Skip to main content
Log in

Dietary l-arginine supplementation enhances placental growth and reproductive performance in sows

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Suboptimal embryonic/fetal survival and growth remains a significant problem in mammals. Using a swine model, we tested the hypothesis that dietary l-arginine supplementation during gestation may improve pregnancy outcomes through enhancing placental growth and modulating hormonal secretions. Gestating pigs (Yorkshire × Landrace, n = 108) were assigned randomly into two groups based on parity and body weight, representing dietary supplementation with 1.0% l-arginine–HCl or 1.7% l-alanine (isonitrogenous control) between days 22 and 114 of gestation. Blood samples were obtained from the ear vein on days 22, 40, 70 and 90 of gestation. On days 40, 70 and 90 of gestation, concentrations of estradiol in plasma were higher (P < 0.05) in arginine-supplemented than in control sows. Moreover, arginine supplementation increased (P < 0.05) the concentrations of arginine, proline and ornithine in plasma, but concentrations of urea or progesterone in plasma did not differ between the two groups of sows. Compared with the control, arginine supplementation increased (P < 0.05) the total number of piglets by 1.31 per litter, the number of live-born piglets by 1.10 per litter, the litter birth weight for all piglets by 1.36 kg, and the litter birth weight for live-born piglets by 1.70 kg. Furthermore, arginine supplementation enhanced (P < 0.05) placental weight by 16.2%. The weaning-to-estrus interval of sows was not affected by arginine supplementation during gestation. These results indicate that dietary arginine supplementation beneficially enhances placental growth and the reproductive performance of sows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BF:

Backfat

IUGR:

Intrauterine growth restriction

NO:

Nitric oxide

NOS:

Nitric oxide synthase

ODC:

Ornithine decarboxylase

References

  • Alba-Roth J, Müller OA, Schopohl J et al (1988) Arginine stimulates growth hormone secretion by suppressing endogenous somatostatin secretion. J Clin Endocrinol Metab 67:1186–1189

    Article  PubMed  CAS  Google Scholar 

  • AOAC (1996) Official methods of analysis. In: Cunniff P (ed) Association of Official Analytical Chemists (AOAC) International, 16th edn. AOAC, Gaithersburg

    Google Scholar 

  • Bazer FW, Clawson AJ, Robison OW, Ulberg LC (1969) Uterine capacity in gilts. J Reprod Fertil 18:121–124

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Wu G, Spencer TE et al (2010) Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Human Reprod 16:135–152

    Article  CAS  Google Scholar 

  • Bérard J, Bee G (2010) Effects of dietary l-arginine supplementation to gilts during early gestation on foetal survival, growth and myofiber formation. Animal 4(10):1680–1687

    Article  PubMed  Google Scholar 

  • Bérard J, Kreuzer M, Bee G (2008) Effect of litter size and birth weight on growth, carcass and pork quality, and their relationship to postmortem proteolysis. J Anim Sci 86:2357–2368

    Article  PubMed  Google Scholar 

  • Biensen NJ, Wilson ME, Ford SP (1998) The impact of either a Meishan or Yorkshire uterus on Meishan or Yorkshire fetal and placental development to days 70, 90, and 110 of gestation. J Anim Sci 76:2169–2176

    PubMed  CAS  Google Scholar 

  • Bird IM, Zhang LB, Magness RR (2003) Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function. Am J Physiol 284:R245–R258

    CAS  Google Scholar 

  • Blachier F, Davila AM, Benamouzig R et al (2011) Channelling of arginine in NO and polyamine pathways in colonocytes and consequences. Front Biosci 16:1331–1343

    Article  PubMed  CAS  Google Scholar 

  • Chew BP, Eisenman JR, Tanaka TS (1984) Arginine infusion stimulates prolactin, growth hormone, insulin and subsequent lactation in pregnant dairy cows. J Dairy Sci 67:2507–2518

    Article  PubMed  CAS  Google Scholar 

  • Davenport JA, Boling GM, Schillo KK (1995) Growth and endocrine responses of lambs fed rumen-protected ornithine and arginine. Small Ruminant Res 17:229–236

    Article  Google Scholar 

  • De Boo HA, Van Zijl PJ, Smith DEC et al (2005) Arginine and mixed amino acids increase protein accretion in growth restricted and normal ovine fetus by different mechanisms. Pediatr Res 58:270–277

    Article  PubMed  Google Scholar 

  • Deutz NEP (2008) The 2007 ESPEN Sir David Cuthbertson Lecture: amino acids between and within organs. The glutamate-glutamine-citrulline-arginine pathway. Clin Nutr 27:321–327

    Article  PubMed  CAS  Google Scholar 

  • Edgerton LA, Erb RE, Harrington RB (1971) Metabolites of progesterone and estrogen in domestic sow urine. III. Effect of litter size. J Anim Sci 32:936–942

    PubMed  CAS  Google Scholar 

  • Farmer C, Petit HV (2009) Effects of dietary supplementation with different forms of flax in late-gestation and lactation on fatty acid profiles in sows and their piglets. J Anim Sci 87:2600–2613

    Article  PubMed  CAS  Google Scholar 

  • Gardner DS, Powlson AS, Giussani DA (2001) An in vivo nitric oxide clamp to investigate the influence of nitric oxide on continuous umbilical blood flow during acute hypoxaemia in the sheep fetus. J Physiol 537:587–596

    Article  PubMed  CAS  Google Scholar 

  • Geisert RD, Schmitt RAM (2002) Early embryonic survival in the pig: can it be improved? J Anim Sci 80:E54–E65

    Google Scholar 

  • Greenberg SS, Lancaster JR, Xie J et al (1997) Effects of NO synthase inhibitors, arginine-deficient diet, and amiloride in pregnant rats. Am J Physiol Regul Integr Comp Physiol 273:R1031–R1045

    CAS  Google Scholar 

  • Gude NM, Roberts CT, Kalionis B, King RG (2004) Growth and function of the normal human placenta. Thromb Res 14:397–407

    Article  Google Scholar 

  • Holden PJ, Ensminger ME (2006) Swine Science, 7th edn. Pearson Education Inc., Upper Saddle River

    Google Scholar 

  • Hou YQ, Wang L, Ding BY et al (2010) Dietary α-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 39:555–564

    Google Scholar 

  • Kensinger RS, Collier RJ, Bazer FW et al (1986) Effect of number of conceptuses on maternal hormone concentrations in the pig. J Anim Sci 62:1666–1674

    PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    PubMed  CAS  Google Scholar 

  • Kim SW, Mateo RD, Yin Y-L, Wu G (2007) Functional amino acids and fatty acids for enhancing production performance of sows and piglets. Asian Aust J Anim Sci 20:295–306

    CAS  Google Scholar 

  • Kim JY, Burghardt RC, Wu G et al (2011) Select nutrients in the ovine uterine lumen: VIII. Arginine stimulates proliferation of ovine trophectoderm cells through mTOR-RPS6K-RPS6 signaling cascade and synthesis of nitric oxide and polyamines. Biol Reprod 84:70–78

    Google Scholar 

  • Kong XF, Yin YL, He QH et al (2009) Dietary supplementation with Chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino Acids 37:578–582

    Article  Google Scholar 

  • Li XL, Bazer FW, Johnson GA et al (2010) Dietary supplementation with 0.8% l-arginine between days 0 and 25 of gestation reduces litter size in gilts. J Nutr 140:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Rezaei R, Li P et al (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Google Scholar 

  • Liu XD, Wu X, Yin YL et al (2011) Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids. doi:10.1007/s00726-011-0948-5

  • Ma X, Lin Y, Jiang Z et al (2010) Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids 38:95–102

    Article  PubMed  CAS  Google Scholar 

  • Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    PubMed  CAS  Google Scholar 

  • Mateo RD, Carroll JA, Hyun YS et al (2009) Effect of dietary supplementation of omega-3 fatty acids and high levels of dietary protein on performance of sows. J Anim Sci 87:948–959

    Article  PubMed  CAS  Google Scholar 

  • Matsuura S, Itakura A, Ohno Y et al (2004) Effects of estradiol administration on feto-placental growth in rat. Early Hum Dev 77:47–56

    Article  PubMed  CAS  Google Scholar 

  • McCrabb GJ, Harding R (1996) Role of nitric oxide in the regulation of cerebral blood flow in the ovine foetus. Clin Exp Pharmacol Physiol 23:855–860

    Article  PubMed  CAS  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS et al (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Google Scholar 

  • McKnight JR, Satterfield MC, Li XL et al (2011) Obesity in pregnancy: problems and potential solutions. Front Biosci E3:442–452

    Article  CAS  Google Scholar 

  • Najarian JS, Harper HA (1956) A clinical study of the effect of arginine on blood ammonia. Am J Med 21:832–842

    Article  PubMed  Google Scholar 

  • Père MC, Etienne M (2000) Uterine blood flow in sows: effects of pregnancy stage and litter size. Reprod Nutr Dev 40:369–382

    Article  PubMed  Google Scholar 

  • Perry JS (1954) Fecundity and embryonic mortality in pigs. J Embryol Exp Morph 2:308–322

    Google Scholar 

  • Prunier A, Quesnel H (2000) Nutritional influences on the hormonal control of reproduction in female pigs. Livestock Prod Sci 63:1–16

    Article  Google Scholar 

  • Quiniou N, Dagorn J, Gaudré D (2002) Variation in piglets’ birth weight and consequences on subsequent performance. Livest Prod Sci 78:63–70

    Article  Google Scholar 

  • Real D, Nelssen J, Tokach M et al (2008) Additive effects of l-carnitine and chromium picolinate on sow reproductive performance. Livestock Sci 116:63–69

    Article  Google Scholar 

  • Ren W, Yin YL, Liu G et al (2011) Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection. Amino Acids. doi:10.1007/s00726-011-0942-y

  • Reynolds LP, Caton JS, Redmer DA et al (2006) Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol 572:51–58

    PubMed  CAS  Google Scholar 

  • Rumball CWH, Harding JE, Oliver MH, Bloomfield FH (2008) Effects of twin pregnancy and periconceptional undernutrition on maternal metabolism, fetal growth and glucose–insulin axis function in ovine pregnancy. J Physiol 586(5):1399–1411

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Kong XF et al (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    Google Scholar 

  • Vosatka RJ, Hassoun PM, Harvey-Wilkes KB (1998) Dietary l-arginine prevents fetal growth restriction in rats. Am J Obstet Gynecol 178:242–246

    Article  PubMed  CAS  Google Scholar 

  • Whittemore CT (1996) Nutrition reproduction interactions in primiparous sows. Livestock Prod Sci 46:65–83

    Article  Google Scholar 

  • Wilson ME, Biensen NJ, Ford SP (1999) Novel insight into control of litter size in pigs, using placental efficiency as a selection tool. J Anim Sci 77:1654–1658

    PubMed  CAS  Google Scholar 

  • Wei JW, Carroll RJ, Harden KK et al (2011) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids. doi:10.1007/s00726-011-0924-0

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2010) Recent advances in swine amino acid nutrition. J Anim Sci Biotech 1:49–61

    Google Scholar 

  • Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Tuo W, Flynn SP (1996) Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol Reprod 54:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Pond WG, Ott T, Bazer FW (1998a) Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs. J Nutr 128:894–902

    PubMed  CAS  Google Scholar 

  • Wu G, Pond WG, Flynn SP et al (1998b) Maternal dietary protein deficiency decreases nitric oxide synthase and ornithine decarboxylase activities in placenta and endometrium of pigs during early gestation. J Nutr 128:2395–2402

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2004) Maternal nutrition and fetal development. J Nutr 134:2169–2172

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Hu JB et al (2005) Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod 72:842–850

    Google Scholar 

  • Wu G, Bazer FW, Wallace JM, Spencer TE (2006) Intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Datta S et al (2008) Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35:691–702

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2010) Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci 88:E195–E204

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2011) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Google Scholar 

  • Xiao XM, Li LP (2005) l-Arginine treatment for asymmetric fetal growth restriction. Int J Gynaecol Obstet 88:15–18

    Article  PubMed  CAS  Google Scholar 

  • Yang YX, Heo S, Jin Z et al (2009) Effects of dietary lysine intake during lactation on blood metabolites, hormones, milk composition and reproductive performance in primiparous and multiparous sows. Anim Reprod Sci 112:199–214

    Article  PubMed  CAS  Google Scholar 

  • Yin FG, Liu YL, Yin YL et al (2009) Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids 37:263–270

    Article  PubMed  CAS  Google Scholar 

  • Yin YL, Huang RL, Li TJ et al (2010) Amino acid metabolism in the portal-drained viscera of young pigs: effects of dietary supplementation with chitosan and pea hull. Amino Acids 39:1581–1587

    Google Scholar 

  • Zeng XF, Wang FL, Fan X et al (2008) Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr 138:1421–1425

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff members of Guangdong Wen’s Foodstuffs Group CO. Ltd. for the support of this work. The skilled technical assistance of Dr. Pengbin Xi, Dr. Xianyong Ma, Dr. Zhenfang Wu, Mrs. Yantao Wang, Mr. Xianwei Ma and Mr. Xiaodong Zhang are gratefully acknowledged. We also thank Dr. Shikui Wang for helpful comments on the manuscript. This work was supported by grants from International Science and Technology Cooperation Program of China (2009DFA31570), International Science and Technology Cooperation Program of Guangdong Province (2006A50106002), the earmarked fund for Modern Agro-industry Technology Research System (CARS-36), the National ‘973’ Project of China (2010CB35701), and Texas AgriLife Research Hatch Project (H-8200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongyong Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, K., Jiang, Z., Lin, Y. et al. Dietary l-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids 42, 2207–2214 (2012). https://doi.org/10.1007/s00726-011-0960-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0960-9

Keywords

Navigation