Skip to main content
Log in

l-Methionine supplementation maintains the integrity and barrier function of the small-intestinal mucosa in post-weaning piglets

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This study was conducted to test the hypothesis that different dietary Met levels affect small-intestinal mucosal integrity in post-weaning piglets. Two groups of piglets (n = 6/group) were weaned at 28 days of age and randomly allotted to a basal diet (without extra Met supplementation) or a Met-supplemented diet (with 0.12 % l-Met) for 14 days. The standardized ileal digestible (SID) Met levels were 0.24 and 0.35 %, respectively. At days 7 and 14 of the trial, venous blood samples were obtained from piglets, followed by their euthanasia for tissue collection. Piglets fed the diet supplemented with l-Met had a higher average daily gain during days 7–14 and improved feed efficiency during the entire period. Concentrations of sulfur amino acids (SAA), glutamate acid (Glu), glutamine (Gln), and taurine in the plasma and tissues were higher for the piglets in the Met-supplemented group. Met supplementation increased cysteine (Cys) and glutathione (GSH) concentrations in the plasma and tissues, leading to reductions in plasma Cys/CySS redox potential and tissue GSH/GSSH redox potential. The small-intestinal mucosa of Met-supplemented piglets exhibited improved villus architecture, compared with control piglets. Met supplementation increased transepithelial electrical resistance of the jejunal mucosa. Transport of Met, Gln and Cys across the jejunal mucosa did not differ between control and Met-supplemented piglets. The abundance occludin was higher, whereas the abundance of active caspase-3 was lower, in the jejunum of the Met-supplemented piglets. Collectively, adequate dietary Met is required for optimal protein synthesis and mucosal integrity in the small intestine of post-weaning piglets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADG:

Average daily gain

ADFI:

Average daily feed intake

EDTA:

Ethylene diaminetetraacetic acid

FCR:

Feed conversion ratio

GSH:

Glutathione

Isc:

Transepithelial short circuit current

KHB:

Krebs–Ringer bicarbonate

MHA-FA:

Methionine hydroxyl analog-free acid

PBS:

Phosphate-buffered saline

SAA:

Sulfur amino acids

SAM:

S-adenosylmethionine

SID:

Standardized ileal digestible

TEER:

Transepithelial electrical resistance

TJ:

Tight junctions

References

  • AOAC (2003) Official Methods of Analysis. Association of Office Analytical Chemists, Arlington

    Google Scholar 

  • Bauchart-Thevert C, Stoll B, Chacko S et al (2009a) Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs. Am J Physiol Endocrinol Metab 296:E1239–E1250

    Article  CAS  Google Scholar 

  • Bauchart-Thevert C, Stoll B, Burrin DG (2009b) Intestinal metabolism of sulfur amino acids. Nutr Res Rev 22:175–187

    Article  CAS  Google Scholar 

  • Boudry G (2005) The Ussing chamber technique to evaluate alternatives to in-feed antibiotics for young pigs. Anim Res 54:718–733

    Article  CAS  Google Scholar 

  • Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136:1636S–1640S

    PubMed  CAS  Google Scholar 

  • Brosnan JT, Brosnan ME, Bertolo RF et al (2007a) Methionine: a metabolically unique amino acid. Livest Sci 122:2–7

    Article  Google Scholar 

  • Brosnan JT, da Silva R, Brosnan ME (2007b) Amino acids and the regulation of methyl balance in humans. Curr Opin Clin Nutr Metab Care 10:52–57

    Article  PubMed  CAS  Google Scholar 

  • Burrin DG, Stoll B, Jiang R et al (2000) GLP-2 stimulates intestinal growth in premature TPN-fed pigs by suppressing proteolysis and apoptosis. Am J Physiol Gastrointest Liver Physiol 279:G1249–G1256

    PubMed  CAS  Google Scholar 

  • Conde-Aguilera JA, Barea R, Le Floc’h N et al (2010) A sulfur amino acid deficiency changes the amino acid composition of body protein in piglets. Animal 4:1349–1358

    Article  PubMed  CAS  Google Scholar 

  • Dahm LJ, Jones DP (2000) Rat jejunum controls luminal thiol-disulfide redox. J Nutr 130:2739–2745

    PubMed  CAS  Google Scholar 

  • Dibner JJ, Ivey FJ (1992) Capacity in the liver of the broiler chick for conversion of supplement methionine activity to l-methionine. Poult Sci 71:1695–1699

    Article  Google Scholar 

  • Fang ZF, Yao K, Zhang XL et al (2010) Nutrition and health relevant regulation of intestinal sulfur amino acid metabolism. Amino Acids 39:633–640

    Article  PubMed  CAS  Google Scholar 

  • Gaines AM, Yi GF, Ratliff BW et al (2005) Estimation of the ideal ratio of true ileal digestible sulfur amino acids: lysine in 8- to 26-kg nursery pigs. J Anim Sci 84:1709–1721

    Google Scholar 

  • Gu X, Li D, She R (2002) Effect of weaning on small intestinal structure and function in the piglet. Arch Anim Nutr 56:275–286

    CAS  Google Scholar 

  • Guo X, Rao J, Liu L et al (2003) Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines. Am J Physiol Cell Physiol 285:C1174–C1187

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Rao J, Liu L et al (2005) Polyamines are necessary for synthesis and stability of occludin protein in intestinal epithelial cells. Am J Physiol Cell Physiol 288:G1159–G1169

    CAS  Google Scholar 

  • Haynes TE, Li P, Li X et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin- induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  PubMed  CAS  Google Scholar 

  • He LQ, Yin YL, Li TJ et al (2013) Use of the Ussing chamber technique to study nutrient transport by epithelial tissues. Front Biosci 18:1266–1274

    Article  CAS  Google Scholar 

  • Hoehler D, Rademacher M, Mosenthin R (2005) Methionine requirement and commercial Methionine sources in growing pigs. Adv Pork Prod 16:109–117

    Google Scholar 

  • Hou Y, Wang L, Zhang W et al (2012) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43:1233–1242

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Wang L, Yi D et al (2013) N-acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids 45:513–522

    Article  PubMed  CAS  Google Scholar 

  • Jones DP (2002) Redox potential of GSH/GSSH couple: assay and biological significance. Methods Enzymol 348:93–112

    Article  PubMed  CAS  Google Scholar 

  • Jones DP, Carlson JL, Mody VC et al (2000) Redox state of glutathione in human plasma. Free Radic Biol Med 28:625–635

    Article  PubMed  CAS  Google Scholar 

  • Kino K, Okumura J (1986) The effect of single essential amino acid deprivation on chick growth and nitrogen and energy balance at ad libitum- and equalized-food intakes. Poult Sci 65:1728–1735

    Article  PubMed  CAS  Google Scholar 

  • Martín-Venegas R, Rodríguez-Lagunas MJ, Mercier Y et al (2009) Effect of pH on l- and d-methionine uptake across the apical membrane of Caco-2 cells. Am J Physiol Cell Physiol 296:C632–C638

    Article  PubMed  CAS  Google Scholar 

  • Martín-Venegas R, Brufau MT, Guerrero-Zamora AM et al (2013) The methionine precursor DL-2-hydroxy-(4-methylthio)butanoic acid protects intestinal epithelial barrier function. Food Chem 141:1702–1709

    Article  PubMed  CAS  Google Scholar 

  • Mato JM, Martínez-Chantar ML, Lu SC (2013) S-adenosylemthionine metabolism and liver disease. Ann Hepatol 12:183–189

    PubMed  CAS  Google Scholar 

  • McCormack SA, Johnson LR (1991) Role of polyamines in gastrointestinal mucosal growth. Am J Physiol Gastrointest Liver Physiol 260:G795–G806

    CAS  Google Scholar 

  • Miller EL (1967) Determination of the tryptophan content of feedingstuffs with particular reference to cereals. J Sci Food Agri 18:381–386

    Article  CAS  Google Scholar 

  • Nkabyo YS, Gu LH, Jones DP et al (2006) Thiol/disulfide redox status is oxidized in plasma and small intestinal and colonic mucosa of rats with inadequate sulfur amino acid intake. J Nutr 136:1242–1248

    PubMed  CAS  Google Scholar 

  • NRC (1998) Nutrient requirements of swine, 10th edn. Natl. Acad Press, Washington, DC

    Google Scholar 

  • Opapeju FO, Htoo JK, Dapoza C et al (2012) Bioavailability of methionine hydroxy analog-calcium salt relative to dl-methionine to support nitrogen retention and growth in starter pigs. Animal 6:1750–1756

    Article  PubMed  CAS  Google Scholar 

  • Owen KQ, Nelssen JL, Goodband RD et al (1995) Added dietary methionine in starter pig diets containing spray-dried blood products. J Anim Sci 73:2647–2654

    PubMed  CAS  Google Scholar 

  • Porte AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  CAS  Google Scholar 

  • Ramalingam A, Wang X, Gabello M et al (2010) Dietary methionine restriction improves colon tight junction barrier function and alters claudin expression pattern. Am J Physiol Cell Physiol 299:C1028–C1035

    Article  PubMed  CAS  Google Scholar 

  • Rezaei R, Knabe DA, Tekwe CD et al (2013a) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923

    Article  PubMed  CAS  Google Scholar 

  • Rezaei R, Wang WW, Wu ZL et al (2013b) Biochemical and physiological bases for utilization of dietary amino acids by young pigs. J Anim Sci Biotech 4:7

    Article  CAS  Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Riedijk MA, Stoll B, Chacko S et al (2007) Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract. Proc Natl Acad Sci 104:3408–3413

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Seiler N, Raul F (2005) Polyamines and apoptosis. J Cell Mol Med 9:623–642

    Article  PubMed  CAS  Google Scholar 

  • Sholly DM (2009) Dietary fiber in swine diets: Impact on fiber degradation, disaccharidase activity, nutrient digestibility, uptake, and intestinal histology along the gastrointestinal tract. Ph.D. dissertation. Indiana: Purdue University

  • Shoveller AK, Stoll B, Ball RO et al (2005) Nutritional and functional importance of intestinal sulfur amino acid metabolism. J Nutr 135:1609–1612

    PubMed  CAS  Google Scholar 

  • Steed E, Balda MS, Matter K (2010) Dynamics and functions of tight junctions. Trends Cell Biol 20:142–149

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Yin YL, Kong XF et al (2010) l-Argnine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tesseraud S, Coustard SM, Collin A et al (2009) Role of sulfur amino acid in controlling nutrient metabolism and cell functions: implication for nutrition. Br J Nutr 101:1132–1139

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M (2000) The structure and function of claudins, cell adhesion molecules at tight junctions. Ann NY Acad Sci 915:129–135

    Article  PubMed  CAS  Google Scholar 

  • Wang JY (2007) Polyamines and mRNA stability in regulation of intestinal mucosal growth. Amino Acids 33:241–252

    Article  PubMed  CAS  Google Scholar 

  • Wang JJ, Chen LX, Li P et al (2008) Gene expression is altered in piglet small intestinal by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Wang WW, Qiao SY, Li DF (2009a) Amino acids and gut function. Amino Acids 37:105–110

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Ou DY, Yin JD et al (2009b) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids 37:209–218

    Article  PubMed  CAS  Google Scholar 

  • Wang WW, Wu ZL, Dai ZL et al (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45:463–477

    Article  PubMed  CAS  Google Scholar 

  • Wijtten PJ, ver der Meulen J, Verstegen MW (2011) Intestinal barrier function and absorption in pigs after weaning: a review. Br J Nutr 105:967–981

    Article  PubMed  CAS  Google Scholar 

  • Williams KT, Schalinske KL (2007) New insights into the regulation of methyl group and homocysteine metabolism. J Nutr 137:311–314

    PubMed  CAS  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    PubMed  CAS  Google Scholar 

  • Wu G (2010) Recent advances in swine amino acid nutrition. J Anim Sci Biotech 1:49–61

    Google Scholar 

  • Wu G (2013a) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G (2013b) Functional amino acids in nutrition and health. Amino Acids 45:407–411

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acid in sow’s colostrum and milk. J Nutr 124:415–424

    PubMed  CAS  Google Scholar 

  • Wu G, Davis PK, Flynn NE et al (1997) Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr 127:2342–2349

    PubMed  CAS  Google Scholar 

  • Wu G, Pond WG, Flynn SP et al (1998) Maternal dietary protein deficiency decreases nitric oxide synthase and ornithine decarboxylase activities in placenta and endometrium of pigs during early gestation. J Nutr 128:2395–2402

    PubMed  CAS  Google Scholar 

  • Wu G, Flynn NE, Knabe DA (2000) Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol Endocrinol Metab 279:E395–E402

    PubMed  CAS  Google Scholar 

  • Wu G, Fang Y, Sheng Y et al (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2011a) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2011b) Important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Wu ZL, Dai ZL et al (2013) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Li DF, Yin JD et al (2007) CLA differently regulates adipogenesis in stromal vascular cells from porcine subcutaneous adipose and skeletal muscle. J Lipid Res 48:1701–1709

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the National Natural Science Foundation of China (No. 31072040), and the CJ Corporation, Seoul, Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defa Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Li, D., Dai, Z. et al. l-Methionine supplementation maintains the integrity and barrier function of the small-intestinal mucosa in post-weaning piglets. Amino Acids 46, 1131–1142 (2014). https://doi.org/10.1007/s00726-014-1675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1675-5

Keywords

Navigation