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Abstract
The evaluation of measurement uncertainty is often perceived by laboratory staff as complex and quite distant from daily 
practice. Nevertheless, standards such as ISO/IEC 17025, ISO 15189 and ISO 17034 that specify requirements for labora-
tories to enable them to demonstrate they operate competently, and are able to generate valid results, require that measure-
ment uncertainty is evaluated and reported. In response to this need, a European project entitled “Advancing measurement 
uncertainty—comprehensive examples for key international standards” started in July 2018 that aims at developing examples 
that contribute to a better understanding of what is required and aid in implementing such evaluations in calibration, testing 
and research. The principle applied in the project is “learning by example”. Past experience with guidance documents such 
as EA 4/02 and the Eurachem/CITAC guide on measurement uncertainty has shown that for practitioners it is often easier 
to rework and adapt an existing example than to try to develop something from scratch. This introductory paper describes 
how the Monte Carlo method of GUM (Guide to the expression of Uncertainty in Measurement) Supplement 1 can be 
implemented in R, an environment for mathematical and statistical computing. An implementation of the law of propaga-
tion of uncertainty is also presented in the same environment, taking advantage of the possibility of evaluating the partial 
derivatives numerically, so that these do not need to be derived by analytic differentiation. The implementations are shown 
for the computation of the molar mass of phenol from standard atomic masses and the well-known mass calibration example 
from EA 4/02.
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Introduction

One of the complicating factors in the evaluation and prop-
agation of measurement uncertainty is the competence in 
mathematics and statistics required to perform the calcula-
tions. Nevertheless, standards such as ISO/IEC 17025 [1], 
ISO 15189 [2] and ISO 17034 [3] that specify requirements 

for laboratories to enable them to demonstrate they operate 
competently, and are able to generate valid results, require 
that measurement uncertainty is evaluated and reported. The 
well-known law of propagation of uncertainty (LPU) from 
the Guide to the expression of uncertainty in measurement 
(GUM) [4] requires the calculation of the partial derivatives 
of the measurement model with respect to each of the input 
variables.

In this primer, we (re)introduce the Monte Carlo method 
of GUM Supplement 1 (GUM-S1) [5], which takes the same 
measurement model and the probability density functions 
assigned to the input variables as the LPU to obtain (an 
approximation to) the output probability density function. 
We show, based on some well-known examples illustrating 
the evaluation of measurement uncertainty, how this method 
can be implemented for a single measurand and how key 
summary outputs, such as the estimate (measured value), the 
associated standard uncertainty, the expanded uncertainty 
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and a coverage interval for a specified coverage probability, 
can be obtained.

The Monte Carlo method of GUM-S1 [5] is a versatile 
method for propagating measurement uncertainty using a 
measurement model. It takes the measurement model, i.e. 
the relationship between the output quantity and the input 
quantities, and random samples of the probability density 
functions of the input quantities to generate a correspond-
ing random sample of the probability density function of the 
output quantity.

The use of probability density functions is well covered 
in the GUM [4] and further elaborated in GUM-S1 [5]. In 
this primer, the emphasis is on setting up an uncertainty 
evaluation using the Monte Carlo method for a measurement 
model with one output quantity (a “univariate” measure-
ment model). GUM Supplement 2 (GUM-S2) [6] provides 
an extension of the Monte Carlo method to measurement 
models with two or more output quantities (“multivariate” 
measurement models) as well as giving a generalisation of 
the LPU to the multivariate case.

The vast majority of the uncertainty evaluations in cali-
bration and testing laboratories are performed using the 
LPU [4]. This mechanism takes the estimates (values) of 
the input quantities and the associated standard uncertain-
ties to obtain an estimate for the output quantity and the 
associated standard uncertainty. The measurement model is 
used to compute (1) the value of the output quantity and (2) 
the sensitivity coefficients, i.e. the first partial derivatives of 
the output quantity with respect to each of the input quanti-
ties (evaluated at the estimates of the input quantities). The 
second part of the calculation involving the partial deriva-
tives is perceived as being cumbersome and requires skills 
that are often beyond the capabilities of laboratory staff and 
researchers. The computation of the sensitivity coefficients 
can also be performed numerically [7, 8]. One of the advan-
tages of the Monte Carlo method is that sensitivity coeffi-
cients are not required. All that is needed is a measurement 
model, which can be in the form of an algorithm, and a 
specification of the probability distributions for the input 
quantities. These probability distributions (normal, rectan-
gular, etc.) are typically already specified in uncertainty 
budgets when the LPU is used.

In this tutorial, we show how the Monte Carlo method of 
GUM-S1 can be implemented in R [9]. This environment 
is open-source software and specifically developed for sta-
tistical and scientific computing. Most of the calculations 
in laboratories, science and elsewhere are still performed 
using mainstream spreadsheet software. An example of 
using the Monte Carlo method of GUM-S1 with MS Excel 
is given in the Eurachem/CITAC Guide on measurement 
uncertainty [10]. It is anticipated that this tutorial will also 
be useful for those readers who would like to get started 
using other software tools or other languages.

Monte Carlo method

The heart of the Monte Carlo method of GUM-S1 can be 
summarised as follows [5]. Given a measurement model of 
the form

and probability density functions assigned to each of the 
input quantities X1,… ,XN , generate M sets of input quanti-
ties X1,r,… ,XN,r ( r = 1,… ,M ) and use the measurement 
model to compute the corresponding value for Yr . M, the 
number of sets of input quantities should be chosen to be 
sufficiently large so that a representative sample of the prob-
ability density function of the output quantity Y is obtained. 
The approach here applies to independent input quantities 
and a scalar output quantity Y. For its extension to dependent 
input quantities, see GUM-S1 [5], and a multivariate output 
quantity, see GUM-S2 [6].

GUM-S1 [5, clause 6.4] describes the selection of appro-
priate probability density functions for the input quantities, 
thereby supplementing the guidance given in the GUM [4, 
clause 4.3]. GUM-S1 also provides guidance on the genera-
tion of pseudo-random numbers. Pseudo-random numbers 
rather than random numbers are generated by contemporary 
software since the latter are almost impossible to obtain. 
However, comprehensive statistical tests indicate that the 
pseudo-random numbers generated cannot be distinguished 
in behaviour from truly random numbers.

Considerable confidence has been gained by the authors 
over many years concerning the performance of the Monte 
Carlo method of uncertainty evaluation from a practi-
cal viewpoint. For measurement models that are linear in 
the input quantities, for which the law of propagation of 
uncertainty produces exact results, agreement with results 
from the Monte Carlo method to the numerical accuracy 
expected has always been obtained. Thus, weight is added to 
the above point: there is evidence that the effects of working 
with pseudo-random numbers and truly random numbers 
are identical.

If needed, the performance of a random number generator 
can be verified [11, 12]. For the purpose of this tutorial, it 
is assumed that the built-in random number generator in R 
is fit for purpose.

A refinement of the Monte Carlo method concerns select-
ing the number of trials automatically so as to achieve a 
degree of assurance in the numerical accuracy of the results 
obtained. An adaptive Monte Carlo procedure for this pur-
pose involves carrying out an increasing number of Monte 
Carlo trials until the various results of interest have stabi-
lised in a statistical sense. Details are provided in [5, clause 
7.9] and since then an improved method in [13].

Y = f (X1,… ,XN)
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In many software environments, random number gen-
erators for most common probability density functions 
are already available; if not, they can be readily developed 
using random numbers from a rectangular distribution [5, 
annex C]. (The rectangular distribution is also known as 
the uniform distribution.) Should even a random number 
generator for the rectangular distribution not be available in 
the software environment, then the one described in GUM-
S1 can be implemented as a basis for generating random 
numbers. The default random number generator in R is the 
Mersenne Twister [14], which is also implemented in many 
other programming environments, including MATLAB and 
MicroSoft Excel (since version 2010, see [15]). Based on 
this random number generator, there are generators available 
for a number of probability distributions [9].

The output of applying the Monte Carlo method is an 
array (vector) Y1,… , YM characterising the probability den-
sity function of the output quantity. This sample is, however, 
not in the form in which a measurement result is typically 
communicated. From the output Y1,… , YM , the following 
can be computed:

• the measured value, usually taken as the arithmetic mean 
of Y1, … , YM

• the standard uncertainty, usually computed as the stand-
ard deviation of Y1, … , YM

• a coverage interval containing the value of the output 
quantity with a stated probability, obtained as outlined 
below;

• the expanded uncertainty;
• the coverage factor.

The last two items apply when the coverage interval can 
be reasonably approximated by a symmetric probability 
density function. Care should be taken in cases of asym-
metric output probability density functions in which the 
mean of Y1,… , YM might result in an unreliable estimator 
of the measurand, behaving worse than other estimators 
(such as the mode or the median) and even worse than the 
simple estimate obtained from y = f (x1,… , xn) provided by 
the measured model f directly applied to the input estimates 
x1,… , xn.

The most general way of representing a coverage interval 
is by specifying its upper and lower limits. This representa-
tion is always appropriate whether the output distribution is 
symmetric or not. In many instances, however, the output 
probability density function is (approximately) symmetric, 
and then, the expanded uncertainty can be computed as the 
half-width of the coverage interval. The coverage factor can 
be computed from the expanded uncertainty U(y) and the 
standard uncertainty u(y), i.e. k = U(y)∕u(y) . The symmetry 
of the output probability density function can be verified by 
examining a histogram of Y1,… , YM , or obtaining a kernel 
density plot [16, 17], a smooth approximation to the prob-
ability density function.

Software environment

R is an open-source language and environment for statistical 
computing and graphics. It is a GNU project, similar to the 
S language and environment, which was developed at Bell 
Laboratories (formerly AT&T, now Lucent Technologies) 
by John Chambers and colleagues. R can be considered as 
a different implementation of S [9]. It is available for Win-
dows, MacOS and a variety of UNIX platforms (including 
FreeBSD and Linux) [9].

Users of Windows, MacOS and a number of Linux distri-
butions may also wish to download and install RStudio [18], 
which provides an integrated development environment, in 
which code can be written, the values of variables can be 
monitored, and separate windows for the console and graph-
ics output are available. The R code provided in this primer 
has been developed in RStudio (version 1.2.1335, build 1379 
(f1ac3452)).

Generating random numbers

In R, it is straightforward to generate a sample of random 
numbers from most common probability density functions. 
For example, the following code generates a sample of a 
normal distribution with mean � = 10.0 and standard devia-
tion � = 0.2 and a sample size M = 10,000:
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The function to be called to generate an array (vector) of 
random numbers having a normal distribution with mean 
mu and standard deviation sigma is called rnorm. The 
line set.seed(2926) is useful for debugging purposes, 
as it ensures that the random number generator starts at the 
same point every time. Any other value for the seed would 
also ensure the exact reproduction of the series of numbers 
obtained from the random number generator. If that is not 
required, the line can be omitted. In this tutorial, the seed is 
set, so that the reader can exactly reproduce the output. The 
output is collected in a variable named X1. It is an array with 
10,000 elements.

The following code snippet shows the mean and standard 
deviation of the 10,000 generated numbers, using R’s built 
in functions mean and sd, respectively.
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Fig. 1  Histogram of M =10,000 samples of the random variable X1 
having a normal distribution with mean 10.0 and standard deviation 
0.2
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Fig. 2  Histogram of the random variable X2 containing M = 10,000 
samples having an arcsine distribution between −1 and 1

Using R’s functions plot and hist, a histogram of 
variable X1 can be plotted (Fig. 1). The code to generate 
Fig. is as follows:

where hist calculates the histogram from the array 
X1 and plot generates the figure. The plotted histogram 
resembles that of a normal distribution. The larger is the 
number of samples drawn from the random number genera-
tor, the closer the resemblance to the normal distribution 
will be.

From the first code fragment in this section, it is read-
ily seen that R has a function for generating random 
numbers with a normal distribution. It also has functions 
for generating random numbers with a rectangular dis-
tribution (runif), the t distribution (rt), exponential 
distribution (rexp) and gamma distribution (rgamma). 
There exist a package (extension) called “trapezoid” [19] 
implementing among others the trapezoidal distribution, 
a package called “mvtnorm” [20] implementing the mul-
tivariate normal distribution (useful when some of the 
input quantities are dependent [5]) and a package called 

“triangle” [21] implementing the triangular distribution. 
So, apart from the curvilinear trapezoidal distribution 
and the arc sine distribution, random numbers for all 
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probability density functions mentioned in GUM-S1 [5, 
table 1] are available in R.

The arc sine distribution can be implemented as follows 
in R. According to GUM-S1 [5, clause 6.4.6.1], a U-shaped 
random variable X on the interval [a, b] can be obtained 
through

where Φ is a random variable with a rectangular distribution 
on [0, 2�] . In R, a function rarcsin that provides such a 
random variable, and a call to that function, can be coded 
as follows:

X =
a + b

2
+

b − a

2
sinΦ,
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Fig. 3  Output probability density function of the molar mass of phe-
nol and, superimposed, a normal distribution with the same mean and 
standard deviation

The argument n determines the number of random num-
bers returned; a and b denote the lower and upper limits, 
respectively, of the interval over which the arcsine distribu-
tion has a nonzero density. If n > 1 , the function returns an 
array; if n = 1 , it returns a single number. This behaviour 
mimics the behaviour of the other functions implemented 
in R to generate random numbers.

The last line in the code snippet creates an array X2 of M 
elements ( M = 10,000 in this instance) of a random variable 
having an arcsine distribution over the interval [−1, 1] . A 
histogram (obtained through the R function hist) is shown 
in Fig. 2. 

Implementation of the Monte Carlo method

Molar mass of phenol

In this example, the molar mass of phenol (molecular for-
mula  C6H5OH) is computed. The example shows how an 
output quantity with an uncertainty is obtained from input 
quantities with uncertainty. There is no experiment involved. 
The example is pivotal for many calculations involving 

reference data, such as atomic weights, molar masses and 
enthalpies of formation.

The molar mass is computed from the standard atomic 
masses and the coefficients appearing in the molecular for-
mula, which for the elements involved are 6 for carbon, 6 
(5+1) for hydrogen and 1 for oxygen. The current relative 
atomic masses are used as published by IUPAC (Interna-
tional Union of Pure and Applied Chemistry) [22]. The 
relative atomic masses that apply to “normal materials” are 
called standard atomic weights [22, 23]. Their interpretation 
is described in an IUPAC technical report [24]. From this 
interpretation, it follows that the standard atomic masses are 
modelled using the rectangular distribution.

The molecular weight of phenol (chemical formula 
 C6H5OH) is computed as

The Monte Carlo method is implemented in R using 
M = 100,000 trials. The R code that performs the evalua-
tion reads as 

Mr(C6H5OH) = 6Ar(C) + 6Ar(H) + Ar(O)
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The first line declares a variable M that holds the num-
ber of trials to be carried out by the Monte Carlo method. 
Then, for each of the elements, M samples are drawn using 
the rectangular distribution (using R’s function runif) and 
the lower and upper limits provided by the standard atomic 
weights of IUPAC [22]. These arrays have, respectively, the 
names C, H and O for the atomic masses of carbon, hydrogen 
and oxygen. The molar mass is then computed in the line 
defining MW. R is very efficient with vectors (arrays) and 
matrices (tables) [25]. The value of the molar mass (MW.
val) is computed by taking the average of MW, the standard 
uncertainty by taking the standard deviation of MW and the 
expanded uncertainty by taking the half-width of the 95% 
coverage interval. The latter is obtained by calculating the 
0.025 and 0.975 quantiles (which provides a probabilisti-
cally-symmetric coverage interval) [5, clause 7.7]. In the 
last line, the coverage factor is computed as the ratio of the 
expanded uncertainty and the standard uncertainty.

The code to plot the output probability density function 
of the molar mass (MW) and to superimpose a normal distri-
bution with the same mean and standard deviation is given 
as follows:

The first two lines compute the relevant part of the normal 
distribution around the mean ± 4 standard deviations. The 
subsequent lines plot the output probability density function 
and the normal distribution, respectively.

The graph is shown in Fig. 3. It is obvious that the nor-
mal distribution is not an appropriate approximation of the 
probability density function of the output quantity, which is 
close in appearance to a rectangular distribution and much 
narrower than the normal distribution. The molar mass is 
94.1108 gmol−1 with standard uncertainty 0.0035 gmol−1 . 
The expanded uncertainty is 0.0059 gmol−1 . The coverage 
factor is 1.67, which is much closer to the 95% coverage 
factor of 1.69 for a rectangular distribution than that for a 
normal distribution (1.96).

Mass example from EA 4/02

In this section, the mass calibration example of EA 4/02 [26] 
is revisited. The evaluation using the Monte Carlo method 
rests on the same assumptions for the input quantities as in 
that example. In this example, we show how the Monte Carlo 
method can be implemented for any explicit measurement 
model with a single output quantity. The measurement model 
is coded in the form of a function, which promotes writing 
tidy code. It also allows iterative calculations to be read-
ily implemented when the measurement model is defined 
implicitly [6]. This example describes the calibration of a 10 

kg weight by comparison with a standard 10 kg weight. The 
weighings are performed using the substitution method. This 
method is implemented in such a way that three mutually 
independent observations for the mass difference between 
the two weights are obtained.
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The measurement model is given by [26, S2]:

where the symbols have the following meaning: 

mX     conventional mass of the weight being calibrated,
mS     conventional mass of the standard,
δmD       drift of the value of the standard since its last 

calibration,
δm     observed difference in mass between the unknown 

mass and the standard,
δmC     correction for eccentricity and magnetic effects,
δB     correction for air buoyancy.

For using the Monte Carlo method, probability density 
functions are assigned to each of the five input quantities [5]. 
These probability density functions are described in the orig-
inal example [26].

The conventional mass of the standard mS is modelled 
using the normal distribution with mean 10,000.005 g and 
standard deviation 0.0225 g . The standard deviation (stand-
ard uncertainty) is calculated from the expanded uncertainty 
and the coverage factor provided on the calibration certifi-
cate. This interpretation is also described in GUM-S1 [5, 
6.4.7]. The drift of the mass of the standard weight δmD is 
modelled using a rectangular distribution, centred at 0.000 g 
and with a half-width of 0.015 g . The corrections for eccen-
tricity and magnetic effects and that for air buoyancy are 
both modelled using a rectangular distribution with midpoint 
0.000 g and half-width 0.010 g.

The mass difference δm between the two weights com-
puted from the indications of the balance is calculated as the 
mean of n = 3 independent observations. EA 4/02 explains 
that the associated standard uncertainty is computed from a 
pooled standard deviation 0.025 g , obtained from a previous 
mass comparison, divided by 

√

n.
In the implementation of the Monte Carlo method, the 

three observations are simulated using normal distributions 
with means of the observed values (i.e. 0.010 g , 0.030 g and 
0.020 g , respectively) and a standard deviation of 0.025 g 
for each. The mass difference is formed by calculating the 
arithmetic average of the three simulated observations.

The measurement model [Eq. (1)] can be coded in R as 
follows:

(1)mX = mS + δmD + δm + δmC + δB,
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Fig. 4  Probability density function of the output quantity m.x and 
superimposed a normal distribution with the same mean and standard 
deviation

where m.std denotes the conventional mass of the 
standard weight, dm.d the drift correction of the conven-
tional mass of the standard weight, diff the mass difference 
obtained from the substitution weighing, dm.c the cor-
rection due to eccentricity and magnetic effects and dm.B 
the correction due to air buoyancy. The function is called 
mass.x and returns the value of the output quantity mX.

Most programming languages implement a “for” loop, 
which enables executing a block of code a defined number 
of times. Anyone familiar with this “for” loop in computer 
programming would now use this kind of loop to code the 
recipe given in GUM-S1 clause 7.2.2 [5]. An implementa-
tion of the Monte Carlo method with a fixed value for the 
number of samples M would then read as follows:
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On the first line, the probability level of the coverage 
interval (prob) is defined to be 0.95. In accordance with 
the guidance in clause 7.2.2 of GUM-S1 [5], M is calcu-
lated using the built-in function ceiling which returns the 
smallest integer not less than its argument. With prob = 
0.95, the net effect of calling ceiling is that the floating 
point number is converted to an integer, as the result of 1/
(1-prob) of 20; hence, the minimum number of Monte 
Carlo trials is M = 10,000 × 20 = 200,000 . Then, an array 
(vector) m.x is declared that will hold the values calcu-
lated for the mass of the weight being calibrated. The vector 
m.data is a temporary storage for simulating the mass dif-
ferences between the standard weight and the weight being 

calibrated. In the for loop, at each iteration a sample is 
drawn of the input quantities mS (m.std), δmD (dm.d), δmC 
(dm.c) and δB (dm.B). The mass difference from compar-
ing the two weights (m.diff) is simulated by drawing from 
a normal distribution with different means, but the same 
standard deviations, the three readings and taking the aver-
age. The measured value of the output quantity mX (m.x) is 
finally obtained by calling the measurement model with as 
arguments the input quantities.

Running the above code provides the following output for 
the mean, standard deviation (standard uncertainty) and the 
coverage interval of mX:
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where the argument probs holds the probabilities corre-
sponding to the lower and upper ends of the probabilistically 
symmetric 95% coverage interval.

This way of coding an implementation of the Monte 
Carlo method would work in a large number of computer 
languages, including Python, MATLAB, Fortran, C, C++ 
and Pascal. While the above code in R does what is intended, 
the same task can be performed with greater effectiveness 
in R, exploiting the fact that R is very efficient in working 
with vectors and matrices [25]. Computational efficiency is 
especially important with more complex models and larger 
numbers of Monte Carlo trials, as it can greatly reduce the 
required computing time. The following code implements 
the same simulation, using vectors and matrices where 
possible:

Now the variables m.std, dm.d, dm.c and dm.B are 
vectors holding all M values for the input quantities. The 
data from comparing the weights are summarised in a matrix 
called m.data of M rows and 3 columns. The matrix is 
constructed by adding the means (0.01, 0.03 and 0.02) to the 

simulated data which have been generated using the normal 
distribution with mean 0 and standard deviation 0.025. The 
mass differences are computed by calculating the row means 
and storing these in m.diff using the R function apply. 
Note also that the measurement model can be called with 
vectors rather than scalars as arguments (last line of the 
code); in this case also, m.x is a vector of length M.

The second code runs in less than half the time of the first 
implementation. For this simple example, the difference is 
a matter of a few seconds, but for more complex models the 
difference in speed will be of more practical significance. 
Especially the steps that are repeated often should be care-
fully thought about. Another issue is memory use. The sec-
ond implementation consumes appreciably more memory 
(for it holds all generated values for the input quantities) 

than the first (which only holds the last value for each of the 
input quantities).

The second code provides the following output for the 
mean, standard deviation (standard uncertainty) and the cov-
erage interval of mX:
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The output probability density function is shown in 
Fig. 4. Its form closely resembles that of a normal distribu-
tion with mean 10,000.025 g and standard deviation 0.029 g . 
The following code computes the expanded uncertainty by 
taking the half-width of the 95% coverage interval and the 
coverage factor by dividing the expanded uncertainty by the 
standard uncertainty:

The expanded uncertainty is 0.057 g , and the coverage 
factor is 1.96. This coverage factor is that of a 95% coverage 
interval of the normal distribution. The coverage factor dif-
fers from that used in EA 4/02, which uses k = 2 for obtain-
ing (at least) 95% coverage probability. The close agreement 
is readily explained, as the dominating uncertainty contri-
butions are modelled using the normal distribution, and the 
sum of two normal distributions is also normally distrib-
uted (see also the measurement model, Eq. (1)). That the 
output quantity has an (approximately) normal distribution 
is reflected in the coverage factor obtained from the Monte 
Carlo method.

Now all results are obtained that commonly appear on a 
calibration certificate (as well as in many test reports), as 
described in ISO/IEC 17025 [1]:

• the measured value (= value of the output quantity);
• the expanded uncertainty;
• the coverage factor.

In this case, one might also be willing to state that the out-
put probability density function is a normal distribution, 
whereas in this case such a statement can reasonably be 
made, in most cases the output probability density function 
cannot directly be approximated by a well-known analytic 
probability density function. Comparison of the three results 
listed above with those from the GUM would imply that 
for comparable data the GUM would be fit for purpose in a 
subsequent uncertainty evaluation. In a measurement model 
with mX as one of the input quantities, the above information 
suffices to apply the GUM [4].

Law of propagation of uncertainty

The law of propagation of uncertainty (LPU) is the most 
widely used mechanism for propagating uncertainty. 
Whereas with the Monte Carlo method the lack of comput-
ing and programming skills can form a bottleneck, with the 

LPU it is often the calculation of the sensitivity coefficients, 
i.e. the partial derivatives of the output quantity with respect 
to the input quantities, that provides a difficulty. Most guid-
ance documents, such as the GUM [4], GUM-S2 [6] and 
EA 4/02 [26] direct their readers to analytic differentiation 
of the measurement model to obtain the expressions for 
calculating the sensitivity coefficients. While this guidance 
is fully appropriate, it is not always practicable, for many 
people have lost their skills in differentiation. The fact that 
there are tables with derivatives of common functions (such 
as [27, 28]) is barely mentioned in such documents. Numeri-
cal approximation of the sensitivity coefficients [7, 8, 10, 29] 
is a very good alternative, provided that it is done properly. 
In this section, we show how to use numerical differentia-
tion and the law of propagation of uncertainty to perform the 
uncertainty evaluation of the mass example of EA 4/02  [26].

The R package numDeriv provides the function grad 
(from gradient) that returns from a function a generally 
good approximation, using Richardson extrapolation [30], 
of the partial derivatives of the input variables. The func-
tion returns a vector holding the values of these partial 
derivatives. The function passed to grad should have only 
one argument, namely a vector holding all input variables. 
Hence, the measurement model needs to be reformulated 
as follows:
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where x denotes the vector with input variables. For clar-
ity and convenience, in the function body of mass2.x the 
same symbols have been used as in mass.x shown previ-
ously. The convenience extends to easier debugging the code 
as necessary. The penultimate line calculates the result of the 
function as the sum of the five input variables, just as in the 
case of the Monte Carlo method.

The uncertainty evaluation itself can be coded as follows:

The first line loads the package numDeriv (which 
needs to be installed in RStudio). The next two lines define 

m.x.unc. Again, this last line shows the flexibility of R 
working with vectors.

The mass of the calibrated weight is 10,000.025 g with 
standard uncertainty 0.029 g . Using a coverage factor k = 2 , 
the expanded uncertainty becomes 0.059 g . These results 
reproduce those in example S.2 of EA 4/02 to the number 
of decimal digits given.

The values of the sensitivity coefficients are

the values of the input quantities. The vector sens on the 
fourth line holds the sensitivity coefficients returned by call-
ing grad. The subsequent three lines calculate the standard 
uncertainties associated with the five input quantities. The 
penultimate line calculates the estimate of the output quan-
tity m.x and the last line its associated standard uncertainty 

and are identical to those given in EA 4/02 [26]. The 
code is also valid for measurement models with non-trivial 
sensitivity coefficients [8].

The approach described also works with correlated input 
variables. In that case, the calculation of the standard uncer-
tainty associated with mX is performed as follows:
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The first two lines form the covariance matrix, diagonal 
in this case, associated with the five input quantities. (These 
are only needed to create the covariance matrix; if there were 
correlations between the five input variables, the code for 
creating it would have to be adapted accordingly.) The actual 
implementation of the LPU for correlated input variables is 
given in the last two lines of the previous code. By vector/
matrix multiplication (see also the law of propagation of 
uncertainty in GUM-S2 [6]), a covariance matrix of dimen-
sion 1 × 1 associated with the output quantity is returned 
(tmp). The last line takes the square root of the only ele-
ment in this matrix (holding the variance of mX ) to obtain 
the standard uncertainty associated with mX . This standard 
uncertainty is 0.029 g.

Interfacing with Word, Excel and LaTeX

This article has been developed with R Sweave using the 
knitr package [31, 32]. R Sweave is implemented in RStu-
dio [18] and enables LaTeX  to be combined with R (and 
other systems). Upon compilation, the PDF (portable docu-
ment format) reflects the output after executing the R code, 
compiling the resulting LaTeX  file. It has the great advan-
tage that the consistency between data, code and output is 
preserved [33].

Data collected in mainstream spreadsheet software can 
be processed in R, for instance, using the openxlsx pack-
age [34] which provides functions for reading and writing 
entire Excel workbooks. It supports the xlsx-format and also 
allows R to create new workbooks, fill these and write these.

Producing output in Microsoft Word or HTML format is 
possible using R markdown [35] and also available in RStu-
dio [18]. The syntax resembles that of Word, with the pos-
sibility of including tables, graphs and calculations involv-
ing R. Formulæ  can be incorporated using a syntax that is 
similar to that in Word and LaTeX  and upon compilation 
to Word, results in editable formulæ, compatible with the 
equation editor of MS Word 2007 and later (using the docx 
file format).

Discussion and conclusions

In this tutorial, we have shown how straightforwardly the 
Monte Carlo method for propagating distributions can be 
implemented in software. True, it requires some program-
ming skills, but the code provided can serve as a template for 
more complex applications. Two versions have been given, 
one working with most programming languages and a sec-
ond optimised for R.

The framework shown for the mass example can readily 
be extended to nonlinear measurement models and models 

with multiple output quantities. The flexibility also extends 
to skewed probability density function for the output quan-
tity. In this case, the Monte Carlo method may (correctly) 
provide a different estimate from just using the measure-
ment model and the estimates of the input quantities. Also, 
a different 95% coverage interval (see GUM-S2 [6]) may be 
preferred to the probabilistically symmetric one as used in 
the examples (which both have an (approximately) symmet-
ric output probability density function for the measurand).

We also have shown how the law of propagation of 
uncertainty can be used without the need for deriving the 
analytic expressions for the sensitivity coefficients (the par-
tial derivatives of the output quantity with respect to the 
input quantity). Code, again in the form of a template, has 
been provided that after adaptation works with any univari-
ate measurement model and also for the case of correlated 
input quantities.
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