Skip to main content

Advertisement

Log in

The association between bone mineral density and metabolic syndrome: a Korean population-based study

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the association between the metabolic syndrome (MS), which includes a cluster of major risk factors for cardiovascular diseases, and bone mineral density (BMD) from a population-based study. This cross-sectional study was based on a nationwide representative survey data from the Korean National Health and Nutrition Examination Survey (KNHANES) 2008. A total of 3,207 subjects were included from the KNHANES 2008 and composed of men (mean age 48.4 years), premenopausal women (mean age 36.5 years) and postmenopausal women (mean age 64.8 years). The MS was identified according to the new criteria from a joint scientific statement endorsed by major organizations including the National Heart, Lung, and Blood Institute. The mean age of study participants was significantly different according to MS status (58.2 years in the MS group vs. 45.7 years in the non-MS group, P < 0.001). The association between MS and BMD at the lumbar spine and proximal femur was analyzed with adjustment for potential confounders. Although the adjusted BMD at all skeletal sites was not significantly different between participants with and without MS, an increased number of MS components was associated with low adjusted femoral neck (FN) BMD only in men (P = 0.01). After adjusting confounding factors, the triglyceride component of MS was related to low FN BMD in men, but to high BMD at all of the skeletal sites measured in postmenopausal women. The glucose component of MS showed an association with high adjusted BMD at total hip in men. Men with MS had significantly higher odds for pooled osteopenia and osteoporosis (odds ratio: 1.49, 95 % confidence interval: 1.04–2.14). In conclusion, low BMD is associated with MS in Korean men, and the association between the MS component and the BMD is different according to gender.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397

    Article  PubMed  CAS  Google Scholar 

  2. Anagnostis P, Karagiannis A, Kakafika AI, Tziomalos K, Athyros VG, Mikhailidis DP (2009) Atherosclerosis and osteoporosis: age-dependent degenerative processes or related entities? Osteoporos Int 20:197–207

    Article  PubMed  CAS  Google Scholar 

  3. Farhat GN, Cauley JA (2008) The link between osteoporosis and cardiovascular disease. Clin Cases Miner Bone Metab 5:19–34

    PubMed  Google Scholar 

  4. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW (1999) C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 19:972–978

    Article  PubMed  CAS  Google Scholar 

  5. Roodman GD (1993) Role of cytokines in the regulation of bone resorption. Calcif Tissue Int 53:S94–S98

    Article  PubMed  CAS  Google Scholar 

  6. Choi SH, An JH, Lim S, Koo BK, Park SE, Chang HJ, Choi SI, Park YJ, Park KS, Jang HC, Shin CS (2009) Lower bone mineral density is associated with higher coronary calcification and coronary plaque burdens by multidetector row coronary computed tomography in pre- and postmenopausal women. Clin Endocrinol (Oxf) 71:644–651

    Article  Google Scholar 

  7. Collins TC, Ewing SK, Diem SJ, Taylor BC, Orwoll ES, Cummings SR, Strotmeyer ES, Ensrud KE (2009) Peripheral arterial disease is associated with higher rates of hip bone loss and increased fracture risk in older men. Circulation 119:2305–2312

    Article  PubMed  Google Scholar 

  8. Sumino H, Ichikawa S, Kasama S, Takahashi T, Kumakura H, Takayama Y, Kanda T, Sakamaki T, Kurabayashi M (2006) Elevated arterial stiffness in postmenopausal women with osteoporosis. Maturitas 55:212–218

    Article  PubMed  CAS  Google Scholar 

  9. Tanko LB, Christiansen C, Cox DA, Geiger MJ, McNabb MA, Cummings SR (2005) Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res 20:1912–1920

    Article  PubMed  Google Scholar 

  10. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645

    Article  PubMed  CAS  Google Scholar 

  11. Eckel RH, Alberti KG, Grundy SM, Zimmet PZ (2010) The metabolic syndrome. Lancet 375:181–183

    Article  PubMed  Google Scholar 

  12. Hernandez JL, Olmos JM, Pariente E, Martinez J, Valero C, Garcia-Velasco P, Nan D, Llorca J, Gonzalez-Macias J (2010) Metabolic syndrome and bone metabolism: the Camargo Cohort study. Menopause 17:955–961

    Article  PubMed  Google Scholar 

  13. Hwang DK, Choi HJ (2010) The relationship between low bone mass and metabolic syndrome in Korean women. Osteoporos Int 21:425–431

    Article  PubMed  Google Scholar 

  14. Jeon YK, Lee JG, Kim SS, Kim BH, Kim SJ, Kim YK, Kim IJ (2011) Association between bone mineral density and metabolic syndrome in pre- and postmenopausal women. Endocr J 58:87–93

    Article  PubMed  Google Scholar 

  15. Kim HY, Choe JW, Kim HK, Bae SJ, Kim BJ, Lee SH, Koh JM, Han KO, Park HM, Kim GS (2010) Negative association between metabolic syndrome and bone mineral density in Koreans, especially in men. Calcif Tissue Int 86:350–358

    Article  PubMed  CAS  Google Scholar 

  16. Kinjo M, Setoguchi S, Solomon DH (2007) Bone mineral density in adults with the metabolic syndrome: analysis in a population-based U.S. sample. J Clin Endocrinol Metab 92:4161–4164

    Article  PubMed  CAS  Google Scholar 

  17. von Muhlen D, Safii S, Jassal SK, Svartberg J, Barrett-Connor E (2007) Associations between the metabolic syndrome and bone health in older men and women: the Rancho Bernardo Study. Osteoporos Int 18:1337–1344

    Article  Google Scholar 

  18. Choi HS, Oh HJ, Choi H, Choi WH, Kim JG, Kim KM, Kim KJ, Rhee Y, Lim SK (2011) Vitamin D insufficiency in Korea—a greater threat to younger generation: the Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J Clin Endocrinol Metab 96:643–651

    Article  PubMed  CAS  Google Scholar 

  19. Alberti KG, Zimmet P, Shaw J (2005) The metabolic syndrome—a new worldwide definition. Lancet 366:1059–1062

    Article  PubMed  Google Scholar 

  20. Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  PubMed  CAS  Google Scholar 

  21. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ 3rd, O’Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    Article  PubMed  Google Scholar 

  22. Kanis JA, Johansson H, Johnell O, Oden A, De Laet C, Eisman JA, Pols H, Tenenhouse A (2005) Alcohol intake as a risk factor for fracture. Osteoporos Int 16:737–742

    Article  PubMed  Google Scholar 

  23. Kanis JA, Johansson H, Oden A, Johnell O, De Laet C, Eisman JA, McCloskey EV, Mellstrom D, Melton LJ 3rd, Pols HA, Reeve J, Silman AJ, Tenenhouse A (2004) A family history of fracture and fracture risk: a meta-analysis. Bone 35:1029–1037

    Article  PubMed  CAS  Google Scholar 

  24. Kanis JA, Johnell O, Oden A, Johansson H, De Laet C, Eisman JA, Fujiwara S, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16:155–162

    Article  PubMed  CAS  Google Scholar 

  25. Barrett-Connor E, Goodman-Gruen D (1998) Gender differences in insulin-like growth factor and bone mineral density association in old age: the Rancho Bernardo Study. J Bone Miner Res 13:1343–1349

    Article  PubMed  CAS  Google Scholar 

  26. Krall EA, Dawson-Hughes B, Hirst K, Gallagher JC, Sherman SS, Dalsky G (1997) Bone mineral density and biochemical markers of bone turnover in healthy elderly men and women. J Gerontol A Biol Sci Med Sci 52:M61–M67

    Article  PubMed  CAS  Google Scholar 

  27. Makovey J, Naganathan V, Sambrook P (2005) Gender differences in relationships between body composition components, their distribution and bone mineral density: a cross-sectional opposite sex twin study. Osteoporos Int 16:1495–1505

    Article  PubMed  Google Scholar 

  28. Hernandez JL, Olmos JM, Gonzalez-Macias J (2011) Metabolic syndrome, fractures and gender. Maturitas 68:217–223

    Article  PubMed  CAS  Google Scholar 

  29. Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004) PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855

    PubMed  CAS  Google Scholar 

  30. Cui LH, Shin MH, Chung EK, Lee YH, Kweon SS, Park KS, Choi JS (2005) Association between bone mineral densities and serum lipid profiles of pre- and post-menopausal rural women in South Korea. Osteoporos Int 16:1975–1981

    Article  PubMed  CAS  Google Scholar 

  31. Meier CR, Schlienger RG, Kraenzlin ME, Schlegel B, Jick H (2000) HMG-CoA reductase inhibitors and the risk of fractures. JAMA 283:3205–3210

    Article  PubMed  CAS  Google Scholar 

  32. Wang PS, Solomon DH, Mogun H, Avorn J (2000) HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA 283:3211–3216

    Article  PubMed  CAS  Google Scholar 

  33. Tintut Y, Morony S, Demer LL (2004) Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler Thromb Vasc Biol 24:e6–e10

    Article  PubMed  CAS  Google Scholar 

  34. Niemeier A, Niedzielska D, Secer R, Schilling A, Merkel M, Enrich C, Rensen PC, Heeren J (2008) Uptake of postprandial lipoproteins into bone in vivo: impact on osteoblast function. Bone 43:230–237

    Article  PubMed  CAS  Google Scholar 

  35. Kao WH, Kammerer CM, Schneider JL, Bauer RL, Mitchell BD (2003) Type 2 diabetes is associated with increased bone mineral density in Mexican–American women. Arch Med Res 34:399–406

    Article  PubMed  Google Scholar 

  36. Abrahamsen B, Rohold A, Henriksen JE, Beck-Nielsen H (2000) Correlations between insulin sensitivity and bone mineral density in non-diabetic men. Diabet Med 17:124–129

    Article  PubMed  CAS  Google Scholar 

  37. Barrett-Connor E, Kritz-Silverstein D (1996) Does hyperinsulinemia preserve bone? Diabetes Care 19:1388–1392

    Article  PubMed  CAS  Google Scholar 

  38. Ahmed LA, Schirmer H, Berntsen GK, Fonnebo V, Joakimsen RM (2006) Features of the metabolic syndrome and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 17:426–432

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Gu Kim.

About this article

Cite this article

Kim, H., Oh, H.J., Choi, H. et al. The association between bone mineral density and metabolic syndrome: a Korean population-based study. J Bone Miner Metab 31, 571–578 (2013). https://doi.org/10.1007/s00774-013-0446-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-013-0446-9

Keywords

Navigation