Skip to main content
Log in

Electron tomographic analysis of cytokinesis in the brown alga Silvetia babingtonii (Fucales, Phaeophyceae)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In brown algae, membrane resources for the new cell partition during cytokinesis are mainly flat cisternae (FCs) and Golgi-derived vesicles. We used electron tomography coupled with rapid freezing/freeze substitution of zygotes to clarify the structure of transient membrane compartments during cytokinesis in Silvetia zygotes. After mitosis, an amorphous membranous structure, considered to be an FC intermediate was observed near endoplasmic reticulum clusters, lying between two daughter nuclei. FCs were arrayed at the cytokinetic plane, and a tubular membranous network was formed around them. This network might be formed by the consecutive fusion of spherical vesicles that are linked to the edges of FCs to form a membranous network (MN). At the initial stage of the formation of a membranous sac (MS) from the MN, the MS had flat and swollen parts, with the latter showing membranous tunnels. Coated pits were detected with high frequency at the swollen parts of the MS. This observation indicated that membranous tunnels disappeared by recycling of excess membrane via endocytosis, and the swollen part became flat. The MN appeared at the edges of the growing MS. MN and the MN-MS complex were observed along the cytokinetic plane in several spaces. The MS expanded by the incorporation of MN or other MS in its neighborhood. With the maturation of the new cell partition membrane, the thickness of the MS became constant and the membrane cavity disappeared. The changes in the surface area and volume of the transient membrane compartment during cytokinesis were analyzed from the tomographic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen VW, Kropf DL (1992) Nuclear rotation and lineage specification in Pelvetia embryos. Development 115:873–883

    Google Scholar 

  • Barr FA, Gruneberg U (2007) Cytokinesis: placing and making the final cut. Cell 131:847–860

    Article  PubMed  CAS  Google Scholar 

  • Belanger KD, Quatrano RS (2000) Membrane recycling occurs during asymmetric tip growth and cell plate formation in Fucus distichus zygotes. Protoplasma 212:24–37

    Article  Google Scholar 

  • Bisgrove SR, Kropf DL (1998) Alignment of centrosomal and growth axes is a late event during polarization of Pelvetia compressa zygote. Dev Biol 194:246–256

    Article  PubMed  CAS  Google Scholar 

  • Bisgrove SR, Kropf DL (2004) Cytokinesis in brown algae: studies of asymmetric division in fucoid zygotes. Protoplasma 223:163–173

    Article  PubMed  CAS  Google Scholar 

  • Bisgrove SR, Henderson DC, Kropf DL (2003) Asymmetric division in fucoid zygotes is positioned by telophase nuclei. Plant Cell 15:854–862

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bouget FY, Gerttula S, Shaw SL, Quatrano RS (1996) Localization of actin mRNA during the establishment of cell polarity and early cell division in Fucus embryos. Plant Cell 8:189–201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brawley SH, Robinson KR (1985) Cytochalasin treatment disrupts the endogenous currents associated with cell polarization in fucoid zygotes: studies of the role of F-actin in embryogenesis. J Cell Biol 100:1173–1184

    Article  PubMed  CAS  Google Scholar 

  • Brawley SH, Quatrano RS, Wetherbee R (1977) Fine-structural studies of the gametes and embryo of Fucus vesiculosus L. (Phaeophyta). J Cell Sci 24:275–294

    PubMed  CAS  Google Scholar 

  • Bringmann H, Hyman AA (2005) A cytokinesis furrow is positioned by two consecutive signals. Nature 436:731–734

    Article  PubMed  CAS  Google Scholar 

  • Byers B, Abramson DH (1968) Cytokinesis in HeLa: post-telophase delay and microtubule-associated motility. Protoplasma 66:413–435

    Article  PubMed  CAS  Google Scholar 

  • Dreier L, Rapoport TA (2000) In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction. J Cell Biol 148:883–898

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Du Y, Ferro-Novick S, Novick P (2004) Dynamics and inheritance of the endoplasmic reticulum. J Cell Sci 117:2871–2878

    Article  PubMed  CAS  Google Scholar 

  • Elad N, Abramovitch S, Sabanay H, Medalia O (2011) Microtubule organization in the final stages of cytokinesis as revealed by cryo-electron tomography. J Cell Sci 124:207–215

    Article  PubMed  CAS  Google Scholar 

  • English AR, Zurek N, Voeltz GK (2009) Peripheral ER structure and function. Curr Opin Cell Biol 21:596–602

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Glotzer M (2009) Cytokinesis: GAP Gap. Curr Biol 19:162–165

    Article  Google Scholar 

  • Hable WE, Miller NR, Kropf DL (2003) Polarity establishment requires dynamic actin in fucoid zygotes. Protoplasma 221:193–204

    PubMed  CAS  Google Scholar 

  • Hepler PK (1982) Endoplasmic reticulum in formation of the cell plate and plasmodesmata. Protoplasma 111:121–123

    Article  Google Scholar 

  • Karyophyllis D, Katsaros C, Dimitriadis I, Galatis B (2000) F-actin organization during the cell cycle of Sphacelaria rigidula (Phaeophyceae). Eur J Phycol 35:25–33

    Article  Google Scholar 

  • Katsaros C, Galatis B (1992) Immunofluorescence and electron microscopic studies of microtubule organization during the cell cycle of Dictyota dichotoma (Phaeophyta, Dictyotales). Protoplasma 169:75–84

    Article  Google Scholar 

  • Katsaros C, Galatis B, Mitrakos K (1983) Fine structural studies of the interphase and dividing apical cells of Sphacelaria tribuloides(Phaeophyta). J Phycol 19:16–30

    Article  Google Scholar 

  • Katsaros C, Motomura T, Nagasato C, Galatis B (2009) Diaphragm development in cytokinetic vegetative cells of brown algae. Bot Mar 52:150–161

    Article  Google Scholar 

  • Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  PubMed  CAS  Google Scholar 

  • La Claire JW II (1981) Occurrence of plasmodesmata during infurrowing in a brown alga. Biol Cell 40:139–142

    Google Scholar 

  • Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, Hwang I, Lukowitz W, Jürgens G (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Cell Biol 139:1485–1493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lipka V, Kwon C, Panstruga R (2007) SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu Rev Cell Dev Biol 23:47–174

    Article  Google Scholar 

  • Markey DR, Wilce RT (1975) The ultrastructure of reproduction in the brown alga Pylaiella littoralis I. Mitosis and cytokinesis in the plurilocular gametangia. Protoplasma 85:219–241

    Article  PubMed  CAS  Google Scholar 

  • Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120:343–352

    Article  PubMed  CAS  Google Scholar 

  • Motomura T (1994) Electron and immunofluorescence microscopy on the fertilization of Fucus distichus (Fucales, Phaeophyceae). Protoplasma 178:94–110

    Article  Google Scholar 

  • Mullins J, Biesele JJ (1977) Terminal phase of cytokinesis in D-98S cells. J Cell Biol 73:672–684

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mullins J, McIntosh JR (1982) Isolation and initial characterization of the mammalian midbody. J Cell Biol 94:654–661

    Article  PubMed  CAS  Google Scholar 

  • Nagasato C, Motomura T (2002a) Ultrastructural study on mitosis and cytokinesis in Scytosiphon lomentaria zygotes (Scytosiphonales, Phaeophyceae) by freeze-substitution. Protoplasma 219:140–149

    Article  PubMed  CAS  Google Scholar 

  • Nagasato C, Motomura T (2002b) Influence of the centrosome in cytokinesis of brown algae: polyspermic zygotes of Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). J Cell Sci 115:2541–2548

    PubMed  CAS  Google Scholar 

  • Nagasato C, Motomura T (2009) Effect of latrunculin B and brefeldin A on cytokinesis in the brown alga Scytosiphon lomentaria zygotes (Scytosiphonales, Phaeophyceae). J Phycol 45:404–412

    Article  CAS  Google Scholar 

  • Nagasato C, Motomura T, Ichimura T (1999) Influence of centriole behavior on the first spindle formation in zygotes of the brown alga Fucus distichus (Fucales, Phaeophyceae). Dev Biol 208:200–209

    Article  PubMed  CAS  Google Scholar 

  • Nagasato C, Inoue A, Mizuno M, Kanazawa K, Ojima T, Okuda K, Motomura T (2010) Membrane fusion process and assembly of cell wall during cytokinesis in the brown alga, Silvetia babingtonii (Fucales, Phaeophyceae). Planta 232:287–298

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Staehelin LA (2004) Electron tomographic analysis of post-meiotic cytokinesis during pollen development in Arabidopsis thaliana. Planta 218:501–515

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Mastronarde DN, Kang B-H, Bednarek SY, Staehelin LA (2001) Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron tomography. Plant Cell 13:2033–2051

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Piel M, Nordberg J, Euteneuer U, Bornens M (2001) Centrosome-dependent exit of cytokinesis in animal cells. Science 291:1550–1553

    Article  PubMed  CAS  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and collections of algae. Proc US Japan Conf Hakone, Jap. Soc Plant Physiol pp 63–75

  • Rappaport R (1986) Establishment of the mechanism of cytokinesis in animal cells. Int Rev Cytol 105:245–281

    Article  PubMed  CAS  Google Scholar 

  • Rawlence DJ (1973) Some aspects of the ultrastructure of Ascophyllum nodosum (L.) Le Jolis (Phaeophyceae, Fucales) including observations on cell plate formation. Phycologia 12:17–28

    Article  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Samuels AL, Giddings TH, Staehelin LA (1995) Cytokinesis in Tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130:1345–1357

    Article  PubMed  CAS  Google Scholar 

  • Sato T (1968) Lead citrate stain in electron microscopy. J Electron Microsc 17:158–159

    CAS  Google Scholar 

  • Schiel A, Park K, Morphew MK, Reid E, Hoenger A, Prekeris R (2011) Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission. J Cell Sci 124:1411–1424

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schopfer CR, Hepler PK (1991) Distribution of membranes and the cytoskeleton during cell plate formation in pollen mother cells of Tradescantia. J Cell Sci 100:717–728

    Google Scholar 

  • Seguí-Simarro JM, Austin JR II, White EA, Staehelin LA (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16:836–856

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibata Y, Hu J, Kozlov MM, Rapoport TA (2009) Mechanisms shaping the membranes of cellular organelles. Annu Rev Cell Dev Biol 25:329–354

    Article  PubMed  CAS  Google Scholar 

  • Skop AR, Liu H, Yates J, Meyer BJ, Heald R (2004) Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305:61–66

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J11:1151–1165

    Article  Google Scholar 

  • Terasaki M, Chen LB, Fujiwara K (1986) Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol 103:1557–1568

    Article  PubMed  CAS  Google Scholar 

  • Terauchi M, Nagasato C, Kajimura N, Mineyuki Y, Okuda K, Katsaros C, Motomura T (2012) Ultrastructural study of plasmodesmata in the brown alga Dictyota dichotoma (Dictyotales, Phaeophyceae). Planta 236:1013–1026

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the JSPS KAKENHI grant numbers 21770065, 22370034, and 25291087. This work was supported by the Nanotechnology Network Project of the Ministry of Education, Culture, Sports, Science and Technology, Japan, at the Research Center for Ultrahigh Voltage Electron Microscopy, Osaka University (Handai multi-functional Nano-Foundry). We thank Dr. M. Takeuchi from the University of Tokyo for the technical advice.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikako Nagasato.

Additional information

Handling Editor: Tsuneyoshi Kuroiwa

Electronic supplementary material

Below is the link to the electronic supplementary material.

A sequence of 1.54 nm-thick tomographic slices shown in Figure 2. (MP4 2862 kb)

A sequence of 2.24 nm-thick tomographic slices shown in Figure 5. (MP4 2639 kb)

Supplement Figure 1

Three-dimensional model from tomography shown in Figure 3. The dark vesicle (pale pink), flat cisterna (FC; green), light vesicle (yellow), membranous sac (MS; pink) and TN (dark pink) are depicted. Membranous network (MN) indicates TN and FCs connected with it. Scale bar, 500 nm. (JPEG 5 kb)

High Resolution Image (TIFF 3157 kb)

Supplement Figure 2

Three-dimensional model from tomography shown in Figure 5. The coated pit (CP; blue), dark vesicle (pale pink), flat cisterna (FC; green), light vesicle (yellow) and membranous sac (MS; pink) are depicted. (a) The MS in longitudinal views of the cytokinetic plane. (b) The MS in transversal views of the cytokinetic plane. Scale bars, 500 nm. (JPEG 22 kb)

High Resolution Image (TIFF 9604 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagasato, C., Kajimura, N., Terauchi, M. et al. Electron tomographic analysis of cytokinesis in the brown alga Silvetia babingtonii (Fucales, Phaeophyceae). Protoplasma 251, 1347–1357 (2014). https://doi.org/10.1007/s00709-014-0635-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0635-y

Keywords

Navigation