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Abstract This paper addresses the question to which extent the stiffness of an elastic foundation in general,
and of a discontinuity occurring in the foundation in particular, affects the stresses to which a beam resting on
such a foundation is exposed to. This is particularly relevant for tramway rails, where foundation discontinuities
may be generated in the course of maintenance works. In the presented work, the underlying mathematical
framework was derived based on the principle of virtual power, using a suitable virtual velocity field and a
foundation-related traction force vector as input quantities. The resulting mathematical expressions for the
virtual powers performed by the internal and external forces were approximated based on Finite Element
discretizations, and eventually solved correspondingly, in the format of sequential Finite Element analyses.
Numerical studies, performed on a tramway rail-shaped beam, have confirmed that foundation discontinuities
indeed induce substantial increases in the stress tensor components, when moving from regions of a high-
stiffness foundation to regions of a low-stiffness foundation; as it may occur if specific sections of the tramway
network get renewed.

1 Introduction

Tramway networks usually comprise different variants of track superstructures, depending on the particular
requirements concerning noise and vibration mitigation; see, e.g., [1] for a respective overview which is
particularly relevant for the Viennese tramway network. While those variants differ from each other in terms
of the types and thicknesses of the layers building up together the track superstructure, all of them have in
common an elastic layer on which the tramway rails rest. Together with the subjacent structure, this elastic
layer constitutes an elastic foundation supporting the tramway rail. Unarguably, the compliance of this layered
foundation influences the mechanical behavior of the rails decisively. As a matter of fact, maintenance and
repair works performed on tramway rail tracks sometimes involve the replacement of whole rail sections. Such
activities are likely to cause discontinuities in the elastic foundation, given that the involved materials degrade
and, even more, may have partly changed entirely over the past decades. Investigating the potential effects
such discontinuities may have on the elastic deformations and stresses tramway rails experience in response
to practically relevant mechanical loading was the main objective of the work presented in this paper.

Understanding and predicting the effects of elastic foundations on thereon resting structures, in terms
of displacements and stresses arising in response to mechanical loading, has been a long-pursued goal of
the theoretical and applied mechanics community. Many consider Winkler as founding father of the field;
he assumed that the deflection of an elastically founded structure is linearly related to the forces acting
upon this structure via a foundation modulus [2]. In mathematical terms, the classical Winkler foundation
reads as p = k · w, where p and w denote the pressure and the vertical displacement distributed across

P. Kuttke · C. Hellmich · S. Scheiner (B)
Institute for Mechanics of Materials and Structures, TU Wien, Vienna, Austria
E-mail: stefan.scheiner@tuwien.ac.at

http://orcid.org/0000-0003-1078-7807
http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-020-02776-7&domain=pdf


4642 P. Kuttke et al.

the foundation surface, and k denotes the material-specific foundation modulus [3]. Later, aiming for a more
realistic consideration of the interactions between mechanically loaded structures and elastic foundations, the
Winkler foundation was extended by additional terms, resulting in much-noticed works published by some
of the most famous mechanicians active in the twentieth century, including Biot [4], Filonenko-Borodič [5],
Hetényi [6], Vlasov [7], Reissner [8], or Pasternak [9]; see also the article by Kerr [3] for a comprehensive
review on the subject. More recent approaches focused on refined model assumptions and consideration of
additional characteristics and loading modes, including, e.g., improved consideration of boundary conditions
[10], viscoelastic foundations [11], dynamic effects of moving loads [12], and torsional vibration and buckling
[13–15]. Due to the ever-growing relevance of computational mechanics from the 1970s onwards, numerical
solution strategies have found their way into the field of elastic foundations [16,17], allowing for solution of the
governing mathematical framework while investigating (more) complicated structural settings. As concerns
rails, several studies have been published dealing with Vignole rails [18–25], whereas models related to
tramway operation appear to be limited to investigations concerning the ground-borne noise and vibrations
[26,27]. Nevertheless, despite the considerable degree of sophistication that has been reached by now, it seems
that the mechanism of restrained torsion, which affects tramway rails in a potentially substantial manner, has
been disregarded so far.

In this work, we took a new path towards consideration of elastically supported beams in general, and of
tramway rails in particular, tying in with the approach recently published by the present paper’s authors [28],
where virtual kinematics were introduced reflecting stretching, bending, as well as primary and secondary
warping deformations of a beam, and through rigorous application of the principle of virtual power [29]
respective equilibrium equations and natural boundary conditions could be derived, including higher-order
torsion-related force quantities. Eventually, this mathematical framework was utilized for computing displace-
ment quantities along the longitudinal axis of the beam, and corresponding stress distributions in selected cross
sections, both by means of the Finite Element method, see also [30] for further details. In order to extend this
approach, elastic foundation-related traction force vectors are introduced, leading to respective extensions in
the model-governing equations, see Sect. 2. Their numerical solution, based on sequentially performed one-
and two-dimensional Finite Element analyses, is presented in Sect. 3. Based on numerical examples, presented
in Sect. 4, the potentials and features of the new modeling approach presented in this paper are discussed in
Sect. 5, containing also concluding remarks.

2 Modeling concept

2.1 A brief introduction to the principle of virtual power

The principle of virtual power (PVP) [29,31–34] was chosen to be the fundamental theoretical vehicle of the
subsequently presented work. In general format, the PVP reads as

P int + Pext = 0, (1)

whereP int is the virtual power performed by internal forces, andPext is the virtual power performed by external
forces. Considering a three-dimensional (3D) continuum, P int and Pext are defined as follows:

P int = −
∫
V

σ (x) : d̂(x) dV, (2)

and

Pext =
∫
V
f(x) · v̂(x) dV +

∫
S
T(x,n) · v̂(x) dS. (3)

In Eqs. (2) and (3), x denotes the location vector of points throughout the continuumwith volume V and surface
S, v̂(x) denotes an arbitrary continuous virtual velocity field, d̂(x) = ∇S v̂(x) denotes the virtual Eulerian strain
rate tensor, f(x) and T(x,n) denote the volume and surface forces, and σ (x) denotes the Cauchy stress tensor.
Thereby, the PVP is only confined in terms of the assumption that v̂(x) is related to geometrically compatible
virtual displacements via v̂(x) = ˙̂u(x) = ∂û(x)/∂t, t being the time variable.
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2.2 Model representation of tramway rails

First, we stipulate that, on the one hand, the length of the beam under investigation (which is considered to
be straight and of prismatic shape) is much larger than its cross-sectional dimensions, and that on the other
hand, cross sections which are plain and oriented perpendicular to the beam axis in the (undeformed) reference
configuration, remain, also after the application of mechanical loads, plain and oriented perpendicular to the
(then deformed) beam axis—or, in other words, that the classical assumptions of a Bernoulli beam are fulfilled
[35–37]. In order to apply the PVP, as introduced in Sect. 2.1, a virtual velocity field v̂(x), which represents
this beam reasonably well under the expected loading conditions, needs to be defined. This field is defined
through components v̂x (x), v̂y(x), and v̂z(x), with respect to an orthonormal base frame spanned by vectors
ex , ey , and ez , hence x = x ex + y ey + z ez , whereby x is the coordinate in direction of the beam axis, and
coordinates y and z are measured from the geometrical center (abbreviated as GC) of the cross section; hence
v̂(x) = v̂x (x) ex + v̂y(x) ey + v̂z(x) ez . Figure 1 shows a schematic illustration of such a beam.

In line with Sapountzakis [38], who presented a displacement field representative for torsion-compliant
beams, we consider the virtual velocity field introduced in [28], namely

v̂x (x) = v̂GCx (x) − dv̂GCy (x)

dx
· y − dv̂GCz (x)

dx
· z + dω̂x (x)

dx
· ψI(y, z) + d3ω̂x (x)

dx3
· ψII(y, z), (4)

v̂y(x) = v̂GCy (x) − ω̂x (x) · (z − zCT
)
, (5)

and

v̂z(x) = v̂GCz (x) + ω̂x (x) · (y − yCT
)
, (6)

where v̂GCx (x), v̂GCy (x), and v̂GCz (x) represent the virtual velocities of the geometrical center of the cross section
(at the longitudinal coordinate x), while ω̂x (x) stands for the angular virtual velocity with respect to the twist
axis, which is the axis parallel to the beam axis passing through the center of twist (abbreviated as CT), being
offset from the geometrical center by yCT and zCT; determination of yCT and zCT has been demonstrated in
[28]. Furthermore,ψI(y, z) denotes the primarywarping function describing the contribution of non-restrained,
Saint-Venant-type torsion, whereas ψII(y, z) denotes the secondary warping function, describing the effect of

Fig. 1 External forces acting on a prismatic beam undergoing stretching, bending, shear, and torsional deformations, namely 3D
continuum-specific traction vectors acting onto the lateral surface, T(x, n = nC ) =∑i Ti (x, n = nC ) · ei , traction vectors acting
onto the cross-sectional surfaces, T(x, n = ex ) = ∑i Ti (x, n = ex ) · ei and T(x, n = −ex ) = ∑i Ti (x, n = −ex ) · ei , volume
force vectors acting throughout the entire volume, f(x) =∑i fi (x) ·ei , as well as elastic foundation-related traction force vectors
acting onto the bottom surface, TEF(x, n = nCbottom ) = T EF

z (x, n = nCbottom ) · ez . Note that the depicted beam is, for simplicity,
of rectangular cross-sectional shape (implying GC = CT), while the model is not limited to any particular kind of cross-sectional
shape
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warping torsion. The related components of the virtual Eulerian strain rate tensor follow straightforwardly
from the virtual velocity field defined by Eqs. (4)–(6), reading as follows:

d̂xx (x) = dv̂x (x)
dx

= dv̂GCx (x)

dx
− d2v̂GCy (x)

dx2
· y − d2v̂GCz (x)

dx2
· z

+d2ω̂x (x)

dx2
· ψI(y, z) + d4ω̂x (x)

dx4
· ψII(y, z), (7)

d̂xy(x) = 1

2
·
[
dv̂x (x)
dy

+ dv̂y(x)
dx

]
= 1

2
·
{
dω̂x (x)

dx
·
[
∂ψI(y, z)

∂y
− (z − zCT)

]

+ d3ω̂x (x)

dx3
· ∂ψII(y, z)

∂y

}
, (8)

and

d̂xz(x) = 1

2
·
[
dv̂x (x)
dz

+ dv̂z(x)
dx

]
= 1

2
·
{
dω̂x (x)

dx
·
[
∂ψI(y, z)

∂z
+ (y − yCT)

]

+ d3ω̂x (x)

dx3
· ∂ψII(y, z)

∂z

}
. (9)

Finally, the internal and external forces taken into account in Eqs. (2) and (3) must be defined. If the
simplifying assumptions related to a Bernoulli beam are sufficiently fulfilled, the stress tensor components
σxx (x), σxy(x), and σxz(x) are considerably larger than the remaining components, i.e. σyy(x), σzz(x), and
σyz(x), implying

σ (x) =
⎛
⎝ σxx (x) σxy(x) σxz(x)

σyx (x) = σxy(x) ≈ 0 ≈ 0
σzx (x) = σxz(x) ≈ 0 ≈ 0

⎞
⎠

= σxx (x) · ex ⊗ ex + σxy(x) ·
(
ex ⊗ ey + ey ⊗ ex

)
+ σxz(x) ·

(
ex ⊗ ez + ez ⊗ ex

)
.

(10)

In Eq. (10), symbol ⊗ denotes the dyadic product. The volume force vector and the general traction force
vector, both occurring in Eq. (3), are defined as follows:

∀ x on V : f(x) = fx (x) · ex + fy(x) · ey + fz(x) · ez, (11)

and
∀ x on S: T(x,n) = Tx (x,n) · ex + Ty(x,n) · ey + Tz(x,n) · ez, (12)

where fi (x) and Ti (x,n), i = x, y, z, denote the components of f(x) and T(x,n). Importantly, the definition
of the traction force vector includes the unit normal vector at location x on the surface. For example, n = nC
indicates the lateral surface of the beam, n = −ex its starting cross section S0 at coordinate x = x0, and
n = ex its end cross section S1 at coordinate x = x1, see Fig. 1.

Furthermore, as key novelty of this contribution, the effect of an elastic foundation is considered as well.
To that end, one additional, elastic foundation-related traction force vector is taken into account,

∀x on Sbottom: T EF
z (x) = −kEF · [uGCz (x) + φx (x) · (y − yCT)

]
, (13)

while T EF
x (x) = T EF

y (x) = 0. In Eq. (13), Sbottom denotes the bottom surface of the beam on which it rests,
kEF denotes the foundation modulus, uGCz (x) denotes the actual displacement of the geometrical center, and
φx (x) denotes the actual rotation angle with respect to the axis that is parallel to the beam axis and passes
through the center of twist. Importantly, depending on how the beam is mounted to the subgrade, an elastic
foundation may represent a tensional or tensionless interaction between the structure and the subgrade. The
latter case is standardly considered through setting the foundation modulus to zero at all locations where the
applied mechanical loading leads to a lift-off of the beam [21,39,40]. Owing to the fact that the beam studied
in this paper may undergo not only flexural but also torsional deformations, a different approach is pursued
in order to take into account a tensionless elastic foundation. Namely, only the sections of the bottom surface
of the studied beam (which is actually in contact with the subjacent elastic foundation) are considered for
calculation of T EF

z (x), on which the following condition for the overall displacement in z-direction is fulfilled:
uz(x, y) = uGCz (x)+φx (x) · (y− yCT) ≥ 0. More details on the implementation of this condition are provided
in Sect. 2.3 of this paper.
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2.3 Virtual powers performed by internal and external forces

Considering the virtual Eulerian strain rate tensor according toEqs. (7)–(9), aswell as the stress tensor according
to Eq. (10) in Eq. (2) yields

P int = −
∫ x1

x0

dv̂GCx (x)

dx
· N (x) dx −

∫ x1

x0

d2v̂GCy (x)

dx2
· Mz(x) dx

+
∫ x1

x0

d2v̂GCz (x)

dx2
· My(x) dx −

∫ x1

x0

dω̂x (x)

dx
MT(x) dx

+
∫ x1

x0

dω̂x (x)

dx
· Mψ

T (x) dx +
∫ x1

x0

d2ω̂x (x)

dx2
· Mψ

II (x) dx

−
∫ x1

x0

d3ω̂x (x)

dx3
· Mψ

III(x) dx −
∫ x1

x0

d4ω̂x (x)

dx4
· Mψ

IV(x) dx . (14)

The terms on the right-hand side of Eq. (14) include a number of stress resultants provoked by the initially
defined virtual beam kinematics, namely the axial force, N (x),

N (x) =
∫
A

σxx (x) dA, (15)

where A is the cross-sectional area; the bending moments with respect to the y-axis, My(x), and with respect
to the z-axis, Mz(x),

Mj (x) =
∫
A

σxx (x) · β j dA, (16)

with j ∈ {y, z}, as well as with β j = z if j = y and β j = −y if j = z; the classical torsional moment MT(x),

MT(x) =
∫
A

σxz(x) · (y − yCT) − σxy(x) · (z − zCT) dA; (17)

the primary warping-induced torsional moment Mψ
T (x),

Mψ
T (x) = −

∫
A

σxy(x) · ∂ψI(y, z)

∂y
+ σxz(x) · ∂ψI(y, z)

∂z
dA; (18)

the warping-related bimoment Mψ
II (x),

Mψ
II (x) = −

∫
A

σxx (x) · ψI(y, z) dA; (19)

the warping-related trimoment Mψ
III(x),

Mψ
III(x) =

∫
A

σxy(x) · ∂ψII(y, z)

∂y
+ σxz(x) · ∂ψII(y, z)

∂z
dA; (20)

and the warping-related fourth-order moment Mψ
IV(x),

Mψ
IV(x) =

∫
A

σxx (x) · ψII(y, z) dA. (21)

Considering, on the other hand, the virtual velocity field according to Eqs. (4)–(6), the volume and traction
force vectors according to Eqs. (11) and (12), and the elastic foundation-related traction force according to
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Eq. (13) in Eq. (3) yields

Pext =
∫ x1

x0
n(x) · v̂GCx (x) dx + N (x) · v̂GCx (x)

∣∣∣∣
x1

x0

+
∫ x1

x0
sy(x) · v̂GCy (x) dx + Sy(x) · v̂GCy (x)

∣∣∣∣
x1

x0

+
∫ x1

x0

[
sz(x) − k(x) · �1y(x)

(
uGCz (x) + φx (x) · �2y(x)

)]
· v̂GCz (x) dx + Sz(x) · v̂GCz (x)

∣∣∣∣
x1

x0

+
∫ x1

x0
mz(x) · dv̂

GC
y (x)

dx
dx + Mz(x) · dv̂

GC
y (x)

dx

∣∣∣∣
x1

x0

−
∫ x1

x0
my(x) · dv̂

GC
z (x)

dx
dx − My(x) · dv̂

GC
z (x)

dx

∣∣∣∣
x1

x0

+
∫ x1

x0

[
mT(x) − k(x) · �1y(x) ·

(
uGCz (x) · �2y(x) + φx (x) · �3y(x)

)]
· ω̂x (x) dx

+ MT(x) · ω̂x (x)

∣∣∣∣
x1

x0

−
∫ x1

x0
mψ

II (x) · dω̂x (x)

dx
dx − Mψ

II (x) · dω̂x (x)

dx

∣∣∣∣
x1

x0

+
∫ x1

x0
mψ

IV(x) · d
3ω̂x (x)

dx3
dx + Mψ

IV(x) · d
3ω̂x (x)

dx3

∣∣∣∣
x1

x0

, (22)

with

�1y(x) = y2(x) − y1(x), �2y(x) = �1y(x)

2
− yCT, �3y(x) = �1y(x)2

3
− yCT · �1y(x) + y2CT, (23)

and with y1(x) and y2(x) as coordinates indicating the tensionless section of the beam’s bottom surface at
longitudinal coordinate x , see Fig. 2.

Equation (22) includes a number of external forces, which are defined as distributed forces along the beam
axis, or as forces acting onto the starting and end cross section of the beam, namely the distributed axial load
per length n(x),

n(x) =
∫
A
fx (x) dA +

∫
C
Tx (x;n = nC ) ds, (24)

with cross-sectional contour C ; the axial forces N (xi ) acting onto the starting and end cross section of the
beam,

N (xi ) =
∫
A

βi · Tx (xi , y, z;n = βi · ex ) dA, (25)

with i ∈ {0, 1}, as well as with βi = −1 if i = 0 and βi = 1 if i = 1, implying, when taking into account the
traction- reaction law T(x,n) = −T(x,−n),

N (xi ) =
∫
A

σxx (xi , y, z) dA; (26)

(a) (b) (c)

Fig. 2 Possible cases for the integration boundaries relating to calculation of T EF
z (x), comprising a no lift-off, b partial lift-off,

and c complete lift-off of the bottom surface, leading to corresponding choices of y1 and y2, compare Eq. (23); the coordinates
y1 and y2, as well as Lbottom, which is the contour of the bottom surface Sbottom along the y-direction, are functions of the beam
axis x . Note that the depicted cross section represents profile Ri60R1 [41]
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the distributed transverse (shear) loads per length in y- and z-direction, sy(x) and sz(x),

s j (x) =
∫
A
f j (x) dA +

∫
C
Tj (x;n = nC ) ds, (27)

with j ∈ {y, z}; the shear loads in y- and z-direction, Sy(xi ) and Sz(xi ), acting onto the starting and end cross
section of the beam,

S j (xi ) =
∫
A

βi · Tj (xi , y, z;n = βi · ex ) dA =
∫
A

σx j (xi , y, z) dA, (28)

with i ∈ {0, 1} and j ∈ {y, z}; the ey- and ez-oriented distributed bending moments per length, my(x) and
mz(x),

m j (x) =
∫
A
fx (x) · β j dA +

∫
C
Tx (x;n = nC ) · β j ds, (29)

with j ∈ {y, z}, whereas β j = z if j = y and β j = −y if j = z; the ey- and ez-oriented bending loads acting
onto the starting and end cross section of the beam, My(xi ) and Mz(xi ),

Mj (xi ) =
∫
A

βi · Tx (xi , y, z;n = βi · ex ) · β j dA =
∫
A

σxx (xi , y, z) · β j dA, (30)

with i ∈ {0, 1} and j ∈ {y, z}; the distributed torsional moment per length mT(x),

mT(x) =
∫
A
fz(x) · (y − yCT) − fy(x) · (z − zCT) dA

+
∫
C
Tz(x;n = nC ) · (y − yCT) ds

−
∫
C
Ty(x;n = nC ) · (z − zCT) ds;

(31)

the “classical” torsional moments MT(xi ) acting onto the starting and end cross section of the beam,

MT(xi ) =
∫
A

βi · Tz(xi , y, z;n = βi · ex ) · (y − yCT) dA

−
∫
A

βi · Ty(xi , y, z;n = βi · ex ) · (z − zCT) dA

=
∫
A

σxz(xi , y, z) · (y − yCT) − σxy(xi , y, z) · (z − zCT) dA,

(32)

with i ∈ {0, 1}; the distributed warping bimoment per length mψ
II (x),

mψ
II (x) = −

∫
A
fx (x) · ψI(y, z) dA +

∫
C
Tx (x;n = nC ) · ψI(y, z) ds; (33)

the bimomental loads Mψ
II (xi ) acting onto the starting and end cross section of the beam,

Mψ
II (xi ) = −

∫
A

βi · Tx (xi , y, z;n = βi · ex ) · ψI(y, z) dA = −
∫
A

σxx (xi , y, z) · ψI(y, z) dA, (34)

with i ∈ {0, 1}; the distributed fourth-order warping moment per length, mψ
IV(x),

mψ
IV(x) =

∫
A
fx (x) · ψII(y, z) dA +

∫
C
Tx (x;n = nC ) · ψII(y, z) ds; (35)
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and fourth-order moment loads Mψ
IV(xi ) acting onto the starting and end cross section of the beam,

Mψ
IV(xi ) =

∫
A

βi · Tx (xi , y, z;n = βi · ex ) · ψII(y, z) dA =
∫
A

σxx (xi , y, z) · ψII(y, z) dA, (36)

with i ∈ {0, 1}.

2.4 Equilibrium equations and natural boundary conditions

Next, both Eqs. (14) and (22) are considered, and partial integration is applied to each integral term until the
virtual velocity components, namely v̂GCx (x), v̂GCy (x), v̂GCz (x), and ω̂x (x), do not occur anymore in differential
form within the respective integral term. Inserting then the such adapted formulations of P int and Pext into
Eq. (1) yields a set of equilibrium equations, as well as a set of natural boundary conditions. The equilibrium
equations read as

n(x) = −dN (x)

dx
, (37)

sy(x) = d2Mz(x)

dx2
+ dmz(x)

dx
, (38)

sz(x) = −d2My(x)

dx2
− dmy(x)

dx
+ k(x) · �1y(x) ·

(
uGCz (x) + φx (x) · �2y(x)

)
, (39)

and

mT(x) = −dMT(x)

dx
+ dMψ

T (x)

dx
− d2Mψ

II (x)

dx2
− d3Mψ

III(x)

dx3
+ d4Mψ

IV(x)

dx4
− dmψ

II (x)

dx
+ d3mψ

IV(x)

dx3

+ k(x) · �1y(x) ·
(
uGCz (x) · �2y(x) + φx (x) · �3y(x)

)
, (40)

whereas the natural boundary conditions read as

Sy(xi ) = −dMz(xi )

dx
− mz(xi ), (41)

Sz(xi ) = dMy(xi )

dx
+ my(xi ), (42)

mψ
II (xi ) = −Mψ

T (xi ) − dMψ
II (xi )

dx
− d2Mψ

III(xi )

dx2
+ d3Mψ

IV(xi )

dx3
+ d2mψ

IV(xi )

dx2
, (43)

and

Mψ
III(xi ) = dMψ

IV(xi )

dx
+ mψ

IV(xi ), (44)

with i ∈ {0, 1}.

2.5 Consideration of actual beam deformations and linear elastic constitutive behavior

The nonzero components of the linearized strain tensor ε(x) corresponding to the virtual Eulerian strain rate
components defined in Eqs. (7)–(9) read as

εxx (x) = duGCx (x)

dx
− d2uGCy (x)

dx2
· y − d2uGCz (x)

dx2
· z + d2φx (x)

dx2
· ψI(y, z) + d4φx (x)

dx4
· ψII(y, z), (45)

γxy(x) = 2 · εxy(x) = dφx (x)

dx
·
[
∂ψI(y, z)

∂y
− (z − zCT)

]
+ d3φx (x)

dx3
· ∂ψII(y, z)

∂y
, (46)
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and

γxz(x) = 2 · εxz(x) = dφx (x)

dx
·
[
∂ψI(y, z)

∂z
+ (y − yCT)

]
+ d3φx (x)

dx3
· ∂ψII(y, z)

∂z
, (47)

being hence defined through the components of the actual displacement vector related to the geometrical center,
uGCx (x), uGCy (x), and uGCz (x), as well as through φx (x), which is (as defined previously, in Sect. 2.2) the actual
rotation angle around the center of twist. Inserting Eqs. (45)–(47) into Hooke’s law specified for the stress state
defined in Eq. (10) yields

σxx (x) = E ·
{
duGCx (x)

dx
− d2uGCy (x)

dx2
· y − d2uGCz (x)

dx2
· z + d2φx (x)

dx2
· ψI(y, z) + d4φx (x)

dx4
· ψII(y, z)

}
,

(48)

σxy(x) = G ·
{
dφx (x)

dx
·
[
∂ψI(y, z)

∂y
− (z − zCT)

]
+ d3φx (x)

dx3
· ∂ψII(y, z)

∂y

}
+ σ bend

xy (x), (49)

and

σxz(x) = G ·
{
dφx (x)

dx
·
[
∂ψI(y, z)

∂z
+ (y − yCT)

]
+ d3φx (x)

dx3
· ∂ψII(y, z)

∂z

}
+ σ bend

xz (x), (50)

where E is the Young’s modulus of the material the beam is composed of, and G is its shear modulus.
Furthermore, σ bend

xy and σ bend
xz are the shear stresses due to bending. The latter are not directly linked to

beam axis displacements or cross-sectional rotations, but result from a boundary value problem based on the
equilibrium equations for a classical 3D continuum specified for the aforementioned shear stresses and the
bending-induced normal stresses. Details on how to compute σ bend

xy and σ bend
xz can be found in Sect. 3 of this

paper and in [28].

2.6 Introduction of cross-sectional rigidities

Insertion of the virtual velocity field given in Eqs. (4)–(6), the virtual Eulerian strain rate field given in Eqs. (7)–
(9), the stress tensor given in Eq. (10), and the constitutive relations given in Eqs. (48)–(50) into Eq. (2) allows
for formulating P int in terms of so-called cross-sectional rigidities, see [28] for all related details. Proceeding
as explained above, and considering d4ω̂x/dx4 ≈ 0, see [28], yields

P int = −
∫ x1

x0

dv̂GCx (x)

dx
· E A · du

GC
x (x)

dx
dx

−
∫ x1

x0

d2v̂GCy (x)

dx2
·
[
d2uGCy (x)

dx2
· E Ayy + d2uGCz (x)

dx2
· E Ayz

]
dx

−
∫ x1

x0

d2v̂GCz (x)

dx2
·
[
d2uGCz (x)

dx2
· E Azz + d2uGCy (x)

dx2
· E Ayz

]
dx

−
∫ x1

x0

dω̂x (x)

dx
· GITI · dφx (x)

dx
dx −

∫ x1

x0

d2ω̂x (x)

dx2
· E AψψI · d

2φx (x)

dx2
dx

−
∫ x1

x0

d3ω̂x (x)

dx3
· GAR · d

3φx (x)

dx3
dx, (51)

with axial rigidity E A, bending rigidities E Ayy, E Azz , and E Ayz , torsional rigidity GITI, axial warping
rigidity E AψψI, and transverse warping rigidity GAR. Furthermore, these rigidities contain area moments
which are yet to be defined. In particular, Ayy, Azz , and Ayz are the second-order area moments,

A jk =
∫
A
j · k dA, (52)
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with j, k ∈ {y, z} ; ITI is the second-order area moment of primary torsion,

ITI = Ayy + Azz + A · (y2CT + z2CT) +
∫
A

∂ψI(y, z)

∂z
· (y − yCT) − ∂ψI(y, z)

∂y
· (z − zCT) dA; (53)

AψψI is the second-order area moment of primary warping,

AψψI =
∫
A
[ψI(y, z)]

2 dA; (54)

and AR is the second-order area moment of secondary warping,

AR =
∫
A

[(
∂ψII(y, z)

∂y

)2
+
(

∂ψII(y, z)

∂z

)2]
dA. (55)

3 Numerical solution

Themathematical framework elaborated in Sect. 2 is solved numerically, in the form of a procedure comprising
four computation steps. This strategy has been elaborated for the first time and in minute detail in [28]. In the
following, a concise summary of the key aspects related to this numerical solution strategy is presented, with
emphasis on the novelties of this paper.

3.1 Computation of primary and secondary warping functions

For computation of the primary and secondary warping function, as well as the coordinates of the center of
twist, the shear stress components given in Eqs. (49) and (50) are split into primary shear stresses associated
with ψI (referred to as σ I

xy and σ I
xz) and secondary shear stresses associated with ψII (referred to as σ II

xy and
σ II
xz).
Then, as shown in [28], the following boundary value problem related to the primary shear stresses can be

derived:

∀ y, z on A:
∂2ψGC

I (y, z)

∂y2
+ ∂2ψGC

I (y, z)

∂z2
= 0, (56)

where ψGC
I (y, z) is the primary warping function quantified with respect to the geometrical center; note that

ψGC
I (y, z) is related to ψI(y, z) via [28]

ψGC
I (y, z) = ψI(y, z) − yCT · z + zCT · y + 1

A
·
∫

A

ψI(y, z) dA. (57)

Furthermore, requiring traction-free lateral surfaces, a boundary condition can be derived, complementing
Eq. (56), reading as

∀ y, z on C : ny ·
[

∂ψGC
I (y, z)

∂y
− z

]
+ nz ·

[
∂ψGC

I (y, z)

∂z
+ y

]
= 0. (58)

with ny and nz as the components of the normal vector of the lateral surface. The boundary value problem
defined by Eqs. (56) and (58) can be transformed into the corresponding weak form,

∫
A

∂ψGC
I (y, z)

∂y
· ∂�

∂y
+ ∂ψGC

I (y, z)

∂z
· ∂�

∂z
dA =

∮
C

� · [z · ny − y · nz
]
ds, (59)

where �(y, z) is a test function belonging to the Sobolev space [42].
Analogously, a boundary value problem related to the secondary shear stresses can be derived, defined by

∀ y, z on A:
E

G
·
∫
A

ψI(y, z) dA = −
∫
A

∂2ψII(y, z)

∂y2
+ ∂2ψII(y, z)

∂z2
dA, (60)
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and

∀ y, z on C :
∮
C

∂ψII(y, z)

∂y
· ny + ∂ψII(y, z)

∂z
· nz ds = 0. (61)

The corresponding weak form reads as

G
∫
A

∂�

∂y
· ∂ψII(y, z)

∂y
+ ∂�

∂z
· ∂ψII(y, z)

∂z
dA = E ·

∫
A

� · ψI(y, z) dA. (62)

Both Eqs. (59) and (62) are solved based on a two-dimensional (2D) Finite Element (FE) analysis [43,44],
using for that purpose isoparametric four-noded quadrilateral finite elements with bilinear shape functions
[30,45], giving, eventually, access toψI(y, z) andψII(y, z), respectively, and towarping-related cross-sectional
quantities such as the center of twist.

3.2 Computation of displacements and rotation angle along the beam axis

In order to actually compute the three displacement components, uGCx (x), uGCy (x), and uGCz (x), as well as the
beam rotation angle, φx (x), a one-dimensional (1D) FE analysis [43,44] is employed. To that end, the beam
is divided into nE 1D finite elements Em,m ∈ [1, nE]. Along each of the finite elements, the distributions
of the virtual velocities are approximated through shape functions and nodal vectors. Before presenting the
respective equations, we point out that for discretizing transversal virtual velocities (and displacements), cubic
shape functions are used, based on so-called Hermite polynomials [46,47]. However, such shape functions
are not compatible with a nonzero deviation moment Ayz . In order to nevertheless apply them, the transversal
virtual velocities (and displacements), as well as all related quantities occurring in Eq. (51) must be expressed
in a base system with the transversal base vectors coinciding with the principal axes η and ζ of the cross
section, see also A. Then, the element-specific virtual velocities read as

v̂GCx (x) = Nlin[ξ(x)] · v̂GC,m
x = Nlin[ξ(x)] ·[

v̂
GC,m
x,(1) , 0, 0, 0, 0, 0, 0, v̂

GC,m
x,(2) , 0, 0, 0, 0, 0, 0

]T
, (63)

v̂GCη (x) = Ncub
posD[ξ(x)] · v̂GC,m

η = Ncub
posD[ξ(x)] ·

[
0, v̂

GC,m
η,(1) ,

dv̂GC,m
η,(1)

dx
, 0, 0, 0, 0, 0, v̂

GC,m
η,(2) ,

dv̂GC,m
η,(2)

dx
, 0, 0, 0, 0

]T
, (64)

v̂GCζ (x) = Ncub
neg[ξ(x)] · v̂GC,m

ζ = Ncub
neg[ξ(x)] ·

[
0, 0, 0, v̂

GC,m
ζ,(1) , −dv̂GC,m

ζ,(1)

dx
, 0, 0, 0, 0, 0, v̂

GC,m
ζ,(2) , −dv̂GC,m

ζ,(2)

dx
, 0, 0

]T
, (65)

and

ω̂x (x) = Ncub
posD[ξ(x)] · ω̂

m
x = Ncub

posD[ξ(x)] ·
[
0, 0, 0, 0, 0, ω̂m

x,(1),
dω̂m

x,(1)

dx
, 0, 0, 0, 0, 0, ω̂m

x,(2),
dω̂m

x,(2)

dx

]T
, (66)

with indices (1) and (2) denoting the two nodes of finite element Em , and ξ denoting the local coordinate
(measured with respect to the center of the element), which relates to the global coordinate x via the Jacobian
determinant |J| and the element length lm ,

x = ξ · lm
2

= ξ · |J| and
d

dx
= 2

lm
· d

dξ
= 1

|J| · d

dξ
. (67)

Furthermore,Nlin,Ncub
posD, andN

cub
neg denote the vectors composed of the aforementioned linear and cubic shape

functions used for approximation of the virtual velocities within one finite element, see [28] for a detailed
description. Importantly, the actual displacement components and the actual beam rotation angle are discretized
in full analogy to Eqs. (63)–(66). Inserting Eqs. (63)–(66), the analogously defined uGCx (x), uGCη (x), uGCζ (x),
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and φx (x), as well as the shape functions according to [28] into Eq. (51), formulated in terms of principal
axes η and ζ , summarizing over all finite elements nE, and assembling all virtual and actual element-specific
quantities into corresponding global ones (e.g., the element-specific virtual velocity vector v̂GC,m

x is assembled
into one single virtual velocity vector v̂GCx ) yields the following FE approximation of P int:

P int ≈ − [v̂GCx ]T ·
( nE

A
m=1

Km
EA

)
· uGCx −

[
v̂GCη

]T ·
( nE

A
m=1

Km
EAηη

)
· uGCη

− [v̂GCζ

]T ·
( nE

A
m=1

Km
EAζ ζ

)
· uGCζ

− [ω̂x
]T ·
( nE

A
m=1

Km
GITI + Km

EAψψI
+ Km

GAR

)
· φx ,

(68)

with the (matrix) assembly operatorA. Furthermore, Km
EA,Km

EAηη
,Km

EAζ ζ
,Km

GITI
,Km

EAψψI
and Km

GAR
denote

the element-specific stiffness matrices, see [28] for details.
Similarly, the virtual power performed by the external forces, see Eq. (22), can be expressed in terms of a

corresponding FE approximation, reading as

Pext ≈ [
v̂GCx
]T ·

nE

A
m=1

Fm
x +

[
v̂GCη

]T ·
nE

A
m=1

Fm
η + [v̂GCζ

]T ·
nE

A
m=1

Fm
ζ + [ω̂x

]T ·
nE

A
m=1

Mm
x

−
[
v̂GCη

]T ·
( nE

A
m=1

Km
EF,1

)
· uGCη −

[
v̂GCη

]T ·
( nE

A
m=1

Km
EF,2

)
· uGCζ

−
[
v̂GCη

]T ·
( nE

A
m=1

Km
EF,3

)
· φx − [v̂GCζ

]T ·
( nE

A
m=1

Km
EF,4

)
· uGCη

− [v̂GCζ

]T ·
( nE

A
m=1

Km
EF,5

)
· uGCζ − [v̂GCζ

]T ·
( nE

A
m=1

Km
EF,6

)
· φx

− [ω̂x
]T ·
( nE

A
m=1

Km
EF,7

)
· uGCη − [ω̂x

]T ·
( nE

A
m=1

Km
EF,8

)
· uGCζ

− [ω̂x
]T ·
( nE

A
m=1

Km
EF,9

)
· φx . (69)

In Eq. (69), the elastic foundation-related element matrices read as

KEF,1 = kEF ·
∫ lm/2

−lm/2

[
Ncub
posD(x)

]T ·
[
Ncub
posD(x)

]
· �1η(x) · tan α · sin α dx, (70)

KEF,2 = kEF ·
∫ lm/2

−lm/2

[
Ncub
posD(x)

]T ·
[
Ncub
negD(x)

]
· �1η(x) · sin α dx, (71)

KEF,3 = kEF ·
∫ lm/2

−lm/2

[
Ncub
posD(x)

]T ·
[
Ncub
posD(x)

]
· �1η(x) · �2η(x) · tan α · secα dx, (72)

KEF,4 = kEF ·
∫ lm/2

−lm/2

[
Ncub
negD(x)

]T ·
[
Ncub
posD(x)

]
· �1η(x) · sin α dx, (73)

KEF,5 = kEF ·
∫ lm/2

−lm/2

[
Ncub
negD(x)

]T ·
[
Ncub
negD(x)

]
· �1η(x) · cosα dx, (74)

KEF,6 = kEF ·
∫ lm/2

−lm/2

[
Ncub
negD(x)

]T ·
[
Ncub
posD(x)

]
· �1η(x) · �2η(x) · secα dx, (75)

KEF,7 = kEF ·
∫ lm/2

−lm/2

[
Ncub
posD(x)

]T ·
[
Ncub
posD(x)

]
· �1η(x) · �2η(x) · secα · tan α dx, (76)

KEF,8 = kEF ·
∫ lm/2

−lm/2

[
Ncub
posD(x)

]T ·
[
Ncub
negD(x)

]
· �1η(x) · �2η(x) · secα dx, (77)
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and

KEF,9 = kEF ·
∫ lm/2

−lm/2

[
Ncub
posD(x)

]T ·
[
Ncub
posD(x)

]
· �1η(x) · �3η(x) · secα3 dx, (78)

with

�1η(x) = η2(x) − η1(x), �2η(x) = �1η(x)

2
− ηCT, �3η(x) = �1η(x)2

3
− ηCT · �1η(x) + η2CT, (79)

and with η1(x) and η2(x) as the principal axes-related counterparts of y1(x) and y2(x), as introduced in
Sect. 2.3 and Fig. 2. Furthermore, the element-specific load vectors occurring in Eq. (69) are defined ass

Fmx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1/2∫

−l1/2

[
Nlin(x)

]T · n(x) dx − [N (x0), 0]
T if m = 1,

lm/2∫

−lm/2

[
Nlin(x)

]T · n(x) dx if 2 ≤ m < nE,

lnE/2∫

−lnE/2

[
Nlin(x)

]T · n(x) dx + [0, N (x1)]
T if m = nE,

(80)

Fmη =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1/2∫

−l1/2

[
Ncubic
posD(x)

]T · sη(x) +
[
d

dx
Ncubic
posD(x)

]T
· mζ (x) dx − [Sη(x0), Mζ (x0), 0, 0

]T if m = 1,

lm/2∫

−lm/2

[
Ncubic
posD(x)

]T · sη(x) +
[
d

dx
Ncubic
posD(x)

]T
· mζ (x) dx if 2 ≤ m < nE,

lnE/2∫

−lnE/2

[
Ncubic
posD(x)

]T · sη(x) +
[
d

dx
Ncubic
posD(x)

]T
· mζ (x) dx + [0, 0, Sη(x1), Mζ (x1)

]T if m = nE,

(81)

Fmζ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1/2∫

−l1/2

[
Ncubic
neg (x)

]T · sζ (x) −
[
d

dx
Ncubic
neg (x)

]T
· mη(x) dx − [Sζ (x0), Mη(x0), 0, 0

]T if m = 1,

lm/2∫

−lm/2

[
Ncubic
neg (x)

]T · sζ (x) −
[
d

dx
Ncubic
neg (x)

]T
· mη(x) dx if 2 ≤ m < nE,

lnE/2∫

−lnE/2

[
Ncubic
neg (x)

]T · sζ (x) −
[
d

dx
Ncubic
neg (x)

]T
· mη(x) dx + [0, 0, Sζ (x1), Mη(x1)

]T if m = nE,

(82)
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Mm
x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1/2∫

−l1/2

[
Ncubic
posD(x)

]T · mT(x) −
[
d

dx
Ncubic
posD(x)

]T
· mψ

II (x) +
[

d3

dx3
Ncubic
posD(x)

]T
mψ
IV(x) · · ·

· · · −
[
MT(x0), −Mψ

II (x0), 0, 0
]T

if m = 1,

lm/2∫

−lm/2

[
Ncubic
posD(x)

]T · mT(x) −
[
d

dx
Ncubic
posD(x)

]T
· mψ

II (x) +
[

d3

dx3
Ncubic
posD(x)

]T
mψ
IV(x) if 2 ≤ m < nE,

lnE/2∫

−lnE/2

[
Ncubic
posD(x)

]T · mT(x) −
[
d

dx
Ncubic
posD(x)

]T
· mψ

II (x) +
[

d3

dx3
Ncubic
posD(x)

]T
mψ
IV(x) · · ·

· · · +
[
0, 0, MT(x1), −Mψ

II (x1)
]T

if m = nE.

(83)

Inserting Eqs. (68) and (69) into Eq. (1) yields

[
v̂GCx
]T ·
( nE

A
m=1

Km
EA

)
· uGCx +

[
v̂GCη

]T ·
( nE

A
m=1

Km
EAηη

)
· uGCη + [v̂GCζ

]T ·
( nE

A
m=1

Km
EAζ ζ

)
· uGCζ

+ [ω̂x
]T ·
( nE

A
m=1

Km
GITI + Km

EAψψI
+ Km

GAR

)
· φx +

[
v̂GCη

]T ·
( nE

A
m=1

Km
EF,1

)
· uGCη

+
[
v̂GCη

]T ·
( nE

A
m=1

Km
EF,2

)
· uGCζ +

[
v̂GCη

]T ·
( nE

A
m=1

Km
EF,3

)
· φx

+ [v̂GCζ

]T ·
( nE

A
m=1

Km
EF,4

)
· uGCη + [v̂GCζ

]T ·
( nE

A
m=1

Km
EF,5

)
· uGCζ

+ [v̂GCζ

]T ·
( nE

A
m=1

Km
EF,6

)
· φx + [ω̂x

]T ·
( nE

A
m=1

Km
EF,7

)
· uGCη + [ω̂x

]T ·
( nE

A
m=1

Km
EF,8

)
· uGCζ

+ [ω̂x
]T ·
( nE

A
m=1

Km
EF,9

)
· φx

= [v̂GCx ]T ·
nE

A
m=1

Fm
x +

[
v̂GCη

]T ·
nE

A
m=1

Fm
η + [v̂GCζ

]T ·
nE

A
m=1

Fm
ζ + [ω̂x

]T ·
nE

A
m=1

Mm
x . (84)

Equation (84) can be solved for the sought-after actual displacement quantities. For realizing a tensionless
elastic foundation, the following iterative approach was implemented:

Step I: Assume, as initial guess, that the whole bottom surface of the beam undergoes a deformation in z-
direction being larger than zero, relating to case (a) depicted in Fig. 2. Hence, ∀x : y2(x)− y1(x) =
Lbottom(x), implying correspondingvalues forη2(x) andη1(x). Consider y1(x) and y2(x) as reference
distributions yref1 (x) and yref2 (x).

Step II: Compute uGCx (x), uGCy (x), uGCz (x), and φx (x), and the respective derivatives, considering for that
purpose Eq. (84), as well as yref1 (x) and yref2 (x).

Step III: Compute uz(x) and, based on the considerations shown in Fig. 2, deduce ynew1 (x) and ynew2 (x).
Step IV: Check if the conditions ∀x : ynew1 (x) = yref1 (x) ∧ ynew2 (x) = yref2 (x) are fulfilled. If they are, the

iterative calculation of all DOFs is completed. If they are not, set yref1 (x) to ynew1 (x) and set yref2 (x)
to ynew2 (x), and go back to step II.

3.3 Computation of forces along the beam axis

The computed displacement field and the rotation angle along the beam axis serve as basis for computing the
corresponding force quantities. For example, inserting uGCx , uGCy , uGCz , and φx (x) into Eq. (48), and the result
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into Eq. (15) gives access to the normal force N (x). In similar fashion, the bendingmomentsMy(x) andMz(x),

the torsional moment MT(x), the primary warping-induced torsional moment Mψ
T (x), the warping-related

bimoment Mψ
II (x), the warping-related trimoment Mψ

III(x), and the warping-related fourth-order moment Mψ
IV

are computed, see [28] for details.

3.4 Computation of cross-sectional stress distributions

Inserting the forces obtained as described above into Eq. (48) allows to define the bending-related share of
σxx (x), termed σ bend

xx (x), reading as

σ bend
xx (x) = Ayz · z − Azz · y

Ayy · Azz − A2
yz

· Mz(x) + Ayy · z − Ayz · y
Ayy · Azz − A2

yz
· My(x). (85)

Additionally, we adopted the ansatz for σxy(x)bend and σxz(x)bend proposed by Kourtis et al. [48],

σ bend
xy (x) = G ·

[
∂ψbend(x)

∂y
− 2 · ν

E
· az(x) · y · z

]
, (86)

and

σ bend
xz (x) = G ·

[
∂ψbend(x)

∂z
− 2 · ν

E
· ay(x) · y · z

]
, (87)

where ν is the Poisson’s ratio, and ay(x) and az(x) are defined as

ay(x) = −
(
dMz(x)

dx
· Azz + dMy(x)

dx
· Ayz

)(
Ayy · Azz − A2

yz

)−1
, (88)

and

az(x) =
(
dMy(x)

dx
· Ayy + dMz(x)

dx
· Ayz

)(
Ayy · Azz − A2

yz

)−1
. (89)

Equations (85)–(87), together with Eqs. (88) and (89), are inserted into a suitable equilibrium condition, and
into a boundary condition reflecting traction-free lateral surfaces, both of which can be expressed in terms of a
corresponding weak form, see [28] for details. The latter is again solved by means of a 2D FE analysis, using
four-noded quadrilateral elements and bilinear shape functions, see [30] for details.

4 Numerical studies

4.1 Model input data

We considered a double-clamped beam of length l = 50m, representing a tramway rail of cross section
Ri60R1 [41], see Fig. 2, for which steel-typical elastic constants were chosen, namely a Young’s modulus of
E = 2.1×105 N/mm2, and a Poisson’s ratio of ν = 0.28. As for the elastic foundation, several scenarios were
studied, ranging from a very stiff elastic foundation to a comparably compliant elastic foundation supporting
the whole beam, and including also a discontinuity in the elastic foundation in the middle of the beam,
representing a step-wise transition from a stiff to a compliant elastic foundation. Thereby, the upper limit of
the foundation modulus was chosen according to the respective suggestions made in [49], kmax

EF = 0.4N/mm3.
The compliant (or soft) elastic foundation, in turn, was assumed to exhibit a considerably lower foundation
modulus, namely kmin

EF = 0.1N/mm3. Furthermore, an intermediate elastic foundation was also considered,
exhibiting a foundation modulus of kmed

EF = 0.25N/mm3.
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Fig. 3 Point load Pz , implying, due to offset with respect to center of twist, torsional moment MT, and load cases I and II. For load
case II, three locations of load application are studied. Note that Pz and MT are considered in terms of corresponding distributed
transverse load sz(x) and distributed torsional moment mT(x), as described in Sect. 4.2

4.2 Loading conditions

As for the applied loading, the loads to which the studied beams were exposed were chosen such that they
reasonably represent the loads transferred from tramway wheels onto rails. In the Viennese tramway network,
the maximum occurring wheel load amounts to Pz = 59.69kN [50]. When assuming that the steels making
up the rail and the wheel feature the same elastic constants, a simplified form of the Hertzian contact theory
[51,52] gives access to the mean contact pressure acting on a small rectangular area,

qmean =
√

π · E
64 · (1 − ν2

) · Pz
rwheel · bcont . (90)

In Eq. (90), rwheel denotes the radius of the wheel in contact with the rail, and 2 · bcont denotes the width
of the rail/wheel contact area. Furthermore, typical trams used in the Viennese tramway network exhibit a
wheel radius of rwheel = 345mm [50] and the rail head radius of rail profile Ri60R1 [41,52–54] implies
bcont = 5mm. Evaluating Eq. (90) accordingly yields qmean = 622.15N/mm2, which corresponds to a contact
area length of lcont = Pz/ (qmean 2 bcont) ≈ 10mm. The respective distributed transverse load sz(x) is obtained
through multiplying the contact pressure qmean with the width of the contact area, sz(x) = 6221.5N/mm,
which was applied over the length lcont. Importantly, application of Pz , and consequently of sz(x) occurs as
shown in Fig. 3, implying an offset of 16.04mm between the line of action of those forces and the center of
twist. Hence, Pz induces a torsional moment MT, which is taken into account in terms of a distributed torsional
moment mT(x) = 99.79kNmm/mm, applied between −lcont/2 and lcont/2 (both with respect to the point of
load application).

It is emphasized that the chosen beam length of l = 50m ensured that the bearing conditions did not have
any relevant effects on the resulting forces and stress distributions.

4.3 Load case I: point load on continuous elastic foundation

One wheel load, as defined in Sect. 4.2, was applied at xload = l/2, whereby the beam was resting on a
continuous elastic foundation; with the corresponding stiffness varying as defined in Sect. 4.1, see Fig. 3.
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As expected, a more compliant elastic foundation leads to higher displacements uy(x) and uz(x), see, e.g.,
the two plots in the top row of Fig. 4. A similar behavior is also observed for the bending moment My(x) and

the classical torsional moment MT(x) minus the primary warping-related torsional moment Mψ
T (x), see the

plots in the second row of Fig. 4. The distributions along the beam of the warping-related bimoment Mψ
II (x)

and trimoment Mψ
III(x) are depicted in the third row of Fig. 4. It is particularly interesting and instructive to

compute the cross-sectional distributions of the stress tensor components σxx , σxy , and σxz . Notably, such
distributions were shown in previous works [28,30]. In this work, for the sake of conciseness, we only show
the minima and maxima along the beam axis, see the plots in the fourth, fifth, and sixth row of Fig. 4. In order
to allow for better comparability of the stress states along the beam axis, the von Mises stress was computed,
through

σvM(x) =
√[

σxx (x)
]2 + 3

{[
σxy(x)

]2 +
[
σxz(x)

]2}
. (91)

The respective mean and maximum values in the cross sections along the beam axis are shown in the last row
of Fig. 4, confirming that a lower stiffness of the elastic foundation implies higher stresses in the rail.

4.4 Load case II: point load on discontinuous elastic foundation

Again one wheel load was considered, acting onto a beam which was resting on a discontinuous elastic
foundation, with a kEF(x < l/2) = kmin

EF and kEF(x > l/2) = kmax
EF . Furthermore, three locations of load

applicationwere considered, namely xload = 0.45l, 0.5l, 0.55l, see Fig. 3. The respective resulting distributions
of displacements, bending moments, torsional moments, and stresses are shown in Fig. 5.

On the one hand, the qualitative trends described already in Sect. 4.3 are confirmed; hence, the stresses
related to load application on a softer elastic foundation are higher than the stresses related to load application
on a stiffer elastic foundation.On the other hand, it turns out that all computed quantities are clearly asymmetric,
owing to the fact that they are influenced both by regions of softer and stiffer elastic foundation. This asymmetry
turns out to be—not surprisingly—most pronounced for xload = 0.5l.

5 Summary and conclusions

In this paper, we have presented a new approach allowing for calculating how an elastic foundation affects the
force and stress distributions of beams resting thereon. The derivedmathematical framework, taking the effects
of restrained torsion rigorously into account, was numerically evaluated by means of a sequential, two-step
Finite Element scheme, solving the equations first on the cross-sectional level in order to obtain the cross-
sectional values, then in longitudinal direction of the beam, and finally again over the cross section at selected
locations along the beam axis. As compared to conventional, full three-dimensional Finite Element analyses,
this new approach is significantly more efficient, see also [28] for a quantitative comparison. Hence, the present
paper adds a potentially valuable aspect to the growing body of scientific literature on beam theory-related
Finite Element analysis; see, e.g., [55–58].

The question raised in Sect. 1 of this paper was whether discontinuities in the elastic foundation may be
potential triggers of mechanical failures occurring in tramway rails. The results presented in Sect. 4.4 have not
shown any particular stress peaks caused by such discontinuities themselves. However, an almost step-wise
increase of stresses upon moving from a rail section resting on a stiff elastic foundation to a rail section resting
on a soft elastic foundation was observed. The plots in the last row of Fig. 5 show that the maximum von
Mises stress increases (for the studied jump in the foundation modulus) by more than 50%, while the mean
von Mises stress increases by more than 30%. Hence, this study supports the hypothesis that maintenance
works to which tramway networks are exposed to over the years may indeed promote the occurrence of stress
peaks leading in further consequence to rail failures; especially when taking into account that materials used
for elastic foundations are nowadays stiffer than in former times, while wheel loads have become higher.
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Fig. 4 Results for single wheel load, acting at xload = l/2 onto beam (with l = 50m) supported elastically in continuous fashion,
considering three foundationmoduli (kmin

EF , kmed
EF , and kmax

EF ); namely distributions along the beam axis of transversal displacements

uGCy and uGCz , of bendingmomentMy , of the classical torsional minus the primary warping-related torsional moment (MT−Mψ
T ),

the warping-related bi- and trimoments Mψ
II and Mψ

III, as well as the minima and maxima of stress tensor components σxx , σxy ,
and σxz , and the maximum and mean values of the von Mises stress σvM; the abscissa of all diagrams indicates the coordinate in
beam direction, given in meters
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Fig. 5 Results for single wheel load, acting at three different locations xload onto beam (with l = 50m) supported elastically
in discontinuous fashion, with kEF(x < l/2) = kmin

EF and kEF(x > l/2) = kmax
EF ; namely distributions along the beam axis of

transversal displacements uGCy and uGCz , of bending moment My , of the classical torsional minus the primary warping-related

torsional moment (MT − Mψ
T ), the warping-related bi- and trimoments Mψ

II and Mψ
III, as well as the minima and maxima of

stress tensor components σxx , σxy , and σxz , and the maximum and mean values of the von Mises stress σvM; the abscissa of all
diagrams indicates the coordinate in beam direction, given in meters
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Appendix: Consideration of mathematical framework with respect to principal axes

Let us consider a beam which is described within a base system with base vectors ex , ey , and ez , where ex
coincides with the beam axis, while ey , and ez span the cross-sectional plane of the beam. In the general case,
the cross section exhibits second-order area moments with respect to the y-axis, Ayy , with respect to the z-axis,
Azz , as well as a deviation moment, Ayz . Clearly, upon rotation of the transverse axes, the second-order area
moments change quantitatively. It is well known that for each cross-sectional shape a specific orientation of the
transverse axes exists—in this paper, the respective base vectors are denoted by eη and eζ—which implies that
Aηζ = 0. The axes of the corresponding coordinate system, η and ζ , are usually referred to as principal axes.
The angle, defining the rotation from ey to eη (and from ey to eζ , respectively), follows from the second-order
area moments quantified in the original base system,

α = 1

2
· arctan

(
− 2 · Ayz

Ayy − Azz

)
. (92)

If it is required to express a position vector within the cross section which is originally defined in terms of the
coordinates y and z by coordinates η and ζ , a simple transformation rule can be employed, reading as[

y
z

]
=
[
cosα − sin α
sin α cosα

]
·
[

η
ζ

]
. (93)

The same rule applies also to the components of vectorial quantities. For example, expressing the elastic
foundation-related term in Pext,

Pext,EF =
∫ x1

x0

∫
Cbottom

{
− k · [uGCz (x) + φx (x) · (y − yCT

)] } ·
{
v̂GCz (x) + ω̂x (x) · (y − yCT

)}
dy dx, (94)

in terms of principal axes η and ζ requires substitution, in Eq. (94), of v̂GCz (x) and uGCz (x) by

v̂GCz (x) = v̂GCη (x) · sin α + v̂GCζ (x) · cosα, (95)

and
uGCz (x) = uGCη (x) · sin α + uGCζ (x) · cosα, (96)

as well as of y (and yCT, respectively) by η and ζ (and ηCT and ζCT, respectively) according to Eq. (93). Taking
additionally into account that

dy = ∂y

∂η
· dη + ∂y

∂ζ
· dζ = cosα · dη − sin α · dζ, (97)

and that
∀ y, z on Cbottom: zbottom = η · sin α + ζ · cosα ⇒ ζ = zbottom

cosα
− η · tan α, (98)

implying

dζ = d

dη
·
( zEF
cosα

− η · tan α
)
dη = − tan α · dη, (99)

http://creativecommons.org/licenses/by/4.0/
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which is used to replace in Eq. (98) dζ by a term containing dη instead, allows to eventually derive

Pext,EF = −
∫ x1

x0

{
v̂GCη (x) · tan α · k · �1η(x)

[(
uGCη (x) · sin α + uGCζ (x) · cosα

)

+ φx (x) · �2η(x) · secα

]}
dx

−
∫ x1

x0

{
v̂GCζ (x) · k · �1η(x) ·

[(
uGCη (x) · sin α + uGCζ (x) · cosα

)

+ φx (x) · �2η(x) · secα

]}
dx

−
∫ x1

x0

{
ω̂x (x) · k · (secα)2 · �1η(x) ·

[(
uGCη (x) · sin α + uGCζ (x) · cosα

)
· �2η(x)

+ φx (x) · �3η(x) · secα

]}
dx,

(100)

where �1η(x), �2η(x), and �3η(x) have been defined already in Eq. (79). Note that the integral terms occur-
ring in Eq. (100) can be found in discretized format in Eq. (69).
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