Skip to main content

Advertisement

Log in

Effect of taurine and potential interactions with caffeine on cardiovascular function

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The major impetus behind the rise in energy drink popularity among adults is their ability to heighten mental alertness, improve physical performance and supply energy. However, accompanying the exponential growth in energy drink usage have been recent case reports and analyses from the National Poison Data System, raising questions regarding the safety of energy drinks. Most of the safety concerns have centered on the effect of energy drinks on cardiovascular and central nervous system function. Although the effects of caffeine excess have been widely studied, little information is available on potential interactions between the other active ingredients of energy drinks and caffeine. One of the active ingredients often mentioned as a candidate for interactions with caffeine is the beta-amino acid, taurine. Although taurine is considered a conditionally essential nutrient for humans and is thought to play a key role in several human diseases, clinical studies evaluating the effects of taurine are limited. However, based on this review regarding possible interactions between caffeine and taurine, we conclude that taurine should neutralize several untoward effects of caffeine excess. In agreement with this conclusion, the European Union’s Scientific Committee on Food published a report in March 2003 summarizing its investigation into potential interactions of the ingredients in energy drinks. At the cardiovascular level, they concluded that “if there are any interactions between caffeine and taurine, taurine might reduce the cardiovascular effects of caffeine.” Although these interactions remain to be further examined in humans, the physiological functions of taurine appear to be inconsistent with the adverse cardiovascular symptoms associated with excessive consumption of caffeine–taurine containing beverages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abebe W, Mozaffari MS (2000) Effect of chronic taurine treatment on reactivity of rat aorta. Amino Acids 19:615–623

    PubMed  CAS  Google Scholar 

  • Abebe W, Mozaffari MS (2004) Effect of taurine deficiency on adenosine receptor-mediated relaxation of the rat aorta. Vasc Pharmacol 40:219–228

    Google Scholar 

  • Abebe W, Mozaffari MS (2011) Role of taurine in the vasculature: an overview of experimental and human studies. Am J Cardiovasc Dis 1:293–311

    PubMed Central  PubMed  CAS  Google Scholar 

  • Aguilar F, Charrondiere UR, Dusemund B, Galtier P, Gilbert J, Gott DM, Grilli S, Guertler R, Kass GEN, Koenig J, Lambre C, Larsen JC, Leblanc JC, Mortensen A, Parent-Massin D, Pratt I, Rietjens IMCM, Stankovic I, Tobback P, Verguieva T, Woutersen RA (2009) The use of taurine and D-glucurono-gamma-lactone as constituents of the so-called “energy” drinks. EFSA J 935:1–31

    Google Scholar 

  • Alford C, Cox H, Wescott R (2001) The effects of red bull energy drink on human performance and mood. Amino Acids 21:139–150

    PubMed  CAS  Google Scholar 

  • American Heart Association (2007) Energy drinks may pose risks for people with high blood pressure, heart disease. News release 11.06.07, Scientific Sessions, Orlando

  • Azuma J, Sawamura A, Awata N, Ohta H, Hamaguchi T, Harada H, Takihara K, Hasegawa H, Yamagami T, Ishiyama T et al (1985) Therapeutic effect of taurine in congestive heart failure: a double-blind crossover trial. Clin Cardiol 8:276–282

    PubMed  CAS  Google Scholar 

  • Baum M, Weiss M (2001) The influence of a taurine containing drink on cardiac parameters before and after exercise measured by echocardiography. Amino Acids 20:75–82

    Google Scholar 

  • Berger AJ, Alford K (2009) Cardiac arrest in a young man following excess consumption of caffeinated “energy drinks”. Med J Aust 190:41–43

    PubMed  Google Scholar 

  • Bichler A, Swenson A, Harris MA (2006) A combination of caffeine and taurine has no effect on short term memory but induces changes in heart rate and mean arterial blood pressure. Amino Acids 31:471–476

    PubMed  CAS  Google Scholar 

  • Burg MB, Kwon ED, Kultz D (1997) Regulation of gene expression by hypertonicity. Annu Rev Physiol 59:437–455

    PubMed  CAS  Google Scholar 

  • Cannon ME, Cooke CT, McCarthy JS (2001) Caffeine-induced cardiac arrhythmia: an unrecognised danger of healthfood products. Med J Aust 174:520–521

    PubMed  CAS  Google Scholar 

  • Chahine R, Feng J (1998) Protective effects of taurine against reperfusion-induced arrhythmias in isolated ischemic rat heart. Arzneimittelforschung 48:360–364

    PubMed  CAS  Google Scholar 

  • Chen W, Matuda K, Nishimura N, Yokogoshi H (2004) The effect of taurine on cholesterol degradation in mice fed a high cholesterol diet. Life Sci 74:1889–1898

    PubMed  CAS  Google Scholar 

  • Chovan JP, Kulakowski EC, Sheakowski S, Schaffer SW (1980) Calcium regulation by the low-affinity taurine binding sarcolemma. Mol Pharmacol 17:295–300

    PubMed  CAS  Google Scholar 

  • Daly JW (1993) Mechanism of action of caffeine. In: Garattini S (ed) Caffeine, coffee and health. Raven Press, New York, pp 97–150

    Google Scholar 

  • DiRocco JR, During A, Morelli PJ, Heyden M, Biancaniello TA (2011) Atrial fibrillation in healthy adolescents after highly caffeinated beverage consumption: two case reports. J Med Case Rep 5:18

    Google Scholar 

  • Dobmeyer DJ, Stine RA, Leier CV, Greenberg R, Schaal SF (1983) The arrhythmogenic effects of caffeine in human beings. N Engl J Med 308:814–816

    PubMed  CAS  Google Scholar 

  • Eby G, Halcomb WW (2006) Elimination of cardiac arrhythmias using oral taurine and l-arginine with case histories: hypothesis for nitric oxide stabilization of the sinus node. Med Hypotheses 67:1200–1204

    PubMed  CAS  Google Scholar 

  • El Idrissi A, Messing J, Sclia J, Trenkner E (2003) Prevention of epileptic seizures by taurine. Adv Exp Med Biol 526:515–525

    PubMed  Google Scholar 

  • El Idrissi A, Shen CH, L-Amoreaux WJ (2013) Neuroprotective role of taurine during aging. Amino Acids 45:735–750

    PubMed  Google Scholar 

  • Franconi F, Martini F, Stendardi I, Matucci R, Lucilla Z, Giotti A (1982) Effect of taurine on calcium levels and contractility in guinea-pig ventricular strips. Biochem Pharmacol 31:3181–3185

    PubMed  CAS  Google Scholar 

  • Franks AM, Schmidt JM, McCain KR, Fraer M (2012) Comparison of the effects of energy drink versus caffeine supplementation on indices of 24-hour ambulatory blood pressure. Ann Pharmacother 46:192–199

    PubMed  Google Scholar 

  • Fujita T, Katsuyuki A, Noda H, Yasushi I, Sato Y (1987) Effects of increased adrenomedullary activity and taurine in young patients with borderline hypertension. Circulation 75:525–532

    PubMed  CAS  Google Scholar 

  • Gaull GE (1986) Taurine as a conditionally essential nutrient in man. J Am Coll Nutr 5:121–125

    PubMed  CAS  Google Scholar 

  • Geiss KR, Jester I, Falke W, Hamm M, Waag KL (1994) The effect of taurine-containing drink on performance in 10 endurance athletes. Amino Acids 7:45–56

    PubMed  CAS  Google Scholar 

  • Gentile S, Bologna E, Terracina D, Angelico M (1994) Taurine-induced diuresis and natriuresis in cirrhotic patients with ascites. Life Sci 54:1585–1593

    PubMed  CAS  Google Scholar 

  • Gunja N, Brown JA (2012) Energy drinks: health risks and toxicity. Med J Aust 196:46–49

    PubMed  Google Scholar 

  • Hakim AA, Ross GW, Curb JD, Rodriguez BL, Burchfiel CM, Sharp DS, Yano K, Abbott RD (1998) Coffee consumption in hypertensive men in older middle-age and the risk of stroke: the Honolulu Heart Program. J Clin Epidemiol 51:487–494

    PubMed  CAS  Google Scholar 

  • Hano T, Kasano M, Tomari H, Iwane N (2009) Taurine suppresses pressor response through the inhibition of sympathetic nerve activity and the improvement in baro-reflex sensitivity of spontaneously hypertensive rats. Adv Exp Med Biol 643:57–63

    PubMed  CAS  Google Scholar 

  • Hayes KC, Carey RE (1975) Retinal degeneration associated with taurine deficiency in the cat. Science 188:949–951

    PubMed  CAS  Google Scholar 

  • Hayes KC, Pronczuk A, Addesa AE, Stephan ZF (1989) Taurine modulates platelet aggregation in cats and humans. Am J Clin Nutr 49:1211–1216

    PubMed  CAS  Google Scholar 

  • Higgins JP (2013) Endothelial function acutely worse after drinking energy beverage. Int J Cardiol 168:e47–e49

    PubMed  Google Scholar 

  • Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277

    PubMed  CAS  Google Scholar 

  • Holloway C, Kotsanas G, Wendt I (1999) Acute effects of taurine on intracellular calcium in normal and diabetic cardiac myocytes. Pflugers Arch 438:384–391

    PubMed  CAS  Google Scholar 

  • Huang DY, Boini KM, Lang PA, Grahammer F, Duszenko M, Heller-Stilb B, Warskulat U, Haeussinger D, Lang F, Vallon V (2006) Impaired ability to increase water excretion in mice lacking the taurine transporter gene TAUT. Pflugers Arch 451:668–677

    PubMed  CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  • Ijiri Y, Ikarugi H, Tamura Y, Ura M, Morishita M, Hamada A, Mori M, Mori H, Yamori Y, Ishii H, Yamamoto J (2013) Antithrombotic effect of taurine in healthy Japanese people may be related to an increased endogenous thrombolytic activity. Thromb Res 131:158–161

    PubMed  CAS  Google Scholar 

  • Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M, Schaffer SW, Fujio Y, Azuma J (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937

    PubMed  CAS  Google Scholar 

  • James JE (2004) Critical review of dietary caffeine and blood pressure: a relationship that should be taken more seriously. Psychosom Med 66:63–71

    PubMed  CAS  Google Scholar 

  • Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232

    PubMed  CAS  Google Scholar 

  • Juliano LM, Griffiths RR (2004) A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology 176:1–29

    PubMed  CAS  Google Scholar 

  • Kim C, Park E, Quinn MR, Schuller-Levis G (1996) The production of superoxide anion and nitric oxide by cultured murine leukocytes and the accumulation of TNF-alpha in the conditioned media is inhibited by taurine chloramines. Immunopharmacology 34:89–95

    PubMed  CAS  Google Scholar 

  • Kirino Y, Goto Y, Campos Y, Arenas J, Suzuki T (2005) Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc Natl Acad Sci 102:7127–7132

    PubMed Central  PubMed  CAS  Google Scholar 

  • Knopf K, Sturman JA, Armstrong M, Hayes KC (1978) Taurine: an essential nutrient for the cat. J Nutr 108:773–778

    PubMed  CAS  Google Scholar 

  • Kohashi N, Okabayashi Y, Hama J, Katori R (1983) Decreased urinary taurine in essential hypertension. Prog Clin Biol Res 125:73–87

    PubMed  CAS  Google Scholar 

  • Kokubo Y, Iso H, Saito I, Yamagishi K, Yatsuya H, Ishihara J, Inoue M, Tsugane S (2013) The impact of green tea and coffee consumption on the reduced risk of stroke incidence in Japanese population: the Japan public health center-based study cohort. Stroke 44:1369–1374

    Google Scholar 

  • Kondo Y, Toda Y, Kitajima H, Oda H, Nagate T, Kameo K, Murakami S (2001) Taurine inhibits development of atherosclerotic lesions in apolipoprotein E-deficient mice. Clin Exp Pharmacol Physiol 28:809–815

    PubMed  CAS  Google Scholar 

  • Kontny E, Rudnicka W, Kowalczewski J, Marcinkiewicz J, Maslinski W (2003) Selective inhibition of cyclooxygenase 2-generated prostaglandin E2 synthesis in rheumatoid arthritis synoviocytes by taurine chloramines. Arthritis Rheum 48:1551–1555

    PubMed  CAS  Google Scholar 

  • Kumar R (2009) Role of naturally occurring osmolytes in protein folding and stability. Arch Biochem Biophys 491:1–6

    PubMed  CAS  Google Scholar 

  • Lake N, de Roode M, Nattel S (1987) Effects of taurine depletion on rat cardiac electrophysiology: in vivo and in vitro studies. Life Sci 40:997–1005

    PubMed  CAS  Google Scholar 

  • Lane JD, Williams R (1985) Caffeine affects cardiovascular responses to stress. Psychophysiology 22:648–655

    PubMed  CAS  Google Scholar 

  • Lang F, Busch GL, Ritter M, Voelkl H, Waldegger S, Gulbins E, Haeussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    PubMed  CAS  Google Scholar 

  • Larsson S, Orsini N (2011) Coffee consumption and risk of stroke: a dose-response meta-analysis of prospective studies. Am J Epidemiol 174:993–1001

    PubMed  Google Scholar 

  • Li N, Sawamura M, Nara Y, Ikeda K, Yamori Y (1996) Direct inhibitory effects of taurine on norepinephrine-induced contraction in mesenteric artery of stroke-prone spontaneously hypertensive rats. Adv Exp Med Biol 403:257–262

    PubMed  CAS  Google Scholar 

  • Lovallo WR, Pincomb G, Sung BH, Passey RB, Sausen KP, Wilson MF (1989) Caffeine may potentiate adrenocortical stress response in hypertension-prone men. Hypertension 14:170–176

    PubMed  CAS  Google Scholar 

  • Marcinkiewicz J, Grabowska A, Bereta J, Bryniarski K, Nowak B (1998) Taurine chloramines down-regulates the generation of murine neutrophil inflammatory mediators. Immunopharmacology 40:27–38

    PubMed  CAS  Google Scholar 

  • Mesas AE, Leon-Munoz LM, Rodriguez-Artalejo F, Lopez-Garcia E (2011) The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: a systematic review of meta-analysis. Am J Clin Nutr 94:1113–1126

    PubMed  CAS  Google Scholar 

  • Mitchell DC, Knight CA, Hockenberry J, Teplansky R, Hartman TJ (2014) Beverage caffeine intakes in the US. Food Chem Toxicol 63C:136–142

    Google Scholar 

  • Mizushima S, Nara Y, Sawamura M, Yamori Y (1996) Effects of oral taurine supplementation on lipids and sympathetic nerve tone. Adv Exp Med Biol 403:615–622

    PubMed  CAS  Google Scholar 

  • Mozaffari MS, Schaffer D (2001) Taurine modulates arginine vasopressin-mediated regulation of renal function. J Cardiovasc Pharmacol 37:742–750

    PubMed  CAS  Google Scholar 

  • Mozaffari MS, Warren BK, Azuma J, Schaffer SW (1998) Renal excretory responses to taurine-depleted rats to hypotonic and hypertonic saline infusion. Amino Acids 15:109–116

    PubMed  CAS  Google Scholar 

  • Mozaffari MS, Patel C, Abdelsayed R, Schaffer SW (2006) Accelerated NaCl-induced hypertension in taurine deficient rat: role of renal function. Kidney Int 70:329–337

    PubMed  CAS  Google Scholar 

  • Murakami S, Kondo Y, Toda Y, Kitajima H, Kameo K, Sakono M, Fukuda N (2002) Effect of taurine on cholesterol metabolism in hamsters: upregulation of low density lipoprotein (LDL) receptor by taurine. Life Sci 70:2355–2366

    PubMed  CAS  Google Scholar 

  • Namdar M, Koepfli P, Grathowohl R, Siegrist PT, Klainguti M, Schepis T, Delaloye R, Wyss CA, Fleischmann SP, Gaemperli O, Kaufmann PA (2006) Caffeine decreases exercise-induced myocardial flow reserve. J Am Coll Cardiol 47:405–410

    PubMed  CAS  Google Scholar 

  • Namdar M, Schepis T, Koepfli P, Gaemperli O, Siegrist PT, Grathowohl R, Valenta I, Delaloye R, Klainguti M, Wyss CA, Luscher TF, Kaufmann PA (2009) Caffeine impairs myocardial blood flow response to physical exercise in patients with coronary artery disease as well as in age-matched controls. PLoS One 4:e5665

    PubMed Central  PubMed  Google Scholar 

  • Nara Y, Yamori Y, Lovenberg W (1978) Effect of dietary taurine on blood pressure in spontaneously hypertensive rats. Biochem Pharmacol 27:2689–2692

    PubMed  CAS  Google Scholar 

  • Nawrot P, Jordan S, Eastwood J, Rotsein J, Hugenholtz A, Feeley M (2003) Effects of caffeine on human health. Food Addit Contam 20:1–30

    PubMed  CAS  Google Scholar 

  • Nishida S, Satoh H (2009) Vascular modulation of rat aorta by taurine. Adv Exp Med Biol 643:37–46

    PubMed  CAS  Google Scholar 

  • Ohta H, Azuma J, Awata N, Hamaguchi T, Tanaka Y, Sawamura A, Kishimoto S, Sperelakis N (1988) Mechanism of the protective action of taurine against isoprenaline induced myocardial damage. Cardiovasc Res 22:407–413

    PubMed  CAS  Google Scholar 

  • Palatini P, Ceolotto G, Ragazzo F, Dorigatti F, Saladini F, Papparella I, Mos L, Zanta G, Santonastaso M (2009) CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J Hypertens 27:1594–1601

    PubMed  CAS  Google Scholar 

  • Park T, Oh J, Lee K (1999) Dietary taurine or glycine supplementation reduces plasma and liver cholesterol and triglyceride concentrations in rats fed a cholesterol-free diet. Nutr Res 19:1777–1789

    CAS  Google Scholar 

  • Park SH, Lee H, Park KK, Kim HW, Lee DH, Park T (2006) Taurine-induced changes in transcription profiling of metabolism-related genes in human hepatoma cells HepG2. Exp Med Biol 583:119–128

    CAS  Google Scholar 

  • Park IS, Kang YH, Kang JS (2007) Effects of taurine on plasma and liver lipids, erythrocyte ouabain sensitive Na efflux and platelet aggregation in Sprague Dawley rats. Nutr Res Pract 1:200–205

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pasantes-Morales H, Schousboe A (1997) Role of taurine in osmoregulation in brain cells: mechanisms and functional implications. Amino Acids 12:281–292

    CAS  Google Scholar 

  • Passmore A, Knodowe GB, Johnston GD (1987) Renal and cardiovascular effects of caffeine: a dose response study. Clin Sci 72:749–756

    PubMed  CAS  Google Scholar 

  • Peake STC, Mehta PA, Dubrey SW (2007) Atrial fibrillation-related cardiomyopathy: a case report. J Med Case Rep 1:111

    PubMed Central  PubMed  Google Scholar 

  • Pelchovitz DJ, Goldberger JJ (2011) Caffeine and cardiac arrhythmias: a review of the evidence. Am J Med 124:284–289

    PubMed  CAS  Google Scholar 

  • Pendleton M, Brown S, Thomas C, Odle B (2012) Potential toxicity of caffeine when used as a dietary supplement for weight loss. J Diet Suppl 9:293–298

    PubMed  Google Scholar 

  • Pion PD, Kittleson MD, Rogers QR, Morris JG (1987) Myocardial failure in cats associated with low plasma taurine: a reversible cardiomyopathy. Science 237:764–768

    PubMed  CAS  Google Scholar 

  • Ragsdale FR, Gronli TD, Batool N, Haight N, Mehaffrey A, McMahon EC, Nalli TW, Mannello CM, Sell CJ, McCann PJ, Kastello GM, Hooks T, Wilson T (2010) Effects of Red Bull energy drink on cardiovascular and renal function. Amino Acids 38:1193–1200

    PubMed  CAS  Google Scholar 

  • Read WO, Welty JD (1963) Effect of taurine on epinephrine and digoxin induced irregularities of the dog heart. J Pharmacol Exp Ther 139:283–289

    PubMed  CAS  Google Scholar 

  • Riesenhuber A, Boehm M, Posch M, Aufricht C (2006) Diuretic potential of energy drinks. Amino Acids 31:81–83

    PubMed  CAS  Google Scholar 

  • Ristori MT, Verdetti J (1991) Effects of taurine on rat aorta in vitro. Fundam Clin Pharmacol 5:245–258

    PubMed  CAS  Google Scholar 

  • Rogers PJ, Martin J, Smith C, Heatherley S, Smit H (2003) Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers. Psychopharmacology 152:167–173

    Google Scholar 

  • Sato Y, Ando K, Fujita T (1987) Role of sympathetic nervous system in hypotensive action of taurine in DOCA-salt rats. Hypertension 9:81–87

    PubMed  CAS  Google Scholar 

  • Satoh H (1998) Inhibition of the fast Na+ current by taurine in guinea pig ventricular myocytes. Gen Pharmacol 31:155–157

    PubMed  CAS  Google Scholar 

  • Satoh H, Sperelakis N (1998) Review of some actions of taurine on ion channels of cardiac muscle cells and others. Gen Pharmacol 30:451–463

    PubMed  CAS  Google Scholar 

  • Savoca MR, Mackey ML, Evans CD, Wilson M, Ludwig DA, Harshfield GA (2005) Association of ambulatory blood pressure and dietary caffeine in adolescents. Am J Hypertens 18:116–120

    PubMed  CAS  Google Scholar 

  • Sawamura A, Sada H, Azuma J, Kishimoto S, Sperelakis N (1990) Taurine modulates ion influx through cardiac Ca2+ channels. Cell Calcium 11:251–259

    PubMed  CAS  Google Scholar 

  • Schaffer SW, Azuma J, Madura JD (1995) Mechanisms underlying taurine-mediated alterations in membrane function. Amino Acids 8:231–246

    PubMed  CAS  Google Scholar 

  • Schaffer SW, Takahashi K, Azuma J (2000) Role of osmoregulation in the actions of taurine. Amino Acids 19:527–546

    PubMed  CAS  Google Scholar 

  • Schaffer SW, Jong CJ, Ito T, Azuma J (2013) Role of taurine in the pathologies of MELAS and MERRF. Amino Acids 46:1414–1418

    Google Scholar 

  • Schmidt RM, McIntire LK, Caldwell JA, Hallman C (2008) Prevalence of energy-drink and supplement usage in a sample of air force personnel. Available at. www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA514723

  • Schneider MB, Benjamin HJ (2011) Clinical report—sports drinks and energy drinks for children and adolescents: are they appropriate? Pediatrics 127:1182–1189

    Google Scholar 

  • Schuller-Levis GB, Park E (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett 226:195–202

    PubMed  CAS  Google Scholar 

  • Schuller-Levis GB, Park E (2004) Taurine and its chloramines: modulators of immunity. Neurochem Res 29:117–126

    PubMed  CAS  Google Scholar 

  • Schuller-Levis G, Mehta PD, Rudelli R, Sturman J (1990) Immunologic consequences of taurine deficiency in cats. J Leukoc Biol 47:321–331

    PubMed  CAS  Google Scholar 

  • Scientific Committee on Food (2003) Opinion of the Scientific Committee on Food on Additional information on “energy” drinks. Available online. http://europa.eu.int/comm/food/fs/sc/scf

  • Scott MJ, El-Hassan M, Kahn AA (2011) Myocardial infarction in a young adult following the consumption of a caffeinated energy drink. BMJ Case Rep. doi:10.1136/bcr.02.2011.3854

  • Seifert SM, Schaechter JL, Hershorin ER, Lipshultz SE (2011) Health effects of energy drinks on children, adolescents and young adults. Pediatrics 127:511–528

    PubMed Central  PubMed  Google Scholar 

  • Shirley DG, Walter SJ, Noormohamed FH (2002) Natriuretic effect of caffeine: assessment of segmental sodium reabsorption in humans. Clin Sci 103:461–466

    PubMed  CAS  Google Scholar 

  • Singewald N, Kouvelas D, Chen F, Philippu A (1997) The release of inhibitory amino acids in the hypothalamus is tonically modified by impulses from aortic baroreceptors as a consequence of blood pressure fluctuations. Naunyn Schmiedebergs Arch Pharmacol 356:348–355

    PubMed  CAS  Google Scholar 

  • Smith AP, Phillips W (1993) Effects of low doses of caffeine in coffee on human performance and mood. In: 15th International Scientific Colloquim on Coffee, vol 2. Association Scientifique Internationale de Café, Paris, pp 461–469

  • Steele DS, Smith GL, Miller DJ (1990) The effects of taurine on Ca2+ uptake by the sarcoplasmic reticulum and Ca2+ sensitivity of chemically skinned rat heart. J Physiol 422:499–511

    PubMed Central  PubMed  CAS  Google Scholar 

  • Steinke L, Kalus JS, Dhanapal V, Lanfear DE, Berlie HD (2007) Energy drink consumption causes increases in blood pressure and heart rate. Circulation 116:II_831

  • Steinke L, Lanfear DE, Dhanapal V, Kalus JS (2009) Effect of “energy drink” consumption on hemodynamic and electrocardiographic parameters in healthy young adults. Ann Pharmacother 43:596–602

    PubMed  Google Scholar 

  • Sturman JA (1986) Nutritional taurine and central nervous system development. Ann NY Acad Sci 477:196–213

    PubMed  CAS  Google Scholar 

  • Sung B, Lovallo W, Pincomb GA, Wilson MF (1990) Effects of caffeine on blood pressure response during exercise in normotensive healthy young men. Am J Cardiol 65:909–913

    PubMed  CAS  Google Scholar 

  • Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 21:6581–6589

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sved DW, Godsey JL, Ledyard SL, Mahoney AP, Stetson PL, Ho S, Myers NR, Resnis P, Renwick AG (2007) Absorption, tissue distribution, metabolism and elimination of taurine given orally to rats. Amino Acids 32:459–466

    PubMed  CAS  Google Scholar 

  • Takihara K, Azuma J, Awata N, Ohta H, Hamaguchi T, Sawamura A, Tanaka Y, Kishimoto S, Sperelakis N (1986) Beneficial effect of taurine in rabbits with chronic congestive heart failure. Am Heart J 112:1278–1284

    PubMed  CAS  Google Scholar 

  • Terlizzi R, Rocchi C, Serra M, Solieri L, Cortelli P (2008) Reversible postural tachycardia syndrome due to inadvertent overuse of Red Bull. Clin Auton Res 18:221–223

    PubMed  Google Scholar 

  • Thomas EL, Grisham MB, Melton DF, Jefferson MM (1985) Evidence for a role of taurine in in vitro oxidative toxicity of neutrophils toward erythrocytes. J Biol Chem 260:3321–3329

    PubMed  CAS  Google Scholar 

  • Trachtman H, Del Pizzo R, Rao P, Rujikarn N, Sturman JA (1989) Taurine lowers blood pressure in the spontaneously hypertensive rat by a catecholamine independent mechanism. Am J Hypertens 2:909–912

    PubMed  CAS  Google Scholar 

  • Umemura T, Ueda K, Nishioka K, Hidaka T, Takemoto H, Nakamura S, Jitsuiki D, Soga J, Chayama K, Yoshizumi M, Higashi Y (2006) Effects of acute administration of caffeine on vascular function. Am J Cardiol 98:1538–1541

    Google Scholar 

  • United Nations Environment Program, Organization for Economic Cooperation and Development, Screening information dataset: Caffeine. Available at. http://www.chem.unep.ch/irptc/sids/OECDSIDS/Caffeine.pdf

  • Vessey DA, Whitney J, Gollan JL (1983) The role of conjugation reactions in enhancing biliary secretion of bile acids. Biochem J 214:923–927

    PubMed Central  PubMed  CAS  Google Scholar 

  • Walsh M, Marquardt K, Albertson T (2006) Adverse effects from ingestion of redline energy drinks. Clin Toxicol 44:642

    Google Scholar 

  • Watkins JB, Jarvenpaa A-L, Szczepanik-Van Leeuwen P, Klein PD, Rassin DK, Gaull G, Raiha NCR (1983) Feeding the low-birth weight infant: V. Effects of taurine, cholesterol, and human milk on bile acid kinetics. Gastroenterology 85:793–800

    PubMed  CAS  Google Scholar 

  • Watson R, Woodman R, Lockette W (2010) Ephedra alkaloids inhibit platelet aggregation. Blood Coagul Fibrinolysis 21:266–271

    PubMed  CAS  Google Scholar 

  • Wojcik OP, Koenig KL, Zeleniuch-Jacquotte A, Costa M, Chen Y (2009) The potential protective effects of taurine on coronary heart disease. Atherosclerosis 208:19–25

    PubMed Central  PubMed  Google Scholar 

  • Worthley MI, Prabhu A, De Sciscio P, Schultz C, Sanders P, Willoughby SR (2010) Detrimental effects of energy drink consumption on platelet and endothelial function. Am J Med 123:184–187

    PubMed  CAS  Google Scholar 

  • Wu JY, Wu H, Jin Y, Wei J, Sha D, Prentice H, Lee HH, Lin CH, Lee YH, Yang LL (2009) Mechanism of neuroprotective function of taurine. Adv Exp Med Biol 643:169–179

    PubMed  CAS  Google Scholar 

  • Yamamoto J, Akabane S, Yoshimi H, Nakai M, Ikeda M (1985) Effects of taurine on stress-evoked hemodynamic and plasma catecholamine changes in spontaneously hypertensive rats. Hypertension 7:913–922

    PubMed  CAS  Google Scholar 

  • Yamori Y, Liu L, Ikeda K, Miura A, Mizushima S, Miki T, Nara Y (2001) Distribution of twenty four hour urinary taurine excretion and association with ischemic heart disease mortality in 24 populations of 16 countries: results from the WHO-CARDIAC Study. Hypertens Rev 24:453–457

    CAS  Google Scholar 

  • Yamori Y, Liu L, Mori M, Sagara M, Murakami S, Nara Y, Nizushima S (2009) Taurine as the nutritional factor for the longevity of the Japanese revealed by a world-wide epidemiological survey. Adv Exp Med Biol 643:13–25

    PubMed  CAS  Google Scholar 

  • Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori M (2010) Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci 17(Suppl 1):56

    Google Scholar 

  • Yin Y, Wen K, Wu Y, Kang Y, Lou J (2012) Inhibition of sodium current by taurine magnesium coordination compound prevents cesium chloride-induced arrhythmias. Biol Trace Elem Res 146:192–198

    PubMed  CAS  Google Scholar 

  • Yokogoshi H, Mochizuki H, Nanami K, Hida Y, Miyachi F, Oda H (1999) Dietary enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. J Nutr 129:1705–1712

    PubMed  CAS  Google Scholar 

  • Zhang M, Bi L, Fang JH, Su XL, Da GL, Kuwamori T, Kagamimori S (2004) Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects. Amino Acids 26:267–271

    PubMed  CAS  Google Scholar 

  • Zucconi S, Volpato C, Adinolfi F, Gandini E, Gentile E, Loi A, Fioriti L (2013) Gathering consumption data on specific consumer groups of energy drinks. Supporting Publications 2013; EN-394. [190 pp]. Available online. www.efsa.europa.eu/publications

Download references

Conflict of interest

Dr. Stephen Schaffer serves as a consultant of Red Bull. All other authors declare that they have no conflict of interest with respect to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Schaffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaffer, S.W., Shimada, K., Jong, C.J. et al. Effect of taurine and potential interactions with caffeine on cardiovascular function. Amino Acids 46, 1147–1157 (2014). https://doi.org/10.1007/s00726-014-1708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1708-0

Keywords

Navigation