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Abstract
Pulsed electron paramagnetic resonance dipolar spectroscopy (PDS) allows to meas-
ure the distances between electron spin centers and, in favorable cases, their relative 
orientation. This data is frequently used in structural biology for studying biomo-
lecular structures, following their conformational changes and localizing paramag-
netic centers within them. In order to extract the inter-spin distances and the relative 
orientation of spin centers from the primary, time-domain PDS signals, a specialized 
data analysis is required. So far, the software to do such analysis was available only 
for isotropic S = 1/2 spin centers, such as nitroxide and trityl radicals, as well as for 
high-spin  Gd3+ and  Mn2+ ions. Here, a new data analysis program, called AnisoDip-
Fit, was introduced for spin systems consisting of one isotropic and one anisotropic 
S = 1/2 spin centers. The program was successfully tested on the PDS data corre-
sponding to the spin systems  Cu2+/organic radical, low-spin  Fe3+/organic radical, 
and high-spin  Fe3+/organic radical. For all tested spin systems, AnisoDipFit allowed 
determining the inter-spin distance distribution with a sub-angstrom precision. In 
addition, the spatial orientation of the inter-spin vector with respect to the g-frame 
of the metal center was determined for the last two spin systems. Thus, this study 
expands the arsenal of the PDS data analysis programs and facilitates the PDS-based 
distance and angle measurements on the highly relevant class of metolloproteins.

1 Introduction

Electron paramagnetic resonance spectroscopy (EPR) offers several pulsed tech-
niques to measure nanometer-scale distances in condensed matter. These tech-
niques include pulsed electron–electron double resonance (PELDOR or DEER) 
[1, 2], double quantum coherence EPR (DQC) [3], single-frequency technique for 
refocusing dipolar couplings (SIFTER) [4], and relaxation induced dipolar modu-
lation enhancement (RIDME) [5, 6]. Altogether, they are often denoted as pulsed 
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EPR dipolar spectroscopy or, shortly, PDS [7, 8]. In the last decade, PDS distance 
restraints were used for numerous tasks arising from structural biology, such as 
studying the structure of biomolecules and biomolecular complexes [9–11], fol-
lowing the conformational changes of proteins during their function [12–14], and 
localization of metal ions within biomolecules [15–17]. The idea behind PDS is the 
measurement of the dipolar coupling between electron spin centers, which has a 1/r3 
dependence on the distance r between these centers. In order to be applicable, PDS 
requires that a biomolecule or a biomolecular complex contains at least two elec-
tron spin centers. This requirement can be fulfilled in several different ways. First, 
a biomolecule can contain intrinsic electron spin centers, such as  Fe3+,  Mn2+,  Co2+, 
 Cu2+, metal-sulfur clusters, and flavins. Second, electron spin centers can be artifi-
cially attached at the selected sites in the biomolecular surface using site-directed 
spin labeling (SDSL) [18]. The most common spin labels are nitroxides [19, 20], 
although alternative spin labels based on trityl [20, 21],  Gd3+ [22–24],  Mn2+ [25, 
26], and  Cu2+ [27, 28] also exist. Furthermore, intrinsic spin centers can be com-
bined with spin labels within one biomolecule, which is especially useful if a bio-
molecule contains only one intrinsic spin center.

A large variety of spin centers, which can be used for PDS, is certainly an advan-
tage. However, each of these spin centers have specific spectroscopic properties, 
which pose some requirements and challenges for the method. One of these chal-
lenges is related to the PDS data analysis. The aim of the PDS data analysis is the 
extraction of the distance distribution out of the primary PDS data, which is meas-
ured in a form of a time trace modulated by dipolar coupling frequencies. As the pri-
mary PDS data depends on the spectroscopic properties of electron spin centers and, 
sometimes, also on the applied PDS technique, no general procedure for such data 
analysis is available. Instead, several particular cases can be considered.

The most established case in PDS corresponds to S = 1/2 spin centers with iso-
tropic or almost isotropic g-factors. This case applies to majority of organic radicals, 
including nitroxide or trityl spin labels. The g-factors of these radicals are fairly iso-
tropic and only slightly deviate from the g-factor of free electron ge ≈ 2.0023. The 
PDS measurements on these centers are done using the PELDOR technique, if the 
excitation bandwidth of the microwave pulses is smaller than the spectral width of 
the spin system, or the DQC and SIFTER techniques, if the excitation bandwidth 
is comparable to the spectral width of the spin system. The time traces that are 
obtained from these measurements can be usually translated into distance distribu-
tions by means of the programs such as DeerAnalysis [29], LongDistances [30], and 
DD [31]. These programs use the assumption that that the dipolar coupling between 
the electron spin centers is averaged over all possible orientations of the inter-spin 
vector r⃗ with respect to the applied static magnetic field �⃗B0 and, therefore, the dipo-
lar spectrum, which is obtained from the Fourier transform of the PDS time trace, 
has the shape of a Pake doublet. This assumption is usually well fulfilled in frozen 
solution. The exception to this is the case of orientation-selective PELDOR time 
traces, which are obtained when the mutual orientation of spin centers is correlated 
and the microwave pulses of the PELDOR pulse sequence selectively excite only 
certain orientations of the spin centers with respect to �⃗B0 . The orientation-selec-
tive PDS time traces do not yield the complete Pake doublet and, therefore, require 
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specialized analysis. The common way to account for the orientation selectivity is 
to measure several PELDOR time traces with different spectral positions of pump/
detection pulses and then to build the geometric model of the spin system, which 
provides the best fit to all acquired time traces [32–35]. The accomplishment of both 
steps is usually quite demanding and very time consuming.

Besides isotropic S = 1/2 spin centers, DeerAnalysis is also applicable for the 
analysis of PELDOR time traces acquired on the high-spin  Gd3+ (S = 7/2) [36] and 
 Mn2+ (S = 5/2) ions [25]. This, however, requires that the PELDOR experiments are 
done at microwave frequencies, which significantly exceed the zero-field splitting 
(ZFS) constant D of these spin centers. Only in this case, the tilting of the quantiza-
tion axis of  Gd3+ and  Mn2+ away from �⃗B0 can be minimized and, thus, an additional 
dependence of the primary PDS data on the mutual orientation of r⃗ with respect to 
the ZFS frame can be avoided [24]. In addition, DeerAnalysis should be cautiously 
applied for determination of short  Gd3+–Gd3+ distances, for which the pseudo-secu-
lar term of the dipolar Hamiltonian can become non-negligible and contribute to the 
dipolar coupling frequency [24]. In addition to the PELDOR technique, the RIDME 
technique was recently used for PDS experiments on  Gd3+ [37, 38] and  Mn2+ 
[39–41]. In contrast to the PELDOR time traces, the RIDME time traces could not 
be analyzed by DeerAnalysis. This is because of the higher harmonics of the dipo-
lar coupling frequency which, together with the usual dipolar coupling frequency, 
modulate the RIDME time traces. Thus, the extraction of the distance distributions 
from the RIDME data requires a data analysis, which takes these higher harmonics 
into account. Such data analysis was developed and implemented in the program 
OvertoneAnalysis [38].

The third relevant case corresponds to S = 1/2 spin centers with anisotropic g-fac-
tors. The metal ions like  Cu2+, low-spin  Fe3+ (ls-Fe3+), and low-spin  Co2+ (ls-Co2+), 
as well as the iron–sulfur clusters like [2Fe-2S]+ and [4Fe-4S]+, belong to this type 
of spin centers. In addition, high-spin  Fe3+ (hs-Fe3+) ions with large axial ZFS con-
stants, often found in hemoproteins, can be considered as an anisotropic S = 1/2 spin 
center at low temperatures [42]. Due to the significant g-anisotropy and, in some 
cases, the additional anisotropy of the hyperfine coupling constant, the spectral 
width of all these spin centers largely exceeds the bandwidth of typical microwave 
pulses. Consequently, the PDS time traces acquired on these spin centers are usu-
ally orientation-selective. As was mentioned above, the extraction of the distance 
distribution from the orientation-selective PDS data is a difficult task. For aniso-
tropic spin centers, this task is additionally complicated by the fact that the spec-
tral widths often exceed the bandwidths of available EPR resonators. Therefore, the 
successful analysis of orientation-selective PELDOR time traces was reported only 
for  Cu2+ [15, 43–50] and iron–sulfur clusters [9, 45, 51]. Importantly, the orien-
tation selectivity can be avoided if the PDS measurements are performed between 
one anisotropic S = 1/2 spin center and one isotropic S = 1/2 spin center. This was 
demonstrated using the ultra-wideband PELDOR technique [52, 53] and, especially, 
RIDME technique [6, 42, 54–60]. In the absence of orientation selectivity, the PDS 
data analysis certainly becomes simpler, but it is still more complicated than the cor-
responding data analysis used for isotropic S = 1/2 spin centers. The reason for this is 
the dependence of the dipolar coupling frequency on the anisotropic g-factor of one 
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of the spin centers, which in turn leads to the dependence of the primary PDS data 
on the mutual orientation of the inter-spin vector r⃗ with respect to the g-frame of the 
anisotropic spin center [42, 54]. A PDS data analysis, which takes into account this 
dependence, was recently developed and implemented in the program AnisoDipFit 
(originally called DipFit) [42, 60]. However, the detailed description of this program 
has not been reported yet.

The aim of the present work is to provide the full description of the AnisoDip-
Fit program and to benchmark this program for different anisotropic S = 1/2 spin 
centers. The description will begin with the theory, which lays the basis of the 
AnisoDipFit data analysis, and will be continued by an overview of the program. 
Next, AnisoDipFit will be used to simulate the PDS time traces of spin systems, in 
which the anisotropic S = 1/2 spin center has different degree of g-anisotropy. This 
time traces will be then analyzed by means of DeerAnalysis, which should reveal 
how much the DeerAnalysis-derived distance distributions deviate from the actual 
ones for different anisotropic spin centers. Finally, AnisoDipFit will be used for the 
data analysis of the experimental RIDME data reported for the spin systems  Cu2+/
nitroxide, ls-Fe3+/trityl, and hs-Fe3+/nitroxide. The results of this data analysis will 
be compared between the different spin systems, which should reveal the effect of 
g-anisotropy on the precision of the extracted distance and angular distributions.

2  Theory

Using an assumption that the magnetic moment �⃗𝜇 of an electron spin �⃗S is propor-
tional to its g-tensor ĝ (Chapter 9.2 in Ref. [61]),

and the point-dipole approximation, the Hamiltonian of the dipole–dipole interac-
tion between two electron spin centers, called here spin A and spin B, can be written 
as

where μ0 is the vacuum permeability, βe is the Bohr magneton, r and �⃗n are the length 
and the unit vector of the inter-spin vector r⃗ , ĝA and ĝB are the g-tensors of both 
spin centers, �⃗SA and �⃗SB are the spin vectors of both spin centers. The round brackets 
denote the scalar product of two vectors. For the case of two anisotropic spin-1/2 
centers, Bedilo and Maryasov have derived a more convenient form of Eq. (2) [62]:

The expressions for all alphabetic operators can be found in the original pub-
lication [62]. If the Zeeman interaction of both electron spins is much larger than 
other magnetic interactions, only the secular term Â and the pseudo-secular term 

(1)�⃗𝜇 = −𝛽e�g �⃗S,
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B̂ contribute to Ĥdd , whereas the contribution of the terms Ĉ– Î  to Ĥdd is neg-
ligible. This case is known as the high-field case and is realized in most PDS 
experiments. Moreover, if the dipolar coupling between the electron spin centers 
is small compared to the difference between their individual resonance frequen-
cies, the so-called secular approximation applies. Under this approximation, only 
the secular term Â has a non-negligible contribution to Ĥdd , yielding the dipolar 
coupling frequency

Here, h is the Planck constant, �⃗kA and �⃗kB determine the quantization axes of each 
of the spins,

where �⃗B0 is the vector of applied static magnetic field, and the symbol T denotes 
transposition.

If the g-anisotropy of one of the spin centers, e.g. spin A, is neglected and the 
g-factor of this spin center is assumed to be equal to ge, Eq. (4) can be simplified to

where gB,eff is the effective g-factor of the anisotropic spin center, and θ is the angle 
between r⃗ and �⃗B0 . Comparing Eq.  (6) with the equation for the dipolar coupling 
between two isotropic spin-1/2 centers with gA = gB = ge,

reveals that both equations differ by the factor gB,eff/ge and the angular term in the 
square brackets. In the case of two isotropic spins, the latter term depends only on 
the angle θ, whereas, when one of the spins is anisotropic, it depends on the orien-
tation of r⃗ and �⃗B0 with respect to the g-tensor of the anisotropic spin center. The 
orientation of r⃗ can be described by two spherical angles, a polar angle ξ and an 
azimuthal angle φ (Fig. 1). Similarly, the orientation of �⃗B0 can be given by a polar 
angle ξB and an azimuthal angle φB (Fig. 1). Consequently, the dipolar coupling fre-
quency given by Eq. (6) depends on the inter-spin distance r, angles ξ, φ, ξB, and φB, 
and the principal g-values of the anisotropic spin center.

Since the PDS measurements are usually done on disordered samples, such 
as frozen solutions, the dipolar coupling frequency is averaged over all possible 
orientations of �⃗B0 with respect to the g-tensor of the anisotropic spin center, i.e., 
over ξB and φB. Because the molecule, which hosts the spin pair, usually has some 
flexibility, the dipolar frequencies are additionally averaged over the distributions 
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of r, ξ, and φ, namely P(r), P(ξ) and P(φ). Altogether, this provides the so-called 
dipolar spectrum.

Since the dipolar spectrum corresponds to the Fourier transform of the back-
ground-corrected PDS time trace, all dependencies, obtained for the dipolar spec-
trum, apply also for the PDS time trace. These dependencies can be expressed in 
a form of equation:

where V(t) is the amplitude of the background-corrected PDS signal, V(0) is the 
value of V(t) at t = 0, and λ is the modulation depth parameter. Note that Eq.  (8) 
implies the absence of orientation selectivity. Taken that the principal g-values of 
the anisotropic spin center and the modulation depth parameter can be determined 
experimentally, the only variables in Eq.  (8) are the distributions P(r), P(ξ), and 
P(φ). The extraction of these distributions from the experimentally determined V(t) 
is a complex, ill-posed problem. Nevertheless, a possible algorithm to solve this 
problem using several simplifying assumptions was proposed and implemented in 
the program AnisoDipFit, which is described next.

3  Program Overview

As mentioned above, the program AnisoDipFit was developed for the analysis 
of the PDS data, which corresponds to spin systems consisting of one isotropic 
and one anisotropic S = 1/2 centers. The AnisoDipFit data analysis is based on 
using the geometric model of the spin system. Since there is an infinite number of 
possible spin system geometries, some simplifying assumptions about the model 
have to be made. In AnisoDipFit, the following assumptions are used:

(8)

V(t)

V(0)
= 1 − � + �

∞

∫
0

P(r)

�

∫
0

P(�)sin(�)

2�

∫
0

P(�) ×

�

∫
0

sin(�B)

2�

∫
0

cos
(

�ddt
)

d�Bd�Bd�d�dr,

Fig. 1  The geometric model of 
a spin system consisting of one 
isotropic spin center, spin A, and 
one anisotropic spin center, spin 
B. The orientation of the inter-
spin vector r⃗ with respect to the 
g-tensor axes of spin B is given 
by the spherical coordinates 
(r, ξ, φ). The orientation of the 
magnetic field �⃗B0 with respect 
to the g-tensor axes of spin B 
is given by the spherical angles 
(ξB, φB). The angle between r⃗ 
and �⃗B0 is denoted as θ 
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1. The spin system consists of two well-localized S = 1/2 centers, denoted as spin A 
and spin B.

2. Spin A has an isotropic or almost isotropic g-tensor, whereas spin B can also have 
an anisotropic g-factor.

3. The reference coordinate system of the model is set to be coincident with the 
g-tensor axes of spin B. A vector connecting spin A with spin B is described by 
three spherical coordinates: a length r, a polar angle ξ, and an azimuthal angle φ 
(Fig. 1).

4. In order to account for the conformational flexibility of the spin system, all three 
geometric parameters, namely r, ξ, and φ, are allowed to have either a uniform 
distribution or a normal distribution. In both cases, the distributions are described 
by two parameters, a mean value and a width. In the case of the normal distribu-
tion, the standard deviation is used as the width parameter.

5. Since the PDS data does not provide enough information about potential cor-
relations between the geometric parameters r, ξ, and φ, the geometric model is 
simplified by assuming the correlations to be zero.

It follows from the above that the AnisoDipFit geometric model is described by 
six parameters: the mean distance ‹r›, the mean angles ‹ξ› and ‹φ›, and the corre-
sponding widths Δr, Δξ and Δφ. Depending on the g-tensor symmetry of spin B, 
all six parameters or only a subset of them are required to simulate the primary PDS 
data. If the g-tensor of spin B is rhombic, all six parameters are needed. However, 
if this g-tensor is axial and gB,xx = gB,yy, the parameters ‹φ› and Δφ have no effect on 
the PDS data. In this case, only four parameters are sufficient, whereas ‹φ› and Δφ 
can be set to 0. In order to account for this, AnisoDipFit allows the user to adjust the 
number of required parameters. In addition, it should be mentioned that the g-ten-
sors of both spin centers possess inversion symmetry as an intrinsic property. Due to 
this symmetry, there are several sets of angles ‹ξ› and ‹φ›, which provide identical 
PDS data. For definiteness, both angles are defined in the interval of [0°, 90°], in 
which their values are unique [63]. By using the initial values of ‹ξ› and ‹φ›, other 
symmetry-related values of these angles can be readily determined as (180° − ‹ξ›, 
‹φ›), (180° − ‹ξ›, ‹φ› + 180°), and (‹ξ›, ‹φ› + 180°).

In general, AnisoDipFit has two main operation modes, a simulation mode and 
a fitting mode. In the simulation mode, the dipolar spectrum or the PDS time trace 
is calculated for the above-described geometric model with the pre-defined values 
of ‹r›, ‹ξ›, ‹φ›, Δr, Δξ, and Δφ. In other words, the PDS data is simulated for the 
known distributions P(r), P(ξ), and P(φ). The calculation of dipolar spectrum is 
based on Eq. (6), which is averaged over random orientations of �⃗B0 (powder aver-
aging) and, additionally, over the distributions P(r), P(ξ), and P(φ). This averaging 
is done by means of the Monte Carlo method using  106–107 samples. Each sample 
corresponds to one value of r, ξ, φ, ξB, and φB, which are randomly selected accord-
ing to the respective probability distributions P(r), P(ξ), P(φ), P(ξB) = sin(ξB), and 
P(φB) = 1/(2π). Since the probability distribution of ξ is given not only by P(ξ) but 
also includes sin(ξ), the contribution of each sample to the total dipolar spectrum is 
weighted by sin(ξ). As follows from Eq. (6), the calculation of the dipolar coupling 
frequencies requires the g-factors of both spin centers. Therefore, both g-factors 
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have to be provided among the input data of the program. The calculation of the 
PDS time trace is done in two steps. First, the dipolar spectrum is calculated in the 
same way as described above. This spectrum consist of N different values of dipo-
lar frequency, νdd,i, and the corresponding probabilities, pi. The difference between 
consecutive frequency values is constant and set to 0.01 MHz. Second, the dipolar 
spectrum is translated into the PDS time trace using the equation:

The value of the modulation depth parameter λ can be either specified among the 
input data of the program or read out from the experimental PDS time trace, which 
can be optionally provided with the input data.

Besides the simulations described above, AnisoDipFit allows calculating the 
dipolar spectrum in dependence of the angular parameters ‹ξ›, ‹φ›, θ. In these cal-
culations, all parameters of the geometric model are set to their pre-defined values 
and only one of the selected angles is varied in the entire interval of [0°, 90°] with 
a user-defined step. The rest of the calculations are done in the same way as for a 
single dipolar spectrum. Note that the possibility to record the angular dependencies 
of the dipolar spectrum can be useful if one wants to study the effect of individual 
angular parameters on the shape of dipolar spectrum.

The last parameter, which has to be mentioned for the AnisoDipFit simulations, is 
the temperature of the PDS experiment. Usually, the temperature of the PDS experi-
ment has no effect on the PDS data. However, as it was shown recently [42], this 
can be violated for the RIDME data acquired at temperatures, at which the polariza-
tion of the anisotropic spin center differs between the different g-values of this spin 
center. For example, for hs-Fe3+ at Q-band, the RIDME data begins to depend on 
temperature below 3 K [42]. In this case, the dipolar coupling frequencies, which 
correspond to the different g-values of the anisotropic spin center, contribute to the 
dipolar spectrum with the following weights [42]:

where kB is the Boltzmann constant, and T is the temperature of the RIDME 
experiment. AnisoDipFit allows the user to include these weights into the simula-
tions of the RIDME data. If the weights are included, the values of the temperature 
and the magnetic field B0 need to be specified among the input data of the program. 
In analogy to the angular dependencies of the dipolar spectrum, AnisoDipFit also 
allows to calculate the dependence of dipolar spectrum on the temperature. This 
data can be used to estimate the temperature ranges, in which the RIDME spectrum 
is temperature-dependent.

The second mode of AnisoDipFit is the fitting mode. As follows from its name, 
this mode allows to fit experimental PDS data using the parameters of the above-
described geometric model (‹r›, ‹ξ›, ‹φ›, Δr, Δξ, and Δφ) and the temperature of the 
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PDS experiment as fitting parameters. Depending on the symmetry of anisotropic 
spin center, the number of geometric parameters that are required for the fitting 
may vary (see above). Moreover, the temperature of the PDS experiment has to be 
included into the fitting only if the error of the experimentally measured temperature 
is above 0.1 K. Therefore, the user can choose which parameters will be included 
in the fitting and which ones will be set to a constant value. During the fitting, the 
selected fitting parameters are optimized until the simulated dipolar spectrum or 
PDS time trace provides the best fit to the experimental PDS spectrum or PDS time 
trace, respectively. The simulation of dipolar spectra and PDS time traces is done 
in the same way as in the simulation mode. The goodness of fit is monitored by 
calculating the χ2 deviation between the simulated and the experimental PDS data 
[64]. The calculation of χ2 requires knowledge of the standard deviation of noise 
in the experimental PDS data (σN), which can be either provided among the input 
data of the program or estimated by the program automatically using the best fit 
to the experimental data as a reference noise-free signal (in this case, σN is set to 1 
during the fitting). The optimization of the fitting parameters is done by means of 
a genetic algorithm. This algorithm has been shown to be very efficient when one 
deals with a large number of optimization parameters and needs to find a global 
minimum [65–68]. The detailed description of the genetic algorithm implemented in 
AnisoDipFit is provided elsewhere [68]. The results of each fitting include the best 
fit to the experimental PDS data and the corresponding optimized values of fitting 
parameters. The precision of the optimized parameters is however unknown. To fill 
this gap, AnisoDipFit performs an error analysis. Since the parameter space is quite 
large (up to seven fitting parameters) and the fitting of PDS data is very time-con-
suming (hours), usual error analyses, such as bootstrap [64] and Bayesian analysis 
[69], cannot be done within a reasonable time. Therefore, the error analysis is done 
in a less general way. First, χ2 is recorded in dependence of ‹r› and Δr, ‹ξ› and Δξ, 
‹φ and Δφ, and T. While recording each of these dependences, the remaining fitting 
parameters are set to their optimized values. For example, when χ2 is recorded as a 
function of ‹r› and Δr (Fig. 2a), the values of ‹ξ›, ‹φ›, Δξ, Δφ, and T are fixed at the 
corresponding optimized values (or at the user-defined values, if some of them were 

Fig. 2  General idea of the AnisoDipFit error analysis. a Exemplary dependence of χ2 on the fitting 
parameters ‹r› and Δr, χ2(‹r›, Δr). While acquiring this dependence, all other fitting parameters are set to 
their optimized values. The optimized values of ‹r› and Δr are depicted by a circle. b One-dimensional 
dependencies χ2(‹r›) and χ2(Δr), which are derived from χ2(‹r›, Δr). χ2(‹r›) is optimized with respect to 
Δr, and χ2(Δr) with respect to ‹r›. The χ2 threshold is depicted by the black dashed line. This threshold 
consists of two contributions, Δχci

2, which is determined at the 3σ confidence level, and Δχne
2, which 

takes into account the numerical error. The uncertainty ranges of ‹r› and Δr are shown as gray intervals
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not optimized). Determination of parameters’ errors from the obtained dependencies 
relies on the assumption that the contributions to χ2 from P(r), P(ξ), P(φ), and T are 
uncorrelated, at least, near the global minimum. This assumption was confirmed in 
the previous study [60], but in general, it allows to estimate only the lower bound 
of parameters’ uncertainty. Prior to the error estimation, each two-dimensional 
dependence, e.g. χ2(‹r›, Δr), is converted into two one-dimensional dependencies 
that are optimized with respect to the first or second parameter of the corresponding 
two-dimensional dependence, e.g. χ2(‹r›) and χ2(Δr) (Fig.  2b). The obtained one-
dimensional dependencies are then used to determine parameter ranges, in which the 
deviation of the χ2 values from the minimal χ2 is less than Δχ2. The threshold Δχ2 
is build up out of two contributions. The first contribution, Δχci

2, takes into account 
errors related to the noise in the experimental data and possible discrepancies 
between the actual spin system and its geometric model. Δχci

2 is calculated using 
the user-defined confidence level, e.g. a 3σ confidence level. If one assumes that 
the measurement errors are distributed normally, nσ confidence level corresponds to 
Δχci

2 = n2 [64]. Thus, for the 3σ confidence level one obtains Δχci
2 = 9. The second 

contribution, Δχne
2, takes into account the numerical error, which is mostly deter-

mined by the accuracy of the Monte Carlo integration. The value of Δχne
2 is esti-

mated by calculating χ2 for the  104 identical sets of optimized fitting parameters and, 
subsequently, finding the difference between the maximal and minimal values of χ2. 
Lastly, the determined uncertainty ranges are converted into the errors of the fitting 
parameters by calculating the largest deviation of each parameter from its optimized 
value within the corresponding uncertainty ranges.

After discussing the function of AnisoDipFit, its technical information will be 
given. AnisoDipFit is a stand-alone program, which is freely available at https ://
githu b.com/dinar abdul lin/Aniso DipFi t. Similar to many quantum chemistry pro-
grams, AnisoDipFit can be run from the Terminal (or Command Prompt) and 
requires a special configuration file, which contains all input data of the program. 
The detailed information on how one creates such a configuration file, as well as 
few examples of configuration files, can be found in the program’s manual, which 
can be accessed using the link above. The source code of AnisoDipFit was written 
using the Python programming language and the libraries numpy, scipy, wx, mat-
plotlib, and libconf. The Windows and Linux executables of the program can be 
downloaded from https ://githu b.com/dinar abdul lin/Aniso DipFi t/relea ses. AnisoDip-
Fit supports parallel computing and, therefore, its performance can be significantly 
improved when using the hardware with a large number of CPUs. For the examples 
given below, AnisoDipFit was run on a 64-core workstation from sys-Gen GmbH 
with 2.3 GHz processor frequency and 132 GB RAM.

4  Simulation of PDS Data

To get a deeper insight into how the g-anisotropy of different anisotropic spin cent-
ers influences the corresponding PDS data, the AnisoDipFit simulations were car-
ried out. In these simulations, dipolar spectra and PDS time traces were calculated 
for three spin systems, namely  Cu2+/organic radical, ls-Fe3+/organic radical, and 

https://github.com/dinarabdullin/AnisoDipFit
https://github.com/dinarabdullin/AnisoDipFit
https://github.com/dinarabdullin/AnisoDipFit/releases
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hs-Fe3+/organic radical. The g-factor of the organic radical was always set to ge. The 
principal g-values (gxx, gyy, gzz) of the metal centers were set to their typical values, 
such as (2.05, 2.05, 2.25) for  Cu2+, (1.56, 2.28, 2.91) for ls-Fe3+, and (6.00, 6.00, 
2.00) for hs-Fe3+. For all three spin systems, the inter-spin distance distribution was 
assumed to have the Gaussian shape with a mean value ‹r› = 2.50 nm and a standard 
deviation σr = 0.10  nm. The angles ξ and φ were assumed to have a single value 
each. For the axial  Cu2+ and hs-Fe3+ spin centers, φ was set to 0°, whereas ξ was 
varied in the range [0°, 90°] with a step of 15°. For the rhombic ls-Fe3+ spin center, 
both angles were varied in the range [0°, 90°] with a step of 30°. All simulations 
were done for a temperature of 10 K and a modulation depth of 0.5. The frequency 
axis of all simulated dipolar spectra was normalized by the average dipolar coupling 
constant ν0 of an isotropic spin pair with the same inter-spin distance distribution as 
above. After the simulations, the PDS time traces, which were calculated for differ-
ent spin systems and different values of ξ and φ, were analyzed by DeerAnalysis. 
Although DeerAnalysis was developed exclusively for isotropic spin centers, it is 
still interesting to apply this program to the present case and to examine how much 
the DeerAnalysis-derived distance distributions deviate from the original distance 
distribution.

4.1  Cu2+/Organic Radical

The dipolar spectra and the PDS time traces of the spin system  Cu2+/organic radi-
cal were simulated in dependence of the angle ξ and are depicted in Fig. 3a and b, 
respectively. Figure 3a reveals that all simulated dipolar spectra have similar shapes. 
Moreover, the shapes of these spectra are similar to the shape of the Pake doublet 
(dashed line in Fig. 3a), which is the dipolar spectrum of an isotropic spin pair. Both, 
the simulated spectra and the Pake doublet, show two singularities at around ± ν0 
and ± 2ν0, corresponding to θ = 90° and θ = 0° in Eqs.  (6) and (7), respectively. 
These singularities are often denoted as perpendicular (θ = 90°) and parallel (θ = 0°) 
components. Small differences between the simulated spectra and the Pake dou-
blet can be described by two facts. First, the parallel component of the simulated 
spectra is shifted from the parallel component of the Pake doublet towards larger 

Fig. 3  The angular dependence of the PDS data simulated for the spin system  Cu2+/organic radical. a 
Dipolar spectra (solid lines), which were simulated for different ξ angles, are overlaid with the Pake dou-
blet (dashed line). The magnified region around the perpendicular component is shown as an inset. b 
Simulated PDS time traces and c corresponding distance distributions determined by means of Deer-
Analysis. The original distance distribution, which was used to simulate the data from (a) and (b), is 
depicted by gray shades
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frequencies, especially, when ξ approaches 0°. Second, the perpendicular compo-
nent of the simulated spectra is shifted from the perpendicular component of the 
Pake doublet towards larger frequencies, especially, when ξ approaches 90°. Both 
facts can be readily explained if one takes into account that the perpendicular and 
parallel components of the simulated spectra are scaled by the effective g-values of 
 Cu2+ (see Eq. (6)) and that this scaling depends on the ξ angle. As an example, two 
particular cases, ξ = 0° and ξ = 90°, will be discussed below. In the case of ξ = 0°, r⃗ 
is collinear to the gzz-axis of the  Cu2+ g-tensor. Consequently, the parallel compo-
nent of the spectrum is scaled by gzz, yielding a singularity at 2(gzz/ge)ν0 ≈ 2.25 ν0. 
Then, the other two components of the  Cu2+ g-tensor give rise to two perpendicular 
component, which appears at (gxx/ge)ν0 = (gyy/ge)ν0 ≈ 1.02 ν0. In the case of ξ = 90°, 
r⃗ is collinear to the gyy-axis of the  Cu2+ g-tensor. Therefore, the parallel component 
is scaled by gyy and appears at 2(gyy/ge)ν0 ≈ 2.05 ν0. The perpendicular component is 
scaled by the  Cu2+ g-values ranging from gxx to gzz. Therefore, this component spans 
the frequency range from (gxx/ge)ν0 ≈ 1.02 ν0 up to (gzz/ge)ν0 ≈ 1.12 ν0.

The similarity of the dipolar spectra, simulated for different ξ angles, resulted 
in the similarity of the corresponding PDS time traces (Fig.  3b). Moreover, since 
all simulated spectra were close in shape to the Pake doublet, the analysis of the 
simulated PDS time traces by DeerAnalysis yielded distance distributions, which 
are akin to the original distance distribution (Fig.  3c). However, few differences 
between the DeerAnalysis-derived distance distributions and the original distance 
distribution were still obtained. First, the maximum of the DeerAnalysis-derived 
distance distributions is shifted from the original distance (2.5 nm) towards smaller 
distances, especially, when ξ approaches 90°. Second, the DeerAnalysis-derived dis-
tance distributions, determined for the ξ angles below 45°, contain an additional dis-
tance peak at around 1.9 nm. The first difference stems from the fact that the perpen-
dicular component of the simulated dipolar spectra deviates from ν0. As was shown 
above, this deviation depends on the angle ξ and is maximal for ξ = 90°. Note that 
the errors of the DeerAnalysis-derived most probable distances are small and do not 
exceed 0.06 nm. However, these errors can become larger if the inter-spin distance 
increases [70]. For the given g-tensor of  Cu2+, the dependence of the DeerAnalysis 
distance error on the inter-spin distance is depicted in Fig. 4. As can be seen, the 
DeerAnalysis distance error may exceed 0.1 nm (or 1 Å) for the inter-spin distances 
above 4.27  nm. The addition distance peak in the DeerAnalysis-derived distance 
distributions is due to the fact that the parallel component of the simulated dipolar 
spectra is shifted from 2ν0. This shift is maximal for ξ = 0°, and DeerAnalysis inter-
prets it as if it will be an additional perpendicular component, which corresponds to 
the distance of 1.9 nm.

4.2  Low‑spin  Fe3+/Organic Radical

The second considered spin system was the spin pair ls-Fe3+/organic radical. The 
dipolar spectra and the PDS time traces of this spin pair were simulated in depend-
ence of two angles, ξ and φ (Fig. 5). As can be seen from Fig. 5a, most of the simu-
lated dipolar spectra differ from each other, and all of them are significantly different 
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from the Pake doublet. This differences are due to the fact that spectral components, 
corresponding to different θ angles, are scaled by different effective g-values of 
ls-Fe3+. Apparently, this g-scaling depends on the values of ξ and φ. Importantly, 
the effect of this g-scaling on the obtained spectral shapes is more pronounced as 
compared to the case of  Cu2+, because all three principal g-values of ls-Fe3+ have a 
larger deviation from ge as compared to the principal g-values of  Cu2+. The obtained 
differences between the simulated spectra are further inherited by the simulated PDS 
time traces (Fig.  5b) and the corresponding DeerAnalysis-derived distance distri-
butions (Fig. 5c). All DeerAnalysis-derived distance distributions are significantly 
different from the original distance distribution and, instead of being unimodal, 
have three prominent components, denoted as I, II, and III in Fig. 5c. The compo-
nents I and II partially overlay and correspond to the perpendicular component of 
the dipolar spectra, which is scaled by a number of different effective g-values of 
ls-Fe3+. Since most of these g-values differ from ge, the maxima of the components 
I and II are shifted from the original distance (2.5 nm). The component III origi-
nates from the parallel component of the simulated dipolar spectra. Since the paral-
lel component is also scaled by an effective g-value of ls-Fe3+ and, therefore, does 
not necessarily appear exactly at the doubled frequency of the parallel component, 
DeerAnalysis erroneously interpreters it as an additional perpendicular component, 
corresponding to shorter distances. These results reveal that DeerAnalysis has a sig-
nificant distance error when used for the spin system ls-Fe3+/organic radical. There-
fore, the specialized data analyses, such as AnisoDipFit, should be used for inter-
preting the experimental PDS data of this spin system.

4.3  High‑spin  Fe3+/Organic Radical

The last spin system, for which the PDS data was simulated, was the spin pair 
hs-Fe3+/organic radical. Due to the high axiality of the hs-Fe3+ g-tensor, the 

Fig. 4  Predicted ranges of the DeerAnalysis distance error for the spin system  Cu2+/organic radical. The 
g-values of  Cu2+ were set to gxx = gyy = 2.05 and gzz = 2.25. The upper bound of the error (solid line) is 
obtained when ξ = 0° and the perpendicular component of the dipolar spectrum is scaled by an aver-
age  Cu2+ g-factor of (gxx + gyy)/2 = 2.05. The lower bound of the error (dashed line) is obtained when 
ξ = 90° and the perpendicular component of the dipolar spectrum is scaled by an average  Cu2+ g-factor of 
(gzz + gyy)/2 = 2.15
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simulated dipolar spectra and PDS time traces show the strong dependence on 
the angle ξ (Fig. 6a, b). This dependence, together with the fact that two out of 
three principal g-values of hs-Fe3+ are three times larger than ge, result in the 
substantial difference between the shapes of the simulated spectra and the shape 
of Pake doublet. Consequently, the analysis of simulated PDS time traces by 
DeerAnalysis yields distance distributions, which is totally different from the 
original distance distribution (Fig. 6c). Thus, like in the case of the spin system 
ls-Fe3+/organic radical, only specialized data analyses, such as AnisoDipFit, can 
be used to analyze PDS data of the spin system ls-Fe3+/organic radical.

Fig. 5  The angular dependence of the PDS data simulated for the spin system ls-Fe3+/organic radical. 
a Dipolar spectra (solid lines), which were simulated for different ξ and φ angles, are overlaid with the 
Pake doublet (dashed line). b Simulated PDS time traces and c corresponding distance distributions 
determined by means of DeerAnalysis. The original distance distribution, which was used to simulate 
the data from (a) and (b), is depicted by gray shades. Three different components of the DeerAnalysis-
derived distance distributions are marked by Roman letters
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5  Fitting of Experimental PDS Data

The key function of AnisoDipFit is the data analysis, in which the distributions P(r), 
P(ξ), and P(φ) are extracted from the experimental PDS data. As described above, 
the fitting mode of AnisoDipFit is used for this purpose. Here, the fitting mode of 
AnisoDipFit was tested on the previously reported experimental RIDME data. This 
data was chosen such that the spin systems with different degree of g-anisotropy 
were covered. In analogy to the simulations above, the considered spin systems 
included  Cu2+/nitroxide, ls-Fe3+/trityl, and hs-Fe3+/nitroxide. The details of the 
AnisoDipFit-based fitting for each of these spin systems are described below.

5.1  Cu2+/Nitroxide

Model compound 1 was used as an example of the spin system  Cu2+/nitroxide 
(Fig.  7a). Note that 1 contains three spin centers, a  Cu2+ ion and two nitroxides. 
Both nitroxides have the same linker to the  Cu2+ ion and are located almost symmet-
rically with respect to that ion. Thus, the distance and the mutual orientation of both 
nitroxides with respect to  Cu2+ can be assumed to be identical. The Q-band RIDME 
measurements on 1 were performed by Meyer et  al. [56]. Due to the significant 
rigidity of 1, the RIDME time traces of 1 were orientation-selective. In order to get 
rid of this orientation selectivity, the RIDME time traces were acquired at several 
positions across the nitroxide spectrum and then averaged out. The obtained aver-
age time trace was converted into distance distribution by means of DeerAnalysis. 
Here, the same RIDME time trace was analyzed by means of AnisoDipFit. For this 
purpose, the g-values of  Cu2+ were set to gxx = 2.254, gyy = 2.093, gzz = 2.042 [56], 
and the g-values of the nitroxides to ge. The geometric model, which was used in the 
fitting of the RIDME time trace, was described by the distributions P(r), P(ξ), and 
P(φ). All three distributions were approximated by Gaussians and the correspond-
ing mean values and standard deviations were used as fitting parameters. During 
the fitting, the values of these parameters were iteratively optimized by the genetic 
algorithm. The total number of optimization steps was set to 500. The results of 
the AnisoDipFit data analysis for 1 are summarized in Fig. 7b–d. Figure 7b shows 

Fig. 6  The angular dependence of the PDS data simulated for the spin system hs-Fe3+/organic radical. 
a Dipolar spectra (solid lines), which were simulated for different ξ angles, are overlaid with the Pake 
doublet (dashed line). b Simulated PDS time traces and c corresponding distance distributions deter-
mined by means of DeerAnalysis. The original distance distribution, which was used to simulate the data 
from a) and b), is depicted by gray shades
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how the goodness of fit, given by χ2, changed across optimization steps. As can be 
seen, χ2 fell rapidly down during the first 100 optimization steps and, after this, did 
not change anyhow significantly during the last 400 optimization steps. This reveals 
that the minimum of the optimization problem was reached. Since the genetic algo-
rithm is capable to find the global minimum even for optimization problems with 
several local minima [71], the obtained minimum is most likely global. This is sup-
ported by fact that a good fit to the RIDME data was indeed obtained (Fig. 7c). The 
optimized values of fitting parameters, which deliver this fit, are shown by white 
dots in Fig. 7d. In addition, Fig. 7d depicts the two-dimensional error surfaces for 
three pairs of fitting parameters: ‹r› and Δr, ‹ξ› and Δξ, and ‹φ› and Δφ. The uncer-
tainty ranges of the fitting parameters are depicted as dark red regions. For the dis-
tance parameters ‹r› and Δr, the uncertainty ranges are well-defined and appear 
at ± 0.02 nm around the optimized values. In contrast, the uncertainty ranges of all 
four angular parameters span over their entire ranges, meaning that these parameters 
could not be determined from the present data analysis. The latter result can have 
several reasons. First, the g-anisotropy of  Cu2+ might be still too small to provide a 
good resolution for ξ and φ. Second, the signal-to-noise ratio (SNR) of the RIDME 
time trace might be insufficient to allow the detection of small changes in the 
RIDME time trace caused by the g-anisotropy of  Cu2+. Third, the bending motion of 
1 [56] may broaden the distributions P(ξ) and P(φ).

Finally, the values of ‹r› and Δr were compared between the AnisoDipFit, Deer-
Analysis, and the crystal structure of 1 (Table 1). As expected (Fig. 4), the differ-
ence between the AnisoDipFit- and DeerAnalysis-derived values of ‹r› is small, 

Fig. 7  The AnisoDipFit data analysis of the Q-band RIDME time trace acquired on the model system 
1. a The crystal structure of 1. The carbon atoms are shown in gray, oxygen in red, nitrogen in blue, 
and copper in orange. b The dependence of χ2 on the optimization step. c The RIDME time trace (black 
line) is overlaid with the corresponding fit (red line). d The dependence of χ2 on different pairs of fitting 
parameters. Dark red regions correspond to the parameters’ uncertainty intervals, which lie below the χ2 
threshold. The optimized values of the fitting parameters are depicted by white dots (colour figure online)
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only 0.07 nm. Both values are about 0.1 nm smaller than the crystallographic value 
of ‹r›. The standard deviation Δr is identical for both AnisoDipFit and DeerAnaly-
sis. Thus, the use of DeerAnalysis for the RIDME data of 1 yields quite accurate 
distance distribution. This can also be true for other  Cu2+/nitroxide spin systems, 
although it is important to remember that the error of the DeerAnalysis-based data 
analysis can increase for larger distances (Fig.  4) and that some distance artifacts 
might appear in the DeerAnalysis-derived distance distributions (Fig. 3c).

5.2  Low‑spin  Fe3+/Trityl

To test the AnisoDipFit data analysis for the ls-Fe3+/trityl spin system, the previ-
ously reported Q-band RIDME time trace of the model compound 2 (Fig. 8a, [60]) 
was used. Similar to the previous example, the geometric model, which was used 
in the fitting of the RIDME time trace, was described by the distributions P(r), 
P(ξ), and P(φ). All three distributions were again approximated by Gaussians and 
the corresponding mean values and standard deviations were used as fitting param-
eters. The g-values of ls-Fe3+ were set to gxx = 1.56, gyy = 2.28, gzz = 2.91 [60], and 
the g-values of the trityl to ge. The results of the AnisoDipFit data analysis for 2 

Table 1  Optimized AnisoDipFit 
parameters of 1 

Parameter AnisoDipFit DeerAnaly-
sis [56]

crystal structure [56]

‹r› / nm 2.57 ± 0.02 2.50 2.649 ± 0.013
Δr / nm 0.08 ± 0.02 0.08

Fig. 8  The AnisoDipFit data analysis of the Q-band RIDME time trace acquired on the model system 2. 
a The chemical structure of 2. b The dependence of χ2 on the optimization step. c The RIDME time trace 
(black line) is overlaid with the corresponding fit (red line). d The dependence of χ2 on different pairs of 
fitting parameters. Dark red regions correspond to the parameters’ uncertainty intervals, which lie below 
the χ2 threshold. The optimized values of the fitting parameters are depicted by white dots (colour figure 
online)
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are summarized in Fig. 8b–d. Figure 8b reveals that the genetic algorithm has con-
verged to the global minimum after 270 optimization steps. Figure  8c shows that 
the obtained global minimum corresponds to a fit, which quite exactly reproduces 
the shape of the RIDME time trace. Figure 8d overlays the optimized values of the 
fitting parameters (white dots) with their error surfaces. The dark red regions in the 
error surfaces depict the uncertainty ranges of the fitting parameters. In contrast to 
the previous example, the uncertainty ranges of all six fitting parameters, including 
the angular parameters, are well-defined. This result can be attributed to the fact that 
ls-Fe3+ has the larger g-factor anisotropy as compared to  Cu2+. Based on Fig. 8d, 
the errors of individual fitting parameters were estimated and are listed in Table 2. 
It reveals the parameters of P(r) were determined with a sub-angstrom precision, 
whereas the parameters of P(ξ) and P(φ) with an average precision of ± 29°.

Note that the RIDME time trace of 2 was already analyzed by AnisoDipFit in 
the previous publication [60], but the error analysis was done differently. The main 
difference between the former and the present error analyses is the way of deter-
mining the uncertainty ranges of the fitting parameters. In the former error anal-
ysis, the uncertainty ranges were determined at 110% of the minimal root-mean-
square deviation (RMSD) between the experimental RIDME time trace and its 
best fit. Recent tests have revealed that the numerical error of the calculated 
RMSD values (ΔRMSD ~ 3·10–4) can be as large as 10% of the minimal RMSD 
 (RMSDmin ~ 3.0·10–3) and, therefore, the chosen threshold has to be either increased 
or replaced by a more adaptive threshold. The second approach was taken; the new 
error analysis sets the value of the threshold based on the estimated numerical error 
and the desired confidence level (3σ confidence level was used here). Consequently, 
the new error analysis yielded more accurate error estimates as compared to the for-
mer analysis.

Despite the difference in the threshold value, it is still interesting to compare the 
optimized fitting parameters between the present analysis and the analysis published 
earlier. This comparison is shown in Table 2. It reveals that the parameters of P(r) 
are identical and have similar error bars. In contrast, the parameters of P(ξ) and P(φ) 
take different values, but the corresponding error intervals overlap significantly. As 
can be seen, the error intervals, which were obtained for the angular parameters in 
the present analysis, are larger and include the significant part of the correspond-
ing error intervals, which were determined in the previous analysis. This has two 

Table 2  Optimized AnisoDipFit 
parameters of 2 

a The program was originally called DipFit

Parameter AnisoDipFit AnisoDipFita [60] MD [60]

‹r› / nm 2.64 ± 0.01 2.64 ± 0.01 2.65
Δr / nm 0.06 ± 0.03 0.06 ± 0.02 0.06
‹ξ› / ° 86 ± 21 71 ± 19 88
Δξ / ° 23 ± 27 3 ± 20 16
‹φ› / ° 85 ± 34 57 ± 7 45
Δφ / ° 51 ± 32 30 ± 9 14
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reasons. First, the new threshold yields larger uncertainty intervals than the old one, 
and, consequently, the corresponding error intervals are larger too. Second, there 
is a difference between two error analyses in the Δξ and Δφ intervals, which were 
used to record the error surfaces. In the previous analysis, both intervals were set to 
[0°, 30°]. In the present study, it was realized that these intervals are not sufficient to 
take into account broad distributions of ξ and φ and, therefore, both intervals were 
increased up to [0°, 90°]. Figure 8c reveals that the uncertainty intervals of all angu-
lar parameters indeed propagate to the region with Δξ > 30° and Δφ > 30°, which 
explains why the errors of the angular parameters from the previous analysis are 
smaller than the ones obtained here. Thus, the errors of the angular parameters were 
underestimated in the earlier study.

In addition, the optimized fitting parameters of 2 were compared to their MD pre-
dictions [60]. Table 2 reveals overall agreement between them. The only significant 
difference is obtained for the parameters of P(φ). Possible reasons of this difference 
were discussed in detail previously [60].

5.3  High‑spin  Fe3+/Nitroxide

The last test of the AnisoDipFit data analysis was done for the RIDME spectrum 
acquired on the nitroxide-labeled mutant of the hemeprotein met-myoglobin [42], 
denoted here as met-MbQ8R1 (Fig.  9a). Met-MbQ8R1 contains two electron spin 
centers, a nitroxide and a hs-Fe3+ ion. The hs-Fe3+ has a large axial ZFS tensor 
(D ~ 9.26  cm−1, E = 0.0023  cm−1 [72]), which allows considering this ion as an 

Fig. 9  The AnisoDipFit data analysis of the Q-band RIDME spectrum acquired on the model system 
met-MbQ8R1. a The cartoon model of met-MbQ8R1. The protein structure of met-myoglobin (PDB 1WLA) 
is shown as a gray cartoon model, the R1 side chain is shown as pink sticks with oxygen atoms colored 
red, and the  Fe3+ ion is shown as a blue sphere. b The dependence of χ2 on the optimization step. c The 
RIDME spectrum (black line) is overlaid with the corresponding fit (red line). d The dependence of χ2 on 
different pairs of fitting parameters. Dark red regions correspond to the parameters’ uncertainty intervals, 
which lie below the χ2 threshold. The optimized values of the fitting parameters are depicted by white 
dots (colour figure online)
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effective S = 1/2 center at Q-band and at temperatures below 3 K [42]. The g-fac-
tor of this center is very anisotropic and has the principal components gxx = 5.93, 
gyy = 5.94, and gzz = 2.00 [42]. In contrast, the g-anisotropy of the nitroxide center 
is small and, therefore, was neglected in the data analysis by setting all g-values to 
ge. Since the g-factor of the hs-Fe3+ is almost axial, the RIDME spectrum of met-
MbQ8R1 does not depend on the angle φ. Therefore, this angle was excluded from 
the fitting and fixed at a constant value of 0°. Two other distributions, P(r) and P(ξ), 
were approximated by Gaussians and their mean values and standard deviations 
were used as fitting parameters. In addition, the temperature of the RIDME experi-
ment was used as a fitting parameter. This was done because of two reasons. First, 
the RIDME experiments on met-MbQ8R1 were done at the temperature of ~ 3  K, 
which is low enough to have an influence of the spectral simulations in accordance 
to Eq. (10). Second, the error of the experimentally measured temperature was above 
the precision required for accurate spectral simulations. The results of the AnisoDip-
Fit analysis for met-MbQ8R1 are given in Fig. 9b–d. Figure 9b reveals that the genetic 
algorithm has again converged to the global minimum. Figure 9c shows that a good 
fit to the RIDME spectrum has been obtained. Finally, Fig. 9d depicts the optimized 
values of the fitting parameters together their error surfaces. The uncertainty ranges 
of the fitting parameters, shown as dark red regions in Fig. 9d, were used to estimate 
the errors of fitting parameters (Table 3). Similar to the case of 2, the parameters of 
P(r) were determined with a sub-angstrom precision. The parameters of P(ξ) were 
determined with a precision of ± 1°, which significantly exceeds that precision of 
the same parameters obtained for 2. This result can be attributed to the fact that 
the g-anisotropy of the hs-Fe3+ is much larger than the g-anisotropy of the ls-Fe3+. 
Thus, as could be expected, the precision of the angular parameters strongly depends 
on the g-anisotropy of the anisotropic spin center. The optimized value of the tem-
perature equals to 2.1 ± 0.2 K. This value deviates from the experimental tempera-
ture by ~ 1 K, which is in agreement with the reported experimental error of the tem-
perature measurement [42].

Like in the case of 2, the RIDME spectrum of met-MbQ8R1 was already ana-
lyzed by AnisoDipFit in the previous study [42], in which the error analysis was 
done using a fixed threshold set to 110% of the minimal RMSD. The reason for 
replacing this threshold by a more adaptive one was the same as in the case of 2. 
The numerical error of the calculated RMSD was estimated at 3.2·10–3, whereas 
10% of the minimal RMSD were only 2.6·10–3. The new threshold, which is 

Table 3  Optimized AnisoDipFit 
parameters of met-MbQ8R1

a The program was originally called DipFit

Parameter AnisoDipFit AnisoDipFita [42] MD [73]

‹r› / nm 2.77 ± 0.02 2.77 ± 0.01 2.97
Δr / nm 0.09 ± 0.03 0.08 ± 0.02 0.11
‹ξ› / ° 79 ± 1 85 ± 3 87
Δξ / ° 0 ± 1 6 ± 1 6
T / K 2.1 ± 0.2 2.1 ± 0.1



745

1 3

AnisoDipFit: Simulation and Fitting of Pulsed EPR Dipolar…

calculated based on the estimated numerical error and the desired confidence 
level (3σ confidence level), allowed to avoid this pitfall. Interestingly, the substi-
tution of the threshold had only minor effect of the optimized fitting parameters 
and their errors (Table 3). Moreover, the optimized fitting parameters, obtained 
from the both AnisoDipFit analyses, show in a good agreement with the corre-
sponding parameters predicted by MD [73] (Table 3).

6  Conclusion

The AnisoDipFit program was introduced as a tool to perform the PDS data anal-
ysis for spin systems consisting of one isotropic and one anisotropic electron spin 
centers. The theoretical background, the operation principles, and the different 
modes of AnisoDipFit were described for the first time in detail. This description, 
together with the prepared manual of the program, should make the use of the 
program more convenient.

To identify anisotropic spin centers, for which the use of this program is espe-
cially relevant, AnisoDipFit was used to simulate the PDS data of the spin sys-
tems with different anisotropic spin centers, such as  Cu2+, ls-Fe3+, and hs-Fe3+. 
For the spin system  Cu2+/organic radical, the simulated PDS data revealed only 
minor deviations from the PDS data corresponding to isotropic spin centers. 
Thus, except few outlined limitations, the program DeerAnalysis can be applied 
for  Cu2+ as an alternative to AnisoDipFit. In contrast, the simulated PDS data of 
the spin systems ls-Fe3+/organic radical and hs-Fe3+/organic radical showed the 
fundamental difference to the PDS data of isotropic spin centers. Consequently, 
AnisoDipFit is currently the only available program, which allows accurate 
PDS data analysis for ls-Fe3+, hs-Fe3+, and other spin centers with comparable 
g-anisotropy.

The AnisoDipFit data analysis was successfully tested on the experimental 
RIDME data of the  Cu2+/nitroxide and ls-Fe3+/trityl model compounds and the 
met-myoglobin mutant. For all three test systems, the distance distribution was 
determined with the sub-angstrom precision. In addition, the spatial orientation 
of the inter-spin vector with respect to the g-frame of the metal center was deter-
mined for two out of three test systems. The precision of this information was 
shown to depend on the g-anisotropy of the metal center. For the most aniso-
tropic hs-Fe3+, the precision of the azimuthal and polar angles was ± 2°. For the 
less anisotropic ls-Fe3+, the precision of both angles was reduced down to ± 31°, 
whereas, for the least anisotropic  Cu2+, both angles were undefined.

In general, AnisoDipFit extends the arsenal of available tools for PDS data 
analysis and should facilitate further PDS-based distance measurements on a 
highly relevant class of metalloproteins, including hemoproteins and many other 
proteins.
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