
Vol.:(0123456789)1 3

Accreditation and Quality Assurance (2021) 26:129–141
https://doi.org/10.1007/s00769-021-01469-5

GENERAL PAPER

Getting started with uncertainty evaluation using the Monte Carlo
method in R

Adriaan M. H. van der Veen1 · Maurice G. Cox2

Received: 24 October 2019 / Accepted: 15 April 2021 / Published online: 6 June 2021
© The Author(s) 2021

Abstract
The evaluation of measurement uncertainty is often perceived by laboratory staff as complex and quite distant from daily
practice. Nevertheless, standards such as ISO/IEC 17025, ISO 15189 and ISO 17034 that specify requirements for labora-
tories to enable them to demonstrate they operate competently, and are able to generate valid results, require that measure-
ment uncertainty is evaluated and reported. In response to this need, a European project entitled “Advancing measurement
uncertainty—comprehensive examples for key international standards” started in July 2018 that aims at developing examples
that contribute to a better understanding of what is required and aid in implementing such evaluations in calibration, testing
and research. The principle applied in the project is “learning by example”. Past experience with guidance documents such
as EA 4/02 and the Eurachem/CITAC guide on measurement uncertainty has shown that for practitioners it is often easier
to rework and adapt an existing example than to try to develop something from scratch. This introductory paper describes
how the Monte Carlo method of GUM (Guide to the expression of Uncertainty in Measurement) Supplement 1 can be
implemented in R, an environment for mathematical and statistical computing. An implementation of the law of propaga-
tion of uncertainty is also presented in the same environment, taking advantage of the possibility of evaluating the partial
derivatives numerically, so that these do not need to be derived by analytic differentiation. The implementations are shown
for the computation of the molar mass of phenol from standard atomic masses and the well-known mass calibration example
from EA 4/02.

Keywords Measurement uncertainty · GUM · Uncertainty propagation · Monte Carlo · R · Calibration · Testing

Introduction

One of the complicating factors in the evaluation and prop-
agation of measurement uncertainty is the competence in
mathematics and statistics required to perform the calcula-
tions. Nevertheless, standards such as ISO/IEC 17025 [1],
ISO 15189 [2] and ISO 17034 [3] that specify requirements

for laboratories to enable them to demonstrate they operate
competently, and are able to generate valid results, require
that measurement uncertainty is evaluated and reported. The
well-known law of propagation of uncertainty (LPU) from
the Guide to the expression of uncertainty in measurement
(GUM) [4] requires the calculation of the partial derivatives
of the measurement model with respect to each of the input
variables.

In this primer, we (re)introduce the Monte Carlo method
of GUM Supplement 1 (GUM-S1) [5], which takes the same
measurement model and the probability density functions
assigned to the input variables as the LPU to obtain (an
approximation to) the output probability density function.
We show, based on some well-known examples illustrating
the evaluation of measurement uncertainty, how this method
can be implemented for a single measurand and how key
summary outputs, such as the estimate (measured value), the
associated standard uncertainty, the expanded uncertainty

Presented at the workshop “Mathematical and Statistical Methods
for Metrology 2019”, Torino, Italy, 30–31 May 2019.

 * Adriaan M. H. van der Veen
 avdveen@vsl.nl

 Maurice G. Cox
 maurice.cox@npl.co.uk

1 VSL Unit Chemistry Mass Pressure and Viscosity,
Thijsseweg 11, 2629, JA, Delft, The Netherlands

2 NPL Management Ltd, Hampton Road, Teddington,
Middlesex TW11 0LW, UK

https://orcid.org/0000-0002-9648-5123
http://crossmark.crossref.org/dialog/?doi=10.1007/s00769-021-01469-5&domain=pdf

130 Accreditation and Quality Assurance (2021) 26:129–141

1 3

and a coverage interval for a specified coverage probability,
can be obtained.

The Monte Carlo method of GUM-S1 [5] is a versatile
method for propagating measurement uncertainty using a
measurement model. It takes the measurement model, i.e.
the relationship between the output quantity and the input
quantities, and random samples of the probability density
functions of the input quantities to generate a correspond-
ing random sample of the probability density function of the
output quantity.

The use of probability density functions is well covered
in the GUM [4] and further elaborated in GUM-S1 [5]. In
this primer, the emphasis is on setting up an uncertainty
evaluation using the Monte Carlo method for a measurement
model with one output quantity (a “univariate” measure-
ment model). GUM Supplement 2 (GUM-S2) [6] provides
an extension of the Monte Carlo method to measurement
models with two or more output quantities (“multivariate”
measurement models) as well as giving a generalisation of
the LPU to the multivariate case.

The vast majority of the uncertainty evaluations in cali-
bration and testing laboratories are performed using the
LPU [4]. This mechanism takes the estimates (values) of
the input quantities and the associated standard uncertain-
ties to obtain an estimate for the output quantity and the
associated standard uncertainty. The measurement model is
used to compute (1) the value of the output quantity and (2)
the sensitivity coefficients, i.e. the first partial derivatives of
the output quantity with respect to each of the input quanti-
ties (evaluated at the estimates of the input quantities). The
second part of the calculation involving the partial deriva-
tives is perceived as being cumbersome and requires skills
that are often beyond the capabilities of laboratory staff and
researchers. The computation of the sensitivity coefficients
can also be performed numerically [7, 8]. One of the advan-
tages of the Monte Carlo method is that sensitivity coeffi-
cients are not required. All that is needed is a measurement
model, which can be in the form of an algorithm, and a
specification of the probability distributions for the input
quantities. These probability distributions (normal, rectan-
gular, etc.) are typically already specified in uncertainty
budgets when the LPU is used.

In this tutorial, we show how the Monte Carlo method of
GUM-S1 can be implemented in R [9]. This environment
is open-source software and specifically developed for sta-
tistical and scientific computing. Most of the calculations
in laboratories, science and elsewhere are still performed
using mainstream spreadsheet software. An example of
using the Monte Carlo method of GUM-S1 with MS Excel
is given in the Eurachem/CITAC Guide on measurement
uncertainty [10]. It is anticipated that this tutorial will also
be useful for those readers who would like to get started
using other software tools or other languages.

Monte Carlo method

The heart of the Monte Carlo method of GUM-S1 can be
summarised as follows [5]. Given a measurement model of
the form

and probability density functions assigned to each of the
input quantities X1,… ,XN , generate M sets of input quanti-
ties X1,r,… ,XN,r (r = 1,… ,M) and use the measurement
model to compute the corresponding value for Yr . M, the
number of sets of input quantities should be chosen to be
sufficiently large so that a representative sample of the prob-
ability density function of the output quantity Y is obtained.
The approach here applies to independent input quantities
and a scalar output quantity Y. For its extension to dependent
input quantities, see GUM-S1 [5], and a multivariate output
quantity, see GUM-S2 [6].

GUM-S1 [5, clause 6.4] describes the selection of appro-
priate probability density functions for the input quantities,
thereby supplementing the guidance given in the GUM [4,
clause 4.3]. GUM-S1 also provides guidance on the genera-
tion of pseudo-random numbers. Pseudo-random numbers
rather than random numbers are generated by contemporary
software since the latter are almost impossible to obtain.
However, comprehensive statistical tests indicate that the
pseudo-random numbers generated cannot be distinguished
in behaviour from truly random numbers.

Considerable confidence has been gained by the authors
over many years concerning the performance of the Monte
Carlo method of uncertainty evaluation from a practi-
cal viewpoint. For measurement models that are linear in
the input quantities, for which the law of propagation of
uncertainty produces exact results, agreement with results
from the Monte Carlo method to the numerical accuracy
expected has always been obtained. Thus, weight is added to
the above point: there is evidence that the effects of working
with pseudo-random numbers and truly random numbers
are identical.

If needed, the performance of a random number generator
can be verified [11, 12]. For the purpose of this tutorial, it
is assumed that the built-in random number generator in R
is fit for purpose.

A refinement of the Monte Carlo method concerns select-
ing the number of trials automatically so as to achieve a
degree of assurance in the numerical accuracy of the results
obtained. An adaptive Monte Carlo procedure for this pur-
pose involves carrying out an increasing number of Monte
Carlo trials until the various results of interest have stabi-
lised in a statistical sense. Details are provided in [5, clause
7.9] and since then an improved method in [13].

Y = f (X1,… ,XN)

131Accreditation and Quality Assurance (2021) 26:129–141

1 3

In many software environments, random number gen-
erators for most common probability density functions
are already available; if not, they can be readily developed
using random numbers from a rectangular distribution [5,
annex C]. (The rectangular distribution is also known as
the uniform distribution.) Should even a random number
generator for the rectangular distribution not be available in
the software environment, then the one described in GUM-
S1 can be implemented as a basis for generating random
numbers. The default random number generator in R is the
Mersenne Twister [14], which is also implemented in many
other programming environments, including MATLAB and
MicroSoft Excel (since version 2010, see [15]). Based on
this random number generator, there are generators available
for a number of probability distributions [9].

The output of applying the Monte Carlo method is an
array (vector) Y1,… , YM characterising the probability den-
sity function of the output quantity. This sample is, however,
not in the form in which a measurement result is typically
communicated. From the output Y1,… , YM , the following
can be computed:

• the measured value, usually taken as the arithmetic mean
of Y1, … , YM

• the standard uncertainty, usually computed as the stand-
ard deviation of Y1, … , YM

• a coverage interval containing the value of the output
quantity with a stated probability, obtained as outlined
below;

• the expanded uncertainty;
• the coverage factor.

The last two items apply when the coverage interval can
be reasonably approximated by a symmetric probability
density function. Care should be taken in cases of asym-
metric output probability density functions in which the
mean of Y1,… , YM might result in an unreliable estimator
of the measurand, behaving worse than other estimators
(such as the mode or the median) and even worse than the
simple estimate obtained from y = f (x1,… , xn) provided by
the measured model f directly applied to the input estimates
x1,… , xn.

The most general way of representing a coverage interval
is by specifying its upper and lower limits. This representa-
tion is always appropriate whether the output distribution is
symmetric or not. In many instances, however, the output
probability density function is (approximately) symmetric,
and then, the expanded uncertainty can be computed as the
half-width of the coverage interval. The coverage factor can
be computed from the expanded uncertainty U(y) and the
standard uncertainty u(y), i.e. k = U(y)∕u(y) . The symmetry
of the output probability density function can be verified by
examining a histogram of Y1,… , YM , or obtaining a kernel
density plot [16, 17], a smooth approximation to the prob-
ability density function.

Software environment

R is an open-source language and environment for statistical
computing and graphics. It is a GNU project, similar to the
S language and environment, which was developed at Bell
Laboratories (formerly AT&T, now Lucent Technologies)
by John Chambers and colleagues. R can be considered as
a different implementation of S [9]. It is available for Win-
dows, MacOS and a variety of UNIX platforms (including
FreeBSD and Linux) [9].

Users of Windows, MacOS and a number of Linux distri-
butions may also wish to download and install RStudio [18],
which provides an integrated development environment, in
which code can be written, the values of variables can be
monitored, and separate windows for the console and graph-
ics output are available. The R code provided in this primer
has been developed in RStudio (version 1.2.1335, build 1379
(f1ac3452)).

Generating random numbers

In R, it is straightforward to generate a sample of random
numbers from most common probability density functions.
For example, the following code generates a sample of a
normal distribution with mean � = 10.0 and standard devia-
tion � = 0.2 and a sample size M = 10,000:

132 Accreditation and Quality Assurance (2021) 26:129–141

1 3

The function to be called to generate an array (vector) of
random numbers having a normal distribution with mean
mu and standard deviation sigma is called rnorm. The
line set.seed(2926) is useful for debugging purposes,
as it ensures that the random number generator starts at the
same point every time. Any other value for the seed would
also ensure the exact reproduction of the series of numbers
obtained from the random number generator. If that is not
required, the line can be omitted. In this tutorial, the seed is
set, so that the reader can exactly reproduce the output. The
output is collected in a variable named X1. It is an array with
10,000 elements.

The following code snippet shows the mean and standard
deviation of the 10,000 generated numbers, using R’s built
in functions mean and sd, respectively.

X1

fre
qu

en
cy

9.5 10.0 10.5

0
50

0
10

00
15

00

Fig. 1 Histogram of M =10,000 samples of the random variable X1
having a normal distribution with mean 10.0 and standard deviation
0.2

X2

fre
qu

en
cy

−1.0 −0.5 0.0 0.5 1.0

0
50

0
10

00
15

00

Fig. 2 Histogram of the random variable X2 containing M = 10,000
samples having an arcsine distribution between −1 and 1

Using R’s functions plot and hist, a histogram of
variable X1 can be plotted (Fig. 1). The code to generate
Fig. is as follows:

where hist calculates the histogram from the array
X1 and plot generates the figure. The plotted histogram
resembles that of a normal distribution. The larger is the
number of samples drawn from the random number genera-
tor, the closer the resemblance to the normal distribution
will be.

From the first code fragment in this section, it is read-
ily seen that R has a function for generating random
numbers with a normal distribution. It also has functions
for generating random numbers with a rectangular dis-
tribution (runif), the t distribution (rt), exponential
distribution (rexp) and gamma distribution (rgamma).
There exist a package (extension) called “trapezoid” [19]
implementing among others the trapezoidal distribution,
a package called “mvtnorm” [20] implementing the mul-
tivariate normal distribution (useful when some of the
input quantities are dependent [5]) and a package called

“triangle” [21] implementing the triangular distribution.
So, apart from the curvilinear trapezoidal distribution
and the arc sine distribution, random numbers for all

133Accreditation and Quality Assurance (2021) 26:129–141

1 3

probability density functions mentioned in GUM-S1 [5,
table 1] are available in R.

The arc sine distribution can be implemented as follows
in R. According to GUM-S1 [5, clause 6.4.6.1], a U-shaped
random variable X on the interval [a, b] can be obtained
through

where Φ is a random variable with a rectangular distribution
on [0, 2�] . In R, a function rarcsin that provides such a
random variable, and a call to that function, can be coded
as follows:

X =
a + b

2
+

b − a

2
sinΦ,

94.100 94.105 94.110 94.115 94.120 94.125

0
20

40
60

80
10

0

Molar mass (g/mol)

D
en

si
ty

 (m
ol

/g
)

Fig. 3 Output probability density function of the molar mass of phe-
nol and, superimposed, a normal distribution with the same mean and
standard deviation

The argument n determines the number of random num-
bers returned; a and b denote the lower and upper limits,
respectively, of the interval over which the arcsine distribu-
tion has a nonzero density. If n > 1 , the function returns an
array; if n = 1 , it returns a single number. This behaviour
mimics the behaviour of the other functions implemented
in R to generate random numbers.

The last line in the code snippet creates an array X2 of M
elements (M = 10,000 in this instance) of a random variable
having an arcsine distribution over the interval [−1, 1] . A
histogram (obtained through the R function hist) is shown
in Fig. 2.

Implementation of the Monte Carlo method

Molar mass of phenol

In this example, the molar mass of phenol (molecular for-
mula C6H5OH) is computed. The example shows how an
output quantity with an uncertainty is obtained from input
quantities with uncertainty. There is no experiment involved.
The example is pivotal for many calculations involving

reference data, such as atomic weights, molar masses and
enthalpies of formation.

The molar mass is computed from the standard atomic
masses and the coefficients appearing in the molecular for-
mula, which for the elements involved are 6 for carbon, 6
(5+1) for hydrogen and 1 for oxygen. The current relative
atomic masses are used as published by IUPAC (Interna-
tional Union of Pure and Applied Chemistry) [22]. The
relative atomic masses that apply to “normal materials” are
called standard atomic weights [22, 23]. Their interpretation
is described in an IUPAC technical report [24]. From this
interpretation, it follows that the standard atomic masses are
modelled using the rectangular distribution.

The molecular weight of phenol (chemical formula
 C6H5OH) is computed as

The Monte Carlo method is implemented in R using
M = 100,000 trials. The R code that performs the evalua-
tion reads as

Mr(C6H5OH) = 6Ar(C) + 6Ar(H) + Ar(O)

134 Accreditation and Quality Assurance (2021) 26:129–141

1 3

The first line declares a variable M that holds the num-
ber of trials to be carried out by the Monte Carlo method.
Then, for each of the elements, M samples are drawn using
the rectangular distribution (using R’s function runif) and
the lower and upper limits provided by the standard atomic
weights of IUPAC [22]. These arrays have, respectively, the
names C, H and O for the atomic masses of carbon, hydrogen
and oxygen. The molar mass is then computed in the line
defining MW. R is very efficient with vectors (arrays) and
matrices (tables) [25]. The value of the molar mass (MW.
val) is computed by taking the average of MW, the standard
uncertainty by taking the standard deviation of MW and the
expanded uncertainty by taking the half-width of the 95%
coverage interval. The latter is obtained by calculating the
0.025 and 0.975 quantiles (which provides a probabilisti-
cally-symmetric coverage interval) [5, clause 7.7]. In the
last line, the coverage factor is computed as the ratio of the
expanded uncertainty and the standard uncertainty.

The code to plot the output probability density function
of the molar mass (MW) and to superimpose a normal distri-
bution with the same mean and standard deviation is given
as follows:

The first two lines compute the relevant part of the normal
distribution around the mean ± 4 standard deviations. The
subsequent lines plot the output probability density function
and the normal distribution, respectively.

The graph is shown in Fig. 3. It is obvious that the nor-
mal distribution is not an appropriate approximation of the
probability density function of the output quantity, which is
close in appearance to a rectangular distribution and much
narrower than the normal distribution. The molar mass is
94.1108 gmol−1 with standard uncertainty 0.0035 gmol−1 .
The expanded uncertainty is 0.0059 gmol−1 . The coverage
factor is 1.67, which is much closer to the 95% coverage
factor of 1.69 for a rectangular distribution than that for a
normal distribution (1.96).

Mass example from EA 4/02

In this section, the mass calibration example of EA 4/02 [26]
is revisited. The evaluation using the Monte Carlo method
rests on the same assumptions for the input quantities as in
that example. In this example, we show how the Monte Carlo
method can be implemented for any explicit measurement
model with a single output quantity. The measurement model
is coded in the form of a function, which promotes writing
tidy code. It also allows iterative calculations to be read-
ily implemented when the measurement model is defined
implicitly [6]. This example describes the calibration of a 10

kg weight by comparison with a standard 10 kg weight. The
weighings are performed using the substitution method. This
method is implemented in such a way that three mutually
independent observations for the mass difference between
the two weights are obtained.

135Accreditation and Quality Assurance (2021) 26:129–141

1 3

The measurement model is given by [26, S2]:

where the symbols have the following meaning:

mX conventional mass of the weight being calibrated,
mS conventional mass of the standard,
δmD drift of the value of the standard since its last

calibration,
δm observed difference in mass between the unknown

mass and the standard,
δmC correction for eccentricity and magnetic effects,
δB correction for air buoyancy.

For using the Monte Carlo method, probability density
functions are assigned to each of the five input quantities [5].
These probability density functions are described in the orig-
inal example [26].

The conventional mass of the standard mS is modelled
using the normal distribution with mean 10,000.005 g and
standard deviation 0.0225 g . The standard deviation (stand-
ard uncertainty) is calculated from the expanded uncertainty
and the coverage factor provided on the calibration certifi-
cate. This interpretation is also described in GUM-S1 [5,
6.4.7]. The drift of the mass of the standard weight δmD is
modelled using a rectangular distribution, centred at 0.000 g
and with a half-width of 0.015 g . The corrections for eccen-
tricity and magnetic effects and that for air buoyancy are
both modelled using a rectangular distribution with midpoint
0.000 g and half-width 0.010 g.

The mass difference δm between the two weights com-
puted from the indications of the balance is calculated as the
mean of n = 3 independent observations. EA 4/02 explains
that the associated standard uncertainty is computed from a
pooled standard deviation 0.025 g , obtained from a previous
mass comparison, divided by

√

n.
In the implementation of the Monte Carlo method, the

three observations are simulated using normal distributions
with means of the observed values (i.e. 0.010 g , 0.030 g and
0.020 g , respectively) and a standard deviation of 0.025 g
for each. The mass difference is formed by calculating the
arithmetic average of the three simulated observations.

The measurement model [Eq. (1)] can be coded in R as
follows:

(1)mX = mS + δmD + δm + δmC + δB,

9999.90 9999.95 10000.00 10000.05 10000.10 10000.15

0
2

4
6

8
10

12
14

m.x (g)

de
ns

ity
 (1

/g
)

Fig. 4 Probability density function of the output quantity m.x and
superimposed a normal distribution with the same mean and standard
deviation

where m.std denotes the conventional mass of the
standard weight, dm.d the drift correction of the conven-
tional mass of the standard weight, diff the mass difference
obtained from the substitution weighing, dm.c the cor-
rection due to eccentricity and magnetic effects and dm.B
the correction due to air buoyancy. The function is called
mass.x and returns the value of the output quantity mX.

Most programming languages implement a “for” loop,
which enables executing a block of code a defined number
of times. Anyone familiar with this “for” loop in computer
programming would now use this kind of loop to code the
recipe given in GUM-S1 clause 7.2.2 [5]. An implementa-
tion of the Monte Carlo method with a fixed value for the
number of samples M would then read as follows:

136 Accreditation and Quality Assurance (2021) 26:129–141

1 3

On the first line, the probability level of the coverage
interval (prob) is defined to be 0.95. In accordance with
the guidance in clause 7.2.2 of GUM-S1 [5], M is calcu-
lated using the built-in function ceiling which returns the
smallest integer not less than its argument. With prob =
0.95, the net effect of calling ceiling is that the floating
point number is converted to an integer, as the result of 1/
(1-prob) of 20; hence, the minimum number of Monte
Carlo trials is M = 10,000 × 20 = 200,000 . Then, an array
(vector) m.x is declared that will hold the values calcu-
lated for the mass of the weight being calibrated. The vector
m.data is a temporary storage for simulating the mass dif-
ferences between the standard weight and the weight being

calibrated. In the for loop, at each iteration a sample is
drawn of the input quantities mS (m.std), δmD (dm.d), δmC
(dm.c) and δB (dm.B). The mass difference from compar-
ing the two weights (m.diff) is simulated by drawing from
a normal distribution with different means, but the same
standard deviations, the three readings and taking the aver-
age. The measured value of the output quantity mX (m.x) is
finally obtained by calling the measurement model with as
arguments the input quantities.

Running the above code provides the following output for
the mean, standard deviation (standard uncertainty) and the
coverage interval of mX:

137Accreditation and Quality Assurance (2021) 26:129–141

1 3

where the argument probs holds the probabilities corre-
sponding to the lower and upper ends of the probabilistically
symmetric 95% coverage interval.

This way of coding an implementation of the Monte
Carlo method would work in a large number of computer
languages, including Python, MATLAB, Fortran, C, C++
and Pascal. While the above code in R does what is intended,
the same task can be performed with greater effectiveness
in R, exploiting the fact that R is very efficient in working
with vectors and matrices [25]. Computational efficiency is
especially important with more complex models and larger
numbers of Monte Carlo trials, as it can greatly reduce the
required computing time. The following code implements
the same simulation, using vectors and matrices where
possible:

Now the variables m.std, dm.d, dm.c and dm.B are
vectors holding all M values for the input quantities. The
data from comparing the weights are summarised in a matrix
called m.data of M rows and 3 columns. The matrix is
constructed by adding the means (0.01, 0.03 and 0.02) to the

simulated data which have been generated using the normal
distribution with mean 0 and standard deviation 0.025. The
mass differences are computed by calculating the row means
and storing these in m.diff using the R function apply.
Note also that the measurement model can be called with
vectors rather than scalars as arguments (last line of the
code); in this case also, m.x is a vector of length M.

The second code runs in less than half the time of the first
implementation. For this simple example, the difference is
a matter of a few seconds, but for more complex models the
difference in speed will be of more practical significance.
Especially the steps that are repeated often should be care-
fully thought about. Another issue is memory use. The sec-
ond implementation consumes appreciably more memory
(for it holds all generated values for the input quantities)

than the first (which only holds the last value for each of the
input quantities).

The second code provides the following output for the
mean, standard deviation (standard uncertainty) and the cov-
erage interval of mX:

138 Accreditation and Quality Assurance (2021) 26:129–141

1 3

The output probability density function is shown in
Fig. 4. Its form closely resembles that of a normal distribu-
tion with mean 10,000.025 g and standard deviation 0.029 g .
The following code computes the expanded uncertainty by
taking the half-width of the 95% coverage interval and the
coverage factor by dividing the expanded uncertainty by the
standard uncertainty:

The expanded uncertainty is 0.057 g , and the coverage
factor is 1.96. This coverage factor is that of a 95% coverage
interval of the normal distribution. The coverage factor dif-
fers from that used in EA 4/02, which uses k = 2 for obtain-
ing (at least) 95% coverage probability. The close agreement
is readily explained, as the dominating uncertainty contri-
butions are modelled using the normal distribution, and the
sum of two normal distributions is also normally distrib-
uted (see also the measurement model, Eq. (1)). That the
output quantity has an (approximately) normal distribution
is reflected in the coverage factor obtained from the Monte
Carlo method.

Now all results are obtained that commonly appear on a
calibration certificate (as well as in many test reports), as
described in ISO/IEC 17025 [1]:

• the measured value (= value of the output quantity);
• the expanded uncertainty;
• the coverage factor.

In this case, one might also be willing to state that the out-
put probability density function is a normal distribution,
whereas in this case such a statement can reasonably be
made, in most cases the output probability density function
cannot directly be approximated by a well-known analytic
probability density function. Comparison of the three results
listed above with those from the GUM would imply that
for comparable data the GUM would be fit for purpose in a
subsequent uncertainty evaluation. In a measurement model
with mX as one of the input quantities, the above information
suffices to apply the GUM [4].

Law of propagation of uncertainty

The law of propagation of uncertainty (LPU) is the most
widely used mechanism for propagating uncertainty.
Whereas with the Monte Carlo method the lack of comput-
ing and programming skills can form a bottleneck, with the

LPU it is often the calculation of the sensitivity coefficients,
i.e. the partial derivatives of the output quantity with respect
to the input quantities, that provides a difficulty. Most guid-
ance documents, such as the GUM [4], GUM-S2 [6] and
EA 4/02 [26] direct their readers to analytic differentiation
of the measurement model to obtain the expressions for
calculating the sensitivity coefficients. While this guidance
is fully appropriate, it is not always practicable, for many
people have lost their skills in differentiation. The fact that
there are tables with derivatives of common functions (such
as [27, 28]) is barely mentioned in such documents. Numeri-
cal approximation of the sensitivity coefficients [7, 8, 10, 29]
is a very good alternative, provided that it is done properly.
In this section, we show how to use numerical differentia-
tion and the law of propagation of uncertainty to perform the
uncertainty evaluation of the mass example of EA 4/02 [26].

The R package numDeriv provides the function grad
(from gradient) that returns from a function a generally
good approximation, using Richardson extrapolation [30],
of the partial derivatives of the input variables. The func-
tion returns a vector holding the values of these partial
derivatives. The function passed to grad should have only
one argument, namely a vector holding all input variables.
Hence, the measurement model needs to be reformulated
as follows:

139Accreditation and Quality Assurance (2021) 26:129–141

1 3

where x denotes the vector with input variables. For clar-
ity and convenience, in the function body of mass2.x the
same symbols have been used as in mass.x shown previ-
ously. The convenience extends to easier debugging the code
as necessary. The penultimate line calculates the result of the
function as the sum of the five input variables, just as in the
case of the Monte Carlo method.

The uncertainty evaluation itself can be coded as follows:

The first line loads the package numDeriv (which
needs to be installed in RStudio). The next two lines define

m.x.unc. Again, this last line shows the flexibility of R
working with vectors.

The mass of the calibrated weight is 10,000.025 g with
standard uncertainty 0.029 g . Using a coverage factor k = 2 ,
the expanded uncertainty becomes 0.059 g . These results
reproduce those in example S.2 of EA 4/02 to the number
of decimal digits given.

The values of the sensitivity coefficients are

the values of the input quantities. The vector sens on the
fourth line holds the sensitivity coefficients returned by call-
ing grad. The subsequent three lines calculate the standard
uncertainties associated with the five input quantities. The
penultimate line calculates the estimate of the output quan-
tity m.x and the last line its associated standard uncertainty

and are identical to those given in EA 4/02 [26]. The
code is also valid for measurement models with non-trivial
sensitivity coefficients [8].

The approach described also works with correlated input
variables. In that case, the calculation of the standard uncer-
tainty associated with mX is performed as follows:

140 Accreditation and Quality Assurance (2021) 26:129–141

1 3

The first two lines form the covariance matrix, diagonal
in this case, associated with the five input quantities. (These
are only needed to create the covariance matrix; if there were
correlations between the five input variables, the code for
creating it would have to be adapted accordingly.) The actual
implementation of the LPU for correlated input variables is
given in the last two lines of the previous code. By vector/
matrix multiplication (see also the law of propagation of
uncertainty in GUM-S2 [6]), a covariance matrix of dimen-
sion 1 × 1 associated with the output quantity is returned
(tmp). The last line takes the square root of the only ele-
ment in this matrix (holding the variance of mX) to obtain
the standard uncertainty associated with mX . This standard
uncertainty is 0.029 g.

Interfacing with Word, Excel and LaTeX

This article has been developed with R Sweave using the
knitr package [31, 32]. R Sweave is implemented in RStu-
dio [18] and enables LaTeX to be combined with R (and
other systems). Upon compilation, the PDF (portable docu-
ment format) reflects the output after executing the R code,
compiling the resulting LaTeX file. It has the great advan-
tage that the consistency between data, code and output is
preserved [33].

Data collected in mainstream spreadsheet software can
be processed in R, for instance, using the openxlsx pack-
age [34] which provides functions for reading and writing
entire Excel workbooks. It supports the xlsx-format and also
allows R to create new workbooks, fill these and write these.

Producing output in Microsoft Word or HTML format is
possible using R markdown [35] and also available in RStu-
dio [18]. The syntax resembles that of Word, with the pos-
sibility of including tables, graphs and calculations involv-
ing R. Formulæ can be incorporated using a syntax that is
similar to that in Word and LaTeX and upon compilation
to Word, results in editable formulæ, compatible with the
equation editor of MS Word 2007 and later (using the docx
file format).

Discussion and conclusions

In this tutorial, we have shown how straightforwardly the
Monte Carlo method for propagating distributions can be
implemented in software. True, it requires some program-
ming skills, but the code provided can serve as a template for
more complex applications. Two versions have been given,
one working with most programming languages and a sec-
ond optimised for R.

The framework shown for the mass example can readily
be extended to nonlinear measurement models and models

with multiple output quantities. The flexibility also extends
to skewed probability density function for the output quan-
tity. In this case, the Monte Carlo method may (correctly)
provide a different estimate from just using the measure-
ment model and the estimates of the input quantities. Also,
a different 95% coverage interval (see GUM-S2 [6]) may be
preferred to the probabilistically symmetric one as used in
the examples (which both have an (approximately) symmet-
ric output probability density function for the measurand).

We also have shown how the law of propagation of
uncertainty can be used without the need for deriving the
analytic expressions for the sensitivity coefficients (the par-
tial derivatives of the output quantity with respect to the
input quantity). Code, again in the form of a template, has
been provided that after adaptation works with any univari-
ate measurement model and also for the case of correlated
input quantities.

Acknowledgements The project 17NRM05 “Examples of Measure-
ment Uncertainty Evaluation” leading to this application has received
funding from the EMPIR programme co-financed by the Participat-
ing States and from the European Union’s Horizon 2020 research and
innovation programme.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. ISO/IEC 17025 (2017) General requirements for the competence
of testing and calibration laboratories, 3rd edn. ISO, International
Organization for Standardization, Geneva, Switzerland

 2. ISO 15189 (2012) Medical laboratories—requirements for qual-
ity and competence, 3rd edn. ISO, International Organization for
Standardization, Geneva, Switzerland

 3. ISO 17034 (2016) General requirements for the competence of
reference material producers, 1st edn. ISO, International Organi-
zation for Standardization, Geneva, Switzerland

 4. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML (2008a)
Guide to the expression of uncertainty in measurement, JCGM
100:2008, GUM 1995 with minor corrections. BIPM

 5. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML (2008b)
Supplement 1 to the ‘Guide to the expression of uncertainty in
measurement’—-propagation of distributions using a Monte Carlo
method, JCGM 101:2008. BIPM

 6. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML (2011)
Supplement 2 to the ‘Guide to the expression of uncertainty in
measurement’—extension to any number of output quantities,
JCGM 102:2011. BIPM

http://creativecommons.org/licenses/by/4.0/

141Accreditation and Quality Assurance (2021) 26:129–141

1 3

 7. Boudjemaa R, Cox MG, Forbes AB, Harris PM (2004) Automatic
differentiation and its applications to metrology. In: Ciarlini P,
Cox MG, Pavese F, Rossi GB (eds) Advanced mathematical and
computational tools in metrology VI. World Scientific, Singapore,
pp 170–179

 8. Possolo A (2012) Five examples of assessment and expression of
measurement uncertainty. Appl Stoch Models Bus Ind 29(1):1–18.
https:// doi. org/ 10. 1002/ asmb. 1947

 9. R Core Team (2019) R: a language and environment for statisti-
cal computing. R Foundation for Statistical Computing, Vienna,
Austria. https:// www.R- proje ct. org/

 10. Quantifying Uncertainty in Analytical Measurement (2012)
EURACHEM/CITAC Guide QUAM:2012.P1, 3rd edn

 11. Knuth D (2001) The art of computer programming: semi-numer-
ical algorithms. Addison-Wesley, Boston

 12. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992)
Numerical recipes in C: the art of scientific computing, 2nd edn.
Cambridge University Press, Cambridge

 13. Wübbeler G, Harris PM, Cox MG, Elster C (2010) A two-stage
procedure for determining the number of trials in the application
of a Monte Carlo method for uncertainty evaluation. Metrologia
47(3):317–324. https:// doi. org/ 10. 1088/ 0026- 1394/ 47/3/ 023

 14. Matsumoto M, Nishimura T (1998) Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Trans Model Comput Simul 8(1):3–30.
https:// doi. org/ 10. 1145/ 272991. 272995

 15. Mélard G (2014) On the accuracy of statistical procedures in
Microsoft Excel 2010. Comput Stat 29(5):1095–1128. https://
doi. org/ 10. 1007/ s00180- 014- 0482-5

 16. Silverman BW (1986) Density estimation for statistics and data
analysis. Taylor & Francis Ltd, Abingdon-on-Thames

 17. Venables WN, Ripley BD (2002) Modern applied statistics with
S, 4th edn. Springer, New York

 18. R Studio Team (2019) RStudio: integrated development environ-
ment for R. RStudio Inc, Boston

 19. Hetzel JT (2012) Trapezoid: the trapezoidal distribution. https://
CRAN.R- proje ct. org/ packa ge= trape zoid. R package version 2.0-0

 20. Genz A, Bretz F (2009) Computation of multivariate normal and
t probabilities. Lecture notes in statistics. Springer, Heidelberg

 21. Carnell R (2017) Triangle: provides the standard distribution
functions for the triangle distribution. https:// CRAN.R- proje ct.
org/ packa ge= trian gle. R package version 0.11

 22. Meija J, Coplen TB, Berglund M, Brand WA, Bièvre PD, Grön-
ing M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T
(2016) Atomic weights of the elements 2013 (IUPAC technical
report). Pure Appl Chem. https:// doi. org/ 10. 1515/ pac- 2015- 0305

 23. Cohen E, Cvitas T, JGFrey, Holmström B, Kuchitsu K, Marquardt
R, Mills I, Pavese F, Quack M, Stohner J, Strauss H, Takami M,
Thor A, (2008) Quantities, units and symbols in physical chem-
istry, IUPAC Green Book, 3rd edn. IUPAC & RSC Publishing,
Cambridge

 24. Possolo A, van der Veen AMH, Meija J, Hibbert DB (2018) Inter-
preting and propagating the uncertainty of the standard atomic
weights (IUPAC technical report). Pure Appl Chem 90(2):395–
424. https:// doi. org/ 10. 1002/ asmb. 19470

 25. Bloomfield V (2014) Using R for numerical analysis in science
and engineering. CRC Press, Taylor & Francis Group, Boca Raton

 26. EA Laboratory Committee (2013) EA 4/02 Evaluation of the
uncertainty of measurement in calibration. European Coopera-
tion for Accreditation

 27. Swishchuk A (2019) Table of basic derivatives. http:// people.
ucalg ary. ca/ ~aswish/ AMAT2 19TAB LES_ W11. pdf. Accessed
2019-06-05

 28. Weast RC (1984) CRC handbook of chemistry and physics: a
ready-reference book of chemical and physical data, 64th edn.
CRC Press Inc, Boca Rato

 29. Ellison Stephen LR (2018) metRology: support for metrological
applications. R package version 0.9-28-1

 30. Richardson LF (1911) IX. The approximate arithmetical solution
by finite differences of physical problems involving differential
equations, with an application to the stresses in a masonry dam.
Philos Trans R Soc Lond Ser A Contain Pap Math Phys Character
210(459–470):307–357

 31. Xie Y (2018) knitr: a general-purpose package for dynamic report
generation in R. https:// yihui. name/ knitr/. R package version 1.21

 32. Xie Y (2015) Dynamic documents with R and knitr, 2nd edn.
Chapman and Hall/CRC, Boca Raton

 33. Xie Y (2014) knitr: a comprehensive tool for reproducible research
in R. In: Stodden V, Leisch F, Peng RD (eds) Implementing repro-
ducible computational research. Chapman and Hall/CRC, Boca
Raton

 34. Walker A (2018) openxlsx: read, write and edit XLSX Files.
https:// CRAN.R- proje ct. org/ packa ge= openx lsx. R package ver-
sion 4.1.0

 35. Allaire J, Horner J, Xie Y, Marti V, Porte N (2018) markdown:
’Markdown’ Rendering for R. https:// CRAN.R- proje ct. org/ packa
ge= markd own. R package version 0.9

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/asmb.1947
https://www.R-project.org/
https://doi.org/10.1088/0026-1394/47/3/023
https://doi.org/10.1145/272991.272995
https://doi.org/10.1007/s00180-014-0482-5
https://doi.org/10.1007/s00180-014-0482-5
https://CRAN.R-project.org/package=trapezoid
https://CRAN.R-project.org/package=trapezoid
https://CRAN.R-project.org/package=triangle
https://CRAN.R-project.org/package=triangle
https://doi.org/10.1515/pac-2015-0305
https://doi.org/10.1002/asmb.1947
http://people.ucalgary.ca/%7easwish/AMAT219TABLES_W11.pdf
http://people.ucalgary.ca/%7easwish/AMAT219TABLES_W11.pdf
https://yihui.name/knitr/
https://CRAN.R-project.org/package=openxlsx
https://CRAN.R-project.org/package=markdown
https://CRAN.R-project.org/package=markdown

	Getting started with uncertainty evaluation using the Monte Carlo method in R
	Abstract
	Introduction
	Monte Carlo method
	Software environment
	Generating random numbers
	Implementation of the Monte Carlo method
	Molar mass of phenol
	Mass example from EA 402

	Law of propagation of uncertainty
	Interfacing with Word, Excel and LaTeX
	Discussion and conclusions
	Acknowledgements
	References

