
they require a higher runtime for the initialization step. Espe-
cially for exploration processes on large datasets, where the
centroid-based clustering algorithm is repeatedly executed,
the runtime for the initialization step is crucial.

Our approach Delta Initialization efficiently initializes
centroid-based clustering algorithms in exploration pro-
cesses [24]. The underlying idea is straightforward: Instead
of performing a time-consuming initializationvia k-Means++
or k-Means‖ for each execution of a centroid-based clus-
tering algorithm throughout an exploration process, Delta
Initialization re-uses previous clustering results. To this end,
Delta Initialization assumes thatR is explored in an ascend-
ing manner, i.e., the centroid-based clustering algorithm is
executed with kprev before kcur , where kprev < kcur and
kprev, kcur ∈ R. The required results are (i) the set of cen-
troids of a previous execution of a clustering algorithm Cprev ,
where |Cprev| = kprev , as well as (ii) the SSE of this previous
run φX (Cprev). Note, that the centroids Cprev are already at a
(local) optimum position, since the clustering algorithm was
already executed with kprev . This enables Delta Initializa-
tion to solely add Δk = kcur − kprev centroids to a previous
clustering result. The concrete value for Δk depends on the
underlying search strategyof the used estimationmethod: For
exhaustive estimation methods, where the clustering algo-
rithm is executed with every value for k ∈ R, Δk = 1. For
LOG-Means, Δk is typically larger due to the logarithmic
search alike procedure and becomes smaller since the areas
with high SSE ratios are iteratively halved (cf. Sect. 3.1).

Yet, the question remains how these Δk centroids are
selected. In our previous work, we showed that these
centroids can be selected according to k-Means++ and k-
Means‖, yet without the repeated overhead of selecting the
set of Cprev centroids within each execution of the cluster-
ing algorithm. Therefore, Delta Initialization tremendously
reduces the runtime for the repetitive initialization in explo-
ration processes on large datasets. Furthermore, we showed
in our previous work that Delta Initialization achieves even
more valuable clustering results than initializing via k-
Means‖ [24], since it exploits previous clustering results,
where the position of the centroids are (local) optima, which
only emerge after the execution of the clustering algorithm.

4.2 Generic qualitative approximation (GQA)

As discussed in Sect. 2.2, reducing the number of clus-
tering iterations ω is crucial to avoid long runtimes of a
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single execution of a centroid-based clustering algorithm,
i.e., to avoid the super-polynomial runtime of k-Means in
the worst-case. Implementations of centroid-based cluster-
ing algorithms allow to set a fixed threshold for ω, yet it
is typically unclear how to set this threshold: Too few clus-
tering iterations lead to results with poor quality, whereas
too many clustering iterations lead to long runtimes. Hence,
these thresholds are not tangible for novice analysts.

In contrast to that, GQA terminates centroid-based clus-
tering algorithms early based on an arbitrary definable
qualitative demand q ∈ [0; 1], thus providing a tangi-
ble notion when to stop the clustering algorithm [25]. The
intuition behind this approach is that analysts as well as esti-
mation methods for the number of clusters can work with
clustering results, which exhibit a high quality, while avoid-
ing a time-consuming execution of the clustering algorithm
until convergence.

Therefore, GQA relies on the following property: Regard-
ing k-Means as instantiation of a centroid-based clustering
algorithm, the sum of squared errors (SSE) is monotonically
decreasing throughout each clustering iteration. For other
centroid-based clustering algorithms, a similar observation
can be made, since they minimize their specific notion of
variance according to a different criterion.Manning et al. dis-
cuss the monotonic decrease of the SSE for k-Means in more
detail [42], which can be transferred to other centroid-based
clustering algorithms very similarly. We remain generic, i.e.,
we denote the variance of a centroid-based clustering algo-
rithm as defined by the corresponding objective function as
φ(C) (cf. Equation 1 for the objective function of k-Means).

Since the variance is monotonically decreasing, we derive
that the quality of the clustering is becoming better in each
iteration, according to the objective function. Hence, we can
formulate the gain in quality as changes of the variance
between two subsequent iterations. To this end, we focus on
the quotient σi of the variance between two subsequent clus-
tering iterations i − 1 and i , i.e., σi = (φi−1/φi ). Finally,
centroid-based clustering algorithms converge as soon as
φi−1 = φi , hence σi = 1, i.e., the variance cannot be reduced
any further. As σi typically becomes smaller per iteration and
since we do not make any further assumptions on the dataset
X and its variance in order to preserve generality, we con-
clude that σi ∈ [1;∞].

In order to apply GQA, σi (and therefore the respective
notion of variance) has to be calculated for each cluster-
ing iteration. Subsequently, the “check for convergence” step
should be adjusted (cf. step 2c in Fig. 1), i.e., terminate the
clustering algorithm as soon as Inequality 2 is satisfied.

1 − q ≥ σi − 1 (2)

Inequality 2 denotes that further clustering iterations would
typically reduce σi − 1 less than 1 − q.

In our prior work, we showed that considerable run-
time savings of several orders of magnitude are possible,
while regularly meeting several qualitative demands [25].
Thus, novice analysts can easily express a specific qualita-
tive demand q and benefit from high runtime savings, which
are especially of interest for exploratory clustering analyses.

Note, that GQA preserves generality regarding dataset
characteristics or centroid-based clustering algorithms, since
it solely addresses the variance, which can be easily derived
from the objective function throughout each clustering iter-
ation.

4.3 Integration into exploratory clustering analyses

As shown in the previous sections, DELTA and GQA pro-
vide fundamental improvements for efficiently performing
centroid-based clustering algorithms in exploratory cluster-
ing analyses. Yet, the question remains how to combine these
approaches and how to integrate them into exploration pro-
cesses, such that existing estimation methods can seamlessly
benefit thereof.

In order to preserve generality, we cling to the fundamen-
tal procedure of exploratory clustering analyses as shown in
Fig. 1 and demonstrate that DELTA and GQA can be seam-
lessly integrated into it. To this end, we detail on the three
steps of exploratory clustering analyses and show how both
approaches can be integrated appropriately.

(1)Define execution settingsHere, inputs for the execution
of the clustering algorithmare set. In order to useDELTA, our
adjusted k-Means algorithm requires two additional inputs:
(i) Cprev as a previous clustering result from the exploration
process, as well as (ii) φ(Cprev) as its corresponding SSE. In
order to useGQA, the qualitative demandq is a required addi-
tional input.Note, that the inputs forDELTAare set implicitly
by exploiting the results of previous executions of a cluster-
ing algorithm in the exploration process, whereas the input
for GQA is set explicitly by analysts. This input (q - quali-
tative demand) is subject to the analysts’ demands regarding
quality and runtime. Furthermore, it can be regarded as a con-
tinuum between these dimensions: If q is set to a high value,
a high quality is demanded, which requires more clustering
iterations, and thus a longer runtime.Vice versa, a lower qual-
ity can be achieved in a shorter runtime. Thus, q should be
set according to the analysts’ demands regarding the under-
lying exploratory process. Note, that existing approaches in
this area provide no support for novice analysts at all. Thus,
we regard this parameter as a crucial step towards a better
support for novice analysts.

(2) Execute clustering algorithmHere, the centroid-based
clustering algorithm is executed with the predefined execu-
tion settings. Algorithm 2 outlines the adjusted procedure of
k-Means. Changes in contrast to the regular k-Means algo-
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Algorithm 2: Adjusted k-Means algorithm including
options to use DELTA and GQA
Input: X - dataset, k - number of clusters, C prev -

set of centroids from a previous clustering
execution (DELTA), φ(C prev) - SSE from
a previous clustering execution (DELTA), q -
qualitative demand (GQA)

Output: P - a combination (◦) between X and the assigned
centroid c ∈ Ccur for each entity, Ccur - set of final
position of centroids, φ i (Ccur ) - SSE

/* initialize centroids */
1 if Cprev == ∅ then
2 Ccur ← initialize a set of k centroids via k-Means++ or

k-Means‖;
3 else
4 Δk ← k − |Cprev |;
5 Ccur ← initialize a set of Δk centroids via DELTA

with Cprev, φX (Cprev);

6 end
7 i ← 0;
8 repeat

/* improve clustering */
9 for ( ∀x ∈ X ) {

10 P ← {x ◦ c}, where c denotes the closest centroid to the
entity x ;

11 }
12 φi (Ccur ) ← 0;

/* change centroids */
13 for ( ∀c ∈ Ccur ) {
14 c, φ(c) ← new c and its corresponding SSE φ(c)

according to Equation 1, where {x ◦ c} ∈ P;
15 φi (Ccur ) ← φi (Ccur ) + φ(c);
16 }
17 if i > 0 then
18 σi ← φi−1(Ccur )/φi (Ccur );
19 i ← i + 1;

/* check for convergence */
20 until convergence or i > 1 and 1 − q ≥ σ − 1;
21 return P, Ccur , φi (Ccur );

rithm are depicted underlined. Similar as depicted in green
in Fig. 1, the algorithm proceeds in a sequence of three steps:

(2a) Initialize centroids (lines 1-6). If no previous cluster-
ing resultCprev is available, i.e.,when starting the exploration
process, the set of initial centroids are initialized with a
state-of-the-art initialization strategy, such as k-Means++ or
k-Means‖. However, if a previous clustering result is avail-
able, then Δk is calculated (line 4), and Delta Initialization
is used (line 5). Subsequently, several clustering iterations i
are performed, which comprise steps (2b) and (2a’).

(2b) Improve clustering (lines 9-11). Here, all entities x ∈
X are assigned to the closest centroid c.

(2a’)Change centroids (lines 13-18). The centroids,which
are centers of gravity for centroid-based clustering algo-
rithms, are moved to the center of the corresponding cluster
according to the underlying objective function. For k-Means,
the objective function is denoted in Equation 1. Note, that the

overall SSE φi (Ccur ) of a clustering iteration is the sum of
the single variances for each single cluster (line 15). In order
to apply GQA, σi is calculated in line 18. This calculation
of σi requires at least two subsequent clustering iterations,
hence the check for i > 0 in line 17.

(2c) Check for Convergence (line 20). Typically, centroid-
based clustering algorithms converge when no changes
between two subsequent clustering iterations occur, i.e., enti-
ties do not change their clustermembership.We exploit GQA
to set an termination criterion according to Inequation 2 (line
20). Again, at least two subsequent clustering iterations need
to be performed in order to use σi .

Finally, the adjusted k-Means algorithm returns the same
triple as the regular algorithm: (i) a set P , which is a combi-
nation betweenX and the assigned centroid c ∈ Ccur for each
entity, (ii) a set Ccur , which is a set of the final centroids, and
(iii) φi (Ccur ) as the corresponding SSE value. Note, that spe-
cific implementations of k-Means may return only a subset
of this triple, such as solely P .

(3) Evaluate clustering result Here, the clustering result
P is evaluated according to the concrete estimation method
(cf. Sect. 2.1).

It should be emphasized, that the results Ccur and φi (Ccur )
of the current iteration of the exploration process are used as
input, i.e., they become Cprev and φ(Cprev) in the next itera-
tion. Finally, note, that Algorithm 2 preserves generality, i.e.,
it can be used by (a) several estimation methods following
the exploration process outlined in Fig. 1, and (b) several
centroid-based clustering algorithms, since solely the objec-
tive function in line 14 has to be adjusted accordingly.

5 Evaluation

As we have shown in the previous section, DELTA and GQA
can seamlessly be integrated into exploratory clustering anal-
yses. Estimation methods, such as LOG-Means can thus
benefit thereof. Yet, it is unclear to what extent thesemethods
benefit from DELTA and GQA. Hence, the two main ques-
tions for our evaluation are: (i) Towhat extent do DELTA and
GQA accelerate estimation methods? (ii) What is the quality
of the estimates provided by estimation methods when using
DELTA and GQA?

To provide a clear overview of the evaluation, we summa-
rize the key messages in Table 1. Furthermore, this table
shows improvements over the corresponding state-of-the-
art and unveils which of the aforementioned challenges are
addressed, respectively.

The remainder of this section is structured as follows:
Firstly, we discuss the experimental setup. Secondly, we
investigate the runtime benefits, when using DELTA and
GQA within various commonly used estimation methods.
Thirdly, we unveil the effects on the accuracy of estimation
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Table 1 Overview of important key messages of the evaluation and corresponding challenges. Improvements over state-of-the-art show average
values across all synthetic datasets, whereas values for the largest synthetic dataset S-XXVII are shown underlined

Abbr. Key message Improvements over State-of-the-art Challenge

KM1 LOG-Means outperforms existing estimation meth-
ods.

– Speedups of almost 21× (27×) are achievable,
which corresponds to > 8 minutes (> 7 h)

C1

– Up to 54× (100×) more accurate estimates are
achievable

KM2 Existing estimation methods benefit from k-Means
methods, and achieve the best results mostly with
DELTA+GQA

– Speedups of almost 6× (6×) are achievable, which
corresponds to > 7 minutes (> 6 hours)

C2

–Very accurate estimateswith a relative error of 0.1%
(0.2 %) and even less are achievable

KM3 LOG-Means and GQA is best suited for exploratory
clustering analysis

– Speedups of more than 34× (34×) are achievable,
which corresponds to almost 9 minutes (> 7 hours)

C1, C2, C3

– Up to 45× (50×) more accurate estimates are
achievable

KM4 LOG-Means and GQA is a strong fit for large-scale
exploration processes

– Fast estimates in large-scale exploration processes C3

– Accurate estimates with a very small relative error
are achievable

methods, when usingDELTAandGQA. Fourthly, we present
results on real-world datasets, since the previous results were
made on synthetic datasets. Finally, we unveil how DELTA
and GQA influence LOG-Means in particular large-scale
exploration processes.

5.1 Experimental setup

In this section, we present the hardware and software setup
for our experiments. Furthermore, we detail the characteris-
tics of the used datasets, before we discuss the implementa-
tion and details of the experiments.

5.1.1 Hardware and software

We conducted all of our experiments on a distributed Apache
Spark cluster. It consists of one master node and six worker
nodes. The master node has a 12-core CPU with 2.10 GHz
each and 192 GB RAM. Each worker has a 12-core CPU
with 2.10 GHz each and 160 GB RAM. Each node in this
cluster operates on Ubuntu 18.04. We installed OpenJDK
8u191, Scala 2.11.12 and used Apache Hadoop 3.2.0 as well
as Apache Spark 2.4.0.

5.1.2 Datasets

Existingworks onmethods to estimate the number of clusters
in datasets focus on rather small datasets [12,15–17,44,46,49,
51]. They rely on synthetic datasets with different numbers
of entities (up to 36,000), dimensions (up to 10), and clusters

in the dataset (up to 150, however for small datasets). Fur-
thermore, the distribution of the used datasets varies: some
use a Gaussian distribution for each cluster, others create a
2-dimensional dataset and create the clusters manually by
placing the entities close to each other.

For our evaluation, we conducted a comprehensive com-
parison across many existing estimation methods that con-
siders more voluminous datasets and is more systematic with
respect to varying dataset characteristics. To this end, we
focus on 27 synthetic datasets with controlled dataset char-
acteristics as well as on 5 real-world datasets, resulting in 32
datasets in total.

We implemented a synthetic dataset generator. It gener-
ates datasets based on the following input parameters: n as
the number of entities, d as the number of dimensions, and
c as the number of clusters, where each cluster contains n/c
entities.Our tool generates datasetswith values that liewithin
the range [−10; 10] for each dimension. Each cluster has a
Gaussian distribution with the mean at the center and a stan-
dard deviation of 0.5. The c centers are chosen randomly and
the clusters are non-overlapping. Table 2 depicts the charac-
teristics of the 27 synthetic datasets used for the evaluation.

In addition, we used 5 real-world classification datasets
mostly from the UCI machine learning library,1 which are
regularly used to benchmark new algorithms. In order to use
these datasets for clustering, we removed any non-numeric
and symbolic values, IDs, timestamps, class labels and empty
values. Table 3 summarizes the datasets’ characteristics.

1 https://archive.ics.uci.edu/ml/datasets.php
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Table 2 Characteristics of the used 27 synthetic datasets

Abbr. n d c

S-I - S-III 10,000 10 {10; 50; 100}

S-IV - S-VI 10,000 50 {10; 50; 100}

S-VII - S-IX 10,000 100 {10; 50; 100}

S-X - S-XII 100,000 10 {10; 50; 100}

S-XIII - S-XV 100,000 50 {10; 50; 100}

S-XVI - S-XVIII 100,000 100 {10; 50; 100}

S-XIX - S-XXI 1,000,000 10 {10; 50; 100}

S-XXII - S-XXIV 1,000,000 50 {10; 50; 100}

S-XXV - S-XXVII 1,000,000 100 {10; 50; 100}

Table 3 Characteristics of the used 5 real-world datasets, where c denotes #classes

Abbr. Dataset n d c

R-I Avila 10,430 10 12

R-II Dataset for Sensorless Drive Diagnosis 58,509 48 11

R-III MNIST 60,000 784 10

R-IV KDD Cup 1999 Data 4,898,431 34 23

R-V KITSUNE Network Attack Dataset 21,017,597 115 10

Note, that these datasets exhibit similar or even larger char-
acteristics as the synthetic datasets regarding n and d.

5.1.3 Implementation

Analogous to the generic exploration process outlined in
Fig. 1, we investigated several estimation methods, which
perform the exploration process in an automated manner,
as well as several k-Means methods as implementation of
a centroid-based clustering algorithm. In the following, we
detail both aspects and define two experiments for the param-
eter search space R.

Estimation methods

Besides LOG-Means, we implemented several estimation
methods on Apache Spark. This includes very commonly
used exhaustive and non-exhaustive estimation methods as
described in Sect. 2. Table 4 summarizes the 13 methods that
we used throughout the evaluation as well as their abbrevia-
tions that we use for referring to them. Since some estimation
methods drawon parameters, we used recommendations pro-
vided by the authors of the respective estimation method,
where available. The names of the parameters cling to the
definition of the corresponding authors and can be found in
Table 4. For BIC and X-Means, we used an existing imple-
mentation.2 Since multiple scoring criteria can be used for

2 https://git.io/Je1sm

X-Means, we used the Akaike Information Criterion (XAI)
and the Bayesian Information Criterion (XBI) separately.We
used Spark’s variation of the Silhouette coefficient.3 Regard-
ing LOG-Means, we set ε = 0, i.e., only logarithmic search
is performed. In our prior work, we showed that ε > 0 leads
to better estimates, yet with the trade-off of a higher runtime
[23].

If an estimation method failed to provide an estimation
within a predefined timebudget of 30minutes,we stopped the
execution and mark the corresponding estimation as failed.
This time budget solely includes the runtime for identifying
which parameter to execute and to evaluate the clustering
result, and not the runtime for the repetitive execution of
k-Means.

k-Means methods

We focus on k-Means as instantiation of a centroid-based
clustering algorithmdue to its overwhelming popularity [53].
To this end, we implemented 6 methods to perform k-Means
(note the two qualitative demands for each GQA variant).

BASE The baseline for our evaluation is Spark’s MLlib
implementation of k-Means. By default, this implementation
uses k-Means‖ for the initialization step, performs at highest
ω = 20 clustering iterations or terminates, as soon as the
centroids change less than eps = 1× 10−4 in the Euclidean
spacewithin two subsequent clustering iterations. The values

3 https://git.io/JfnPa
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Table 4 Estimation methods for the evaluation

Abbr. Name Parameters Characteristic

AIC Akaike Information Criterion [2] Exhaustive, automatic

BIC Bayesian Information Criterion [47]

CHI Calinski-Harabasz Index [12]

CJI Coggins-Jain Index [15]

DBI Davies-Bouldin Index [16]

DUI Dunn Index [17]

JUM Jump Method [49] Y = r/2

SIL Silhouette coefficient [46]

GAP Gap Statistic [51] b = 5 Non-exhaustive, ascending, automatic

GME G-Means [30] α = 0.0001

XAI X-Means (AIC) [44]

XBI X-Means (BIC) [44]

LOG LOG-Means [23] ε = 0 Non-exhaustive, logarithmic, automatic

for eps and ω are arbitrarily chosen in Spark’s implementa-
tion and not based on scientific works or the like. That is,
without these termination criteria, even higher runtimes are
expected for BASE.

DELTA We use Delta Initialization as described in
Sect. 4.1. That is, we use k-Means‖ for the first initialization
within an exploration process conducted by each estimation
method, and Delta Initialization for the subsequent initial-
izations. Furthermore, we leave the termination criteria as
defined for BASE.

GQA90 & GQA99 We use GQA for terminating an exe-
cution of k-Means as described in our previous work [25]
and in Sect. 4.2. That is, we use the same initialization as
for BASE, yet change the convergence step. To this end, we
use two qualitative demands, i.e., 90 % and 99 %, since we
evaluated the impact of both approaches for single clustering
results in our previous work.

DELTA+GQA90 & DELTA+GQA99 Lastly, we combine
DELTA andGQA. That is, we use DELTA for the subsequent
initialization in the exploration process and terminate the
clustering algorithm with GQA as soon as the qualitative
demands of 90 % and 99 % are met, respectively.

5.1.4 Experiments

Regarding the search space, we conducted two different
experiments. For each experiment, we will present the run-
time measurements as well as the accuracy results. Note,
that we performed all runs three times and present median or
average values in the results.

Experiment 1 The goal of this experiment is to simulate
rather strong domain knowledge of the analyst. Based on this
domain knowledge, the analyst is able to drastically reduce

the search space.We simulate this by setting the search space
R to [2; 2c] for synthetic datasets and R to [0.5c; 2c] for
real-world datasets across all estimation methods, where c
denotes the actual number of clusters in a dataset. Note, that
we set R different on real-world datasets, since we are able
to exploit available domain knowledge, i.e., we know that
those datasets contain more than 2 classes and are commonly
used for multi-class classification problems. In total, we per-
formed almost 7,500 runs (= 32 datasets × 13 estimation
methods × 6 k-Means methods × 3 repetitions).

Experiment 2 Here, we simulate less prior knowledge of
the analyst, as it is typical for novice analysts. The goal is
to demonstrate the benefits of LOG-Means for rather inex-
perienced analysts, who have only little domain knowledge
and can therefore limit the search space only very vaguely.
Therefore, we set the search spaceR = [2; 10c] for synthetic
datasets andR = [0.5c; 10c] for real-world datasets and per-
form solely LOG-Meanswith ε = 0. In total, almost 600 runs
(= 32 datasets × 1 estimation method × 6 k-Means methods
× 3 repetitions) are performed. The results for experiment
2 are marked with an asterisk (LOG*) in the presentation of
the results.

Throughout both experiments,we performed almost 8,100
runs. The overall runtime of our experiments was more than
81 full days.

5.2 Runtime

Figure 4 unveils the overall runtime of estimation meth-
ods combined with each k-Means method over all synthetic
datasets. Exhaustive estimationmethods are shown in subfig-
ures (a) to (h), whereas non-exhaustive estimation methods
are shown in subfigures (i) to (n). The percentage of failed
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Fig. 4 Runtime of successful estimates across all synthetic datasets.
Estimation methods in combination with k-Means methods are shown
per subfigure. Median runtimes are depicted in box plots. Note, that

DELTA cannot be used within X-Means (XAI, XBI), since the used
dataset changes per exploration iteration for X-Means. Values for cut-
off whiskers are shown on top of the corresponding subfigures

estimations due to the given time frame is denoted at the
top of each subfigure. Note, that this reflects the failed esti-
mations for BASE. For the remaining k-Means methods, we
solely investigated those datasets, where BASE was able to
provide an estimate within the given time budget to make the
results comparable.

We group our observations according to the key messages
(cf. Table 1) and explain them inmore detail in the following.

KM1 For BASE as k-Means method, LOG-Means signif-
icantly outperforms existing estimation methods. Especially
exhaustive estimation methods typically suffer from long
runtimes, since they explore the whole parameter search
space. Therefore, these methods often fail to provide an esti-
mate in the given time frame of 30 minutes. Note, that for
those exhaustive estimation methods, that only failed a few
times (e.g., CHI and DUI), the runtime is significantly higher
for the remaining methods, since they were able to provide
estimates for rather large datasets as well. In contrast to that,
existing non-exhaustive estimation methods always succeed
to provide an estimate in the given time frame. Yet, as our
later evaluation unveils, their accuracy is often very low.

Comparing the median runtimes of LOG with DUI, a
speedup of almost 21× can be achieved, which corresponds
to absolute runtime savings of more than 8 minutes for
exploratory clustering analyses. For the largest synthetic
dataset S-XXVII, a speedup of 27× can even be achieved,
which corresponds to absolute runtime savings of more than
7 hours. These runtime savings are expected due to the greedy
logarithmic-search alike procedure of LOG-Means. Remem-

ber, that in the worst case, all existing estimation methods
perform an exhaustive search in the parameter search space,
resulting in long overall runtimes.

KM2 Existing estimation methods benefit from the pro-
posed k-Means methods in terms of runtime. While Delta
Initialization leads in most cases to rather smaller runtime
savings or even a rise in the runtime, GQA achieves strong
runtime savings. This is expected, since the goal of GQA
is to reduce the number of clustering iterations, where in
each clustering iteration several distance calculations are per-
formed. Note, that the increased qualitative demand for GQA
leads to slightly higher runtimes in most cases, as more clus-
tering iterations have to be performed.

DELTA+GQAachieves themost tremendous runtime sav-
ings for most estimation methods. This is expected, since
DELTA re-uses previous clustering results and provides
therefore a faster initialization (cf. Sect. 4.1), whereas GQA
leads to less clustering iterations (cf. Sect. 4.2). Hence, espe-
cially for exhaustive estimation methods (subfigures a–h in
Fig. 4), DELTA+GQA is in most cases the fastest k-Means
method. The sole exception to this rule is AIC and BIC on
synthetic datasets, where Delta Initialization without GQA
leads to the fastest results. However, as our later evaluation
unveils, the results of these methods are quite inaccurate.

For non-exhaustive estimation methods (subfigures i-l),
the results must be considered in a more differentiated man-
ner. Remember, that methods in subfigures i-l perform an
ascending search in the underlying search spaceR and stop as
soon as subsequent clustering results differ only marginally.
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Fig. 5 Comparison of the accuracy of estimation methods across all k-Means methods. Average value for δk across all synthetic datasets is depicted
per box plot. Note, that DELTA cannot be used within X-Means (XAI, XBI), since the used dataset changes per exploration iteration for X-Means

For GAP, we observe a rise of the runtime for all k-Means
methods compared to BASE. As the later evaluation unveils,
these longer runtimes however lead to more precise esti-
mates. For GME, XAI and XBI, the runtime savings are
rather smaller, since they split the clusters into smaller clus-
ters in each exploration iteration. Hence, the clustered data
becomes smaller in each exploration iteration, i.e., there are
less possibilities for improvements.

We observe the strongest runtime savings of almost 6×
for DUI when using DELTA+GQA90 instead of BASE, i.e.,
absolute runtime savings of more than 7 minutes. For the
largest synthetic dataset S-XXVII, the same speedup was
observed, yet the absolute runtime savings correlate to more
than 6 hours.

KM3 Regarding the shortest runtime, we can clearly state
that LOG with GQA as k-Means method leads to the short-
est median runtime throughout all results. That is, it requires
16 seconds in median, whereas other combinations of esti-
mationmethods and k-Meansmethods have longer runtimes.
Interestingly, using LOG with k-Means methods containing
DELTA lead to rather longer runtimes, i.e., even longer than
for BASE. Since Δk is rather large for the underlying loga-
rithmic search alike procedure of LOG, we argue that adding
themissingΔk centroids to the infimumof alreadyperformed
clustering results is not a promising approach for this esti-
mation method. However, reducing the number of clustering
iterations via GQA leads to promising speedups of 34×,
when compared to DUIwith BASE as k-Meansmethod. This
correlates to absolute runtime savings of almost 9 minutes.

For the largest synthetic dataset S-XXVII, we also observe a
speedup of 34×, yet this speedup correlates to runtime sav-
ings of more than 7 hours.

KM4 Concerning the second experiment for LOG* (cf.
Fig. 4n), we remember that LOG* explores a five times
larger parameter search space than the remaining estimation
methods. However, we observe that the runtime for BASE
is comparable to most estimation methods, which empha-
sizes the feasibility of LOG-Means for very large parameter
search spaces. Again, GQA is able to significantly reduce the
runtime of LOG-Means even for these large search spaces
by almost the half. Thus, the combination of LOG* and
GQA even outperforms most existing estimation methods
with combinations of the presented k-Means methods.

These results emphasize that especially the combina-
tion of (i) novel estimation methods, which reduce the
number of exploration iterations, and (ii) novel k-Means
methods, which reduce the number of clustering iterations
lead to significant runtime savings compared to state-of-
the-art methods for exploratory clustering analyses. Yet, the
accuracy of the estimates is also very relevant, which we
investigate next.

5.3 Accuracy

Since the number of clusters is known for all datasets in our
evaluation, we exploit this and define the accuracy as rela-
tive error δk ∈ [−1; 1]. Equation 3 formalizes our notion of
the relative error, where kest denotes the estimated value for
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the number of clusters provided by the respective estimation
method. Hence, the closer δk to zero, the more accurate the
estimation method.

δk = kest − c

max{max(R) − c; c − min(R)} (3)

This notion of the relative error allows us to identify to what
extent certain estimation methods tend to under- or overes-
timate the number of clusters. Note, that δk solely addresses
successful estimations, i.e., estimations within the given time
budget.

Figure 5 summarizes the results across all investigated
estimation methods and k-Means methods for synthetic
datasets. The percentage of failed estimations for BASE are
again depicted within each subfigure. Again, we group our
observations according to key messages KM1-4.

KM1 LOG-Means is at least en par, yet mostly more
accurate than existing estimation methods for BASE. As
the results in Fig. 5 show, solely CHI, SIL and LOG are
able to achieve accurate estimates with a relative error below
2 % for BASE. However, as our investigation of the runtime
unveiled (cf. Sect. 5.2), CHI and SIL have a significantly
higher runtime thanLOG.The results emphasize that exploit-
ing the underlying elbowgraph leads to accurate estimates for
LOG-Means. Compared with the least accurate estimation
method for BASE (GAP), LOG achieves 54× more accurate
estimates. For the largest synthetic dataset S-XXVII, LOG-
Means even achieves 100× more accurate estimates than
existing estimation methods.

In our previous paper, we unveiled that exploiting ε within
LOG-Means can lead to even more accurate estimates, yet
with the trade-off of a higher runtime [23].

KM2 Estimation methods generally benefit from the pro-
posed k-Meansmethods regarding their accuracy. For almost
all exhaustive estimation methods on synthetic datasets, very
accurate estimates can be achieved with a relative error
of almost 0.0 % for DELTA+GQA99 (cf. Fig. 5a, c–f, h).
Solely BIC and JUM achieve less accurate estimates, yet
significantly more accurate estimates than with BASE. Non-
exhaustive estimation methods also benefit, yet to another
extent. For example, the accuracy of GAP improves from
−85.6 % (BASE) to −5.7 % (DELTA+GQA90).

The most accurate results for each estimation method are
achieved with different k-Means methods, yet in most cases
for DELTA+GQA99. The reason for these improvements in
accuracy are twofold: a) Regarding the benefits of DELTA,
we unveiled in our previous paper that it leads to better sep-
arated clusters [24], which may be favorable for specific
estimationmethods. Furthermore, DELTA draws on less ran-
domness compared to an initialization from scratch for each
k ∈ R, since DELTA re-uses previous clustering results and
adds Δk centroids in a deterministic manner. Therefore, the

clustering results of the exploration process are more compa-
rable, thus achieving more accurate estimates. b) Regarding
the benefits of GQA, it is clear that it performs a regulariza-
tion due to its approximation of the final clustering result.
Remember, that GQA terminates the clustering algorithm as
soon as a givenqualitative demand ismet, thus avoidingmany
clustering iterations [25]. This regularization is a strong fit
for several estimation methods, as it enables them to achieve
more accurate estimates than for BASE.

Putting the effect of DELTA and GQA together, the rel-
ative error δk can be reduced to 0.1 % or even less (0.2 %
on dataset S-XXVII) for most estimation methods, as seen
in Fig. 5.

KM3 LOG and GQA achieve accurate estimates with a
relative error of -1.9 %. Remember, that this combination
also leads to very fast estimates and outperforms all other
combinations of estimation methods and k-Means methods
in terms of runtime (cf. Fig. 4m). Therefore, we can clearly
argue, that LOG-Means with GQA is very fast and at the
same time achieves accurate estimates.

In order to assess the improvements over state-of-the-art,
we compare LOG and GQA with the least accurate exist-
ing estimation method and BASE, i.e., GAP. Therefore,
around45×more accurate estimates can be achieved byLOG
and GQA (50× for the largest synthetic dataset S-XXVII).
Hence, we can state that LOG-Means and GQA lead to fast
and accurate estimates, thus emphasizing its feasibility for
exploratory clustering analyses.

KM4 Regarding the second experiment for LOG* (cf.
Fig. 5n), we make a very similar observation. Here, LOG*
achieves with BASE already very accurate estimates with a
relative error of δk = −0.2%.WithGQA99, LOG* achieves
the same accurate estimation.

This result emphasizes that LOG-Means can also achieve
very accurate estimates in large parameter search spaces.
Especially in comparison to existing estimationmethods, it is
evident that LOG-Means significantly outperforms existing
estimation methods in terms of runtime and accuracy.

5.4 Evaluation on real-world data

As the previous evaluations focus on synthetic datasets,
we also investigate the effects on real-world datasets from
Table 3. Figures 6 and 7 unveil the runtime and accuracy
results ove these real-world datasets.

In general, it should be noted that the runtime and accuracy
values differ from the results on synthetic datasets (cf. Figs. 4
and 5). There are two reasons for these differences: (1)We set
the parameter search spaceR relative to the actual number of
clusters (or classes) c in a dataset. As the real-world datasets
have solely up to 10 classes, the absolute parameter search
space |R| is smaller than for synthetic datasets, which have
up to 100 clusters. (2) The characteristics of the real-world
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Fig. 6 Runtime of successful estimates across all real-world datasets. Note, that DELTA cannot be used within X-Means (XAI, XBI), since the
used dataset changes per exploration iteration for X-Means. Median runtimes are depicted in box plots

datasets differ from theones on synthetic datasets.Remember
that on synthetic datasets, each cluster is represented as an
agglomeration of entities following a Gaussian distribution.
On real-world datasets however, the classes follow various
distributions. Hence, it is typically more difficult to estimate
the number of classes on real-world datasets.

We group our detailed observations according to the afore-
mentioned key messages (cf. Table 1). In general, we make
very similar observations and can thus verify the aforemen-
tioned effects of synthetic data on real-world data, i.e., in a
practical scenario.

KM1 LOG-Means outperforms existing estimation meth-
ods in terms of runtime and accuracy for BASE. Regarding
the runtime, solely GAP achieves a comparable runtime
to LOG, yet with less accurate estimates. Regarding the
accuracy, CJI and DUI achieve similar accurate estimates,
yet they require a multiple of the runtime of LOG. Hence,
LOG-Means achieves the best combination of runtime and
accuracy in contrast to existing estimation methods.

KM2 Estimation methods benefit from the presented k-
Means methods in terms of runtime and accuracy. For
example, on DUI, the median runtime of 171 seconds
(BASE) can be reduced to 44 seconds (DELTA+GQA90),
i.e., a speedup of almost 4× can be achieved. Again, using
DELTA+GQA over BASE leads in most cases to the highest
runtime savings. Similarly, DELTA+GQA also leads to more
accurate estimates for most estimation methods.

KM3 LOG (LOG-Means) benefits from GQA in terms
of runtime. That is, the runtime can again be more than
halved from 38 seconds for BASE to 17 seconds for GQA90.

However, the estimates become more inaccurate. While
LOG-Means achieves estimates with a relative error of δk =
11.7 % for BASE, the estimates with GQA90 worsen to
δk = 34.0%. The reason for these rather imprecise estimates
can be found in the underlying procedure of LOG-Means:
Remember, that LOG-Means exploits the elbow graph (cf.
Fig. 3). Since the data distribution in real-world datasets is
dependent on the specific use case and often contains noise,
the elbow graph can contain several outliers in its decreas-
ing trend. Furthermore, when using GQA, i.e., performing
an approximation to each clustering result, the spikes in the
elbow graph become more severe, resulting in potentially
less accurate estimates.

KM4 Regarding the results of LOG* from experiment 2
(cf. Figs. 6n and 7n), we make the same observations as on
synthetic datasets: LOG* achieves comparable runtimes than
existing estimationmethods, yet it explores a five times larger
parameter search space. Furthermore, with a relative error of
δk = −4.1 %, it achieves very accurate estimates. Further-
more, using GQA within LOG* halves the median runtime
and still achieves similarly accurate estimates. Hence, we can
verify that LOG-Means achieves fast and accurate results in
large parameter search spaces on real-world datasets.

5.5 Large-scale exploration processes

As the initial motivation of this paper is to perform efficient
exploratory clustering analyses in large-scale exploration
processes, we investigate this aspect in detail. Hence, the
following discussion especially details aspects for KM4.
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Fig. 7 Comparison of the accuracy of estimation methods across all k-Means methods. Average value for δk across all real-world datasets is
depicted per box plot. Note, that DELTA cannot be used within X-Means (XAI, XBI), since the used dataset changes per exploration iteration for
X-Means

Figure 8 shows the results for all estimation methods on
BASE in comparison to LOG* with all k-Means methods on
the largest synthetic dataset S-XXVII and the largest real-
world dataset R-V. Remember, that we set the parameter
search space R relative to the actual number of clusters in
a dataset. As dataset S-XXVII contains 100 clusters, R =
[2; 200] for all estimation methods in Fig. 8a, e. We set the
search space for the real-world dataset R-V very similarly
(cf. Sect. 5.1). For LOG*, we increased these search spaces
by a factor of 5.

We make similar observations as in the previous sub-
sections: Many existing estimation methods fail to provide
an estimate in the given time frame, since they perform an
exhaustive search or draw on complex metrics to make an
estimate. However, if they make an estimation, they require a
long runtime (e.g., DUI in Fig. 8a), or they are very imprecise
(e.g., GME in Fig. 8e). Similar observations apply to real-
world data in Fig. 8c and g. Solely LOG is able to achieve
fast and accurate estimates for synthetic and real-world data.

Moreover, we can clearly state that LOG* can com-
pete with existing estimation methods with BASE as k-
Means method, while still providing very accurate estimates.
Remember, that LOG* explores a five times larger param-
eter search space than the remaining estimation methods.
This emphasizes the feasibility of LOG-Means for very large
parameter search spaces, such as they might be defined by
novice analysts.

Furthermore, LOG* can also be combined with the pre-
sented k-Means methods. Again, k-Means methods with

DELTA lead to rather long runtimes due to the logarithmic
search alike procedure of LOG-Means. However, combining
LOG* with GQA leads to a speedup of roughly 3×, while
the estimates are still very accurate. Hence, this combina-
tion significantly outperforms state-of-the-art approaches for
exploratory clustering analyses, since it is able to explore five
times larger parameter search spaces in a shorter time frame
than most existing estimation methods, while also providing
more accurate estimates in many cases.

Concluding, it is evident that the interdependency between
LOG-Means and GQA is a very strong fit for large-scale
exploration processes, since it significantly outperforms
state-of-the-art approaches in terms of runtime and accuracy.
Therefore, especially novice analysts achieve profound sup-
port for exploratory clustering analyses in a reasonable time
framewith very accurate estimates for the number of clusters.

6 Conclusion

Clustering is commonly used for manifold purposes, such
as assessing the structure of data, grouping entities or com-
pressing data. Especially large parameter search spaces (C1),
large datasets (C2), or large-scale exploration processes as
the combination thereof (C3) pose a particular pitfall, since
exploratory clustering analyses require huge overall runtimes
until a valuable clustering result can be achieved.

We summarized state-of-the-art approaches to tackle chal-
lenges C1 and C2. These challenges were so far addressed
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 Runtime (a–d) and accuracy (e–h) comparison on the largest synthetic dataset S-XXVII (left) and the largest real-world dataset R-V (right).
Median values over 3 runs are depicted

independently from another. However, their interdependency
(C3) is of particular interest for large-scale exploration pro-
cesses, since especially novice analysts typically define large
parameter search spaces on large datasets.

In this paper, we showed that existing contributions
regarding both challenges can be seamlessly integrated with
each another. Furthermore, we systematically evaluated the
benefits of this interdependency on large-scale exploration
processes. Our comprehensive evaluation compares LOG-
Means, our novel estimation method for valuable clustering
results, with 12 commonly used estimation methods on large
datasets and large search spaces. To the best of our knowl-
edge, this is the most systematic comparison as of today.
The results unveil that the proposed methods significantly
outperform existing approaches for exploratory clustering
analyses. Furthermore, these methods provide accurate and
fast estimates even for large-scale exploration processes and
are therefore of paramount interest for novice analysts.

Future work in this area should investigate, whether clus-
tering results, which arise in each exploration iteration, can
be assembled to ensembles in order to achieve even better
clustering results [33,34]. Hence, it would be very appeal-
ing to investigate whether the intermediate clustering results
achieved by LOG-Means could be used to further improve
its accuracy.

Acknowledgements This researchwas partially funded by theMinistry
of Science of Baden-Württemberg, Germany, for the Doctoral Program
“Services Computing”. Some work presented in this paper was per-
formed in the project “INTERACT” as part of the Software Campus
program, which is funded by the German Federal Ministry of Educa-

tion and Research (BMBF) under Grant No.: 01IS17051. Finally, we
would like to thank TimNiederhausen and Julius Voggesberger for their
implementation work.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abdullah, A., Kumar, R., McGregor, A., Vassilvitskii, S., Venkata-
subramanian, S.: Sketching, embedding, and dimensionality reduc-
tion for information spaces. In: Proceedings of the 19th Interna-
tional Conference on Artificial Intelligence and Statistics, AIS-
TATS 2016, vol. 41, pp. 948–956 (2016)

2. Akaike, H.: A new look at the statistical model identification. IEEE
Trans. Autom. Control 19(6), 716–723 (1974)

3. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of
Euclidean sum-of-squares clustering.Mach. Learn. 75(2), 245–248
(2009)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Efficient exploratory clustering analyses 731

4. Arthur, D., Vassilvitskii, S.: How slow is the k-means method? In:
Proceedings of the Annual Symposium on Computational Geom-
etry, vol. 2006, pp. 144–153 (2006)

5. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful
seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1027–1025 (2007)

6. Bachem,O., Lucic,M.,Krause,A.: Scalable k-means clustering via
lightweight coresets. In: Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,
pp. 1119–1127 (2018)

7. Bachem, O., Lucic, M., Lattanzi, S.: One-shot coresets: the case of
k-clustering. In: International Conference on Artificial Intelligence
and Statistics (AISTATS) (2018)

8. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.:
Scalable K-means++. PVLDB 5(7), 622–633 (2012)

9. Baldi, P., Hatfield, G.W.: DNAMicroarrays and Gene Expression:
From Experiments to Data Analysis and Modeling. Cambridge
University Press, Cambridge (2002)

10. Bhatia, S.K., Deogun, J.S.: Conceptual clustering in information
retrieval. IEEE Trans. Syst. Man Cybern. B Cybern. 28(3), 427–
436 (1998)

11. Bradley, P.S., Mangasarian, O.L., Street, W.N.: Clustering via con-
caveminimization. In: Advances in Neural Information Processing
Systems, pp. 368–374 (1997)

12. Caliñski, T., Harabasz, J.: A dendrite method for cluster analysis.
Commun. Stat. 3(1), 1–27 (1974)

13. Ceccarello, M., Pietracaprina, A., Pucci, G.: Solving k-center clus-
tering (with outliers) in MapReduce and streaming, almost as
accurately as sequentially. PVLDB 12(7), 766–778 (2019)

14. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of
efficient initialization methods for the k-means clustering algo-
rithm. Expert Syst. Appl. 40(1), 200–210 (2013)

15. Coggins, J.M., Jain, A.K.: A spatial filtering approach to texture
analysis. Pattern Recognit. Lett. 3(3), 195–203 (1985)

16. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE
Trans. Pattern Anal. Mach. Intell. PAMI-1(2), 224–227 (1979)

17. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions.
J. Cybern. 4(1), 95–104 (1974)

18. Elkan, C.: Using the triangle inequality to accelerate k-means. In:
Proceedings of the Twentieth International Conference onMachine
Learning, pp. 147–153 (2003)

19. Forgy, E.: Cluster analysis of multivariate data: efficiency versus
interpretability of classification. Biometrics 21(3), 768–769 (1965)

20. Fränti, P., Sieranoja, S.: How much can k-means be improved by
using better initialization and repeats? Pattern Recognit. 93, 95–
112 (2019)

21. Frigui, H., Krishnapuram, R.: A robust competitive clustering algo-
rithm with applications in computer vision. IEEE Trans. Pattern
Anal. Mach. Intell. 21(5), 450–465 (1999)

22. Fritz, M., Behringer, M., Schwarz, H.: Quality-driven early stop-
ping for explorative cluster analysis for big data. SICS Softw.-
Intensive Cyber-Phys. Syst. 34(2–3), 129–140 (2019)

23. Fritz, M., Behringer, M., Schwarz, H.: LOG-means: efficiently
estimating the number of clusters in large datasets. Proc. VLDB
Endow. 13(11), 2118–2131 (2020)

24. Fritz, M., Schwarz, H.: Initializing k-means efficiently: Benefits
for exploratory cluster analysis. In: Proceedings of OnTheMove
Federated Conferences and Workshops (OTM), 27th International
Conference on Cooperative Information Systems (CoopIS 2019),
vol. 11877 LNCS, pp. 146–163. Springer, Cham (2019)

25. Fritz, M., Tschechlov, D., Schwarz, H.: Efficient exploratory clus-
tering analyses with qualitative approximations. In: International
Conference on Extending Database Technology (EDBT) (2021)

26. Garey, M.R., Johnson, D.S., Witsenhausen, H.S.: The complexity
of the generalized Lloyd-max problem. IEEE Trans. Inf. Theory
28(2), 255–256 (1982)

27. Guan, H., Ding, Y., Shen, X., Krim, H.: Reuse-centric k-means
configuration. In: IEEE 34th International Conference on Data
Engineering, ICDE 2018, pp. 1228–1231. Institute of Electrical
and Electronics Engineers Inc. (2018)

28. Hamerly, G.: Making k-means even faster. In: Proceedings of the
2010SIAMInternational Conference onDataMining, pp. 130–140
(2010)

29. Hamerly, G., Drake, J.: Accelerating Lloyd’s algorithm for k-
means clustering. In: Partitional Clustering Algorithms, pp. 41–78.
Springer (2015)

30. Hamerly, G., Elkan, C.: Learning the k in k-means. Adv. Neural.
Inf. Process. Syst. 17, 1–8 (2004)

31. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the
k-center problem. Math. Oper. Res. 10(2), 180–184 (1985)

32. Hu, J., Ray, B.K., Singh, M.: Statistical methods for automated
generation of service engagement staffing plans. IBM J. Res. Dev.
51(3–4), 281–293 (2007)

33. Huang, D.,Wang, C.D., Lai, J.H.: Locally weighted ensemble clus-
tering. IEEE Trans. Cybern. 48(5), 1460–1473 (2018)

34. Huang, D., Wang, C.D., Peng, H., Lai, J., Kwoh, C.K.: Enhanced
ensemble clustering via fast propagation of cluster-wise similari-
ties. IEEE Trans. Syst. Man Cybern.: Syst. (2018)

35. Huang, Z.: A fast clustering algorithm to cluster very large cate-
gorical data sets in data mining. Research Issues on Data Mining
and Knowledge Discovery, pp. 1–8 (1997)

36. Iwayama, M., Tokunaga, T.: Cluster-based text categorization: a
comparison of category search strategies. In: Proceedings of the
18th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 273–280. Associa-
tion for Computing Machinery (ACM) (1995)

37. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern
Recognit. Lett. 31(8), 651–666 (2010)

38. Jain, A.K., Dubes, R.C.: Algorithms for Data Clustering. Prentice
Hall, London (1988)

39. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R.,
Wu, A.: An efficient k-means clustering algorithm: analysis and
implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7),
881–892 (2002)

40. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf.
Theory 28(2), 129–137 (1982)

41. Macqueen, J.B.: Some methods for classification and analysis of
multivariate observations. In: Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, vol. 1, pp.
281–297 (1967)

42. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Infor-
mation Retrieval. Cambridge University Press, Cambridge (2008)

43. Mexicano, A., Rodríguez, R., Cervantes, S., Montes, P., Jiménez,
M., Almanza, N., Abrego, A.: The early stop heuristic: a new con-
vergence criterion for K-means. In: AIP Conference Proceedings,
vol. 1738 (2016)

44. Pelleg, D., Moore, A.: X-means: extending K-means with efficient
estimation of the number of clusters. In Proceedings of the 17th
International Conference on Machine Learning, pp. 727—-734
(2000)

45. Punj, G., Stewart, D.W.: Cluster analysis in marketing research:
review and suggestions for application. J. Mark. Res. 20(2), 134–
148 (1983)

46. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math. 20(C),
53–65 (1987)

47. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6,
461–464 (1978)

48. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

123



732 M. Fritz et al.

49. Sugar, C.A., James, G.M.: Finding the number of clusters in a
dataset: an information-theoretic approach. J. Am. Stat. Assoc.
98(463), 750–763 (2003)

50. Thorndike, R.L.:Who belongs in the family? Psychometrika 18(4),
267–276 (1953)

51. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of
clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B:
Stat. Methodol. 63(2), 411–423 (2001)

52. Tschechlov, D., Fritz, M., Schwarz, H.: AutoML4Clust: efficient
AutoML for clustering analyses. In: International Conference on
Extending Database Technology (EDBT) (2021)

53. Wu, X., Kumar, V., Ross, Q.J., Ghosh, J., Yang, Q., Motoda, H.,
McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach,
M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining.
Knowl. Inf. Syst. 14(1), 1–37 (2008)

54. Zhang, L., Guan, H., Ding, Y., Shen, X., Krim, H.: Reuse-centric
k-means configuration. Inf. Syst. 100, 101787 (2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Efficient exploratory clustering analyses in large-scale exploration processes
	Abstract
	1 Introduction
	1.1 Problem statement
	1.2 Our contributions
	1.3 Structure of this work

	2 Related work
	2.1 Estimation methods
	2.2 Accelerating clustering algorithms

	3 LOG-Means
	3.1 Intuition
	3.2 Algorithm
	3.3 Analysis
	Complexity analysis


	4 Accelerating centroid-based clustering algorithms in exploratory clustering analyses
	4.1 Delta Initialization (DELTA)
	4.2 Generic qualitative approximation (GQA)
	4.3 Integration into exploratory clustering analyses

	5 Evaluation
	5.1 Experimental setup
	5.1.1 Hardware and software
	5.1.2 Datasets
	5.1.3 Implementation
	Estimation methods
	k-Means methods
	5.1.4 Experiments

	5.2 Runtime
	5.3 Accuracy
	5.4 Evaluation on real-world data
	5.5 Large-scale exploration processes

	6 Conclusion
	Acknowledgements
	References




