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Abstract A quasi-static model of axially moving steel strips in a continuous hot-dip galvanizing line is
presented. The model provides the bending line of the strip and takes into account the history of elasto-plastic
deformation. The numerical integration of the material model of elasto-plastic deformation is algorithmically
separated from the solution of the boundary value problem of the bending line by pre-computing sets of one-
dimensional candidate relations between the strip curvature and the bending moment. Using this model, the
influence of different roll positions in the zinc bath on the mean displacement of the strip at the gas wiping
dies and the maximum lateral curvature of the strip (crossbow) can be efficiently calculated and analyzed.

1 Introduction

In continuous hot-dip galvanizing lines, cf. Fig. 1, the strip—subject to tension and high temperatures—may
be plastically bent at the deflection rollers of the plant. These repeating bending actions cause deviations of
the strip from the ideal flat shape in form of a coil-set or a crossbow. Here, the terms coil-set and crossbow
refer to curvatures of the strip in longitudinal and lateral direction, respectively.

Just above the zinc bath, the strip passes so-called gas wiping dies which remove excess zinc and in this way
control the thickness and uniformity of the zinc coating. Because a crossbow can lead to an inhomogeneous
coating, the correction roll and the stabilization roll should effectively reduce this shape defect by means of
controlled plastic bending of the strip. Basically, the zinc bath rolls build up a three-roll tension leveler. The
positions of the bottom roll and the stabilization roll are fixed. The correction roll can be adjusted in z-direction
and therefore serves as the input to control the strip shape. After the gas wiping dies, the zinc solidifies before
the strip is deflected again at the tower roll.

First results of this paper have been presented by the authors at theMini-Symposium “AxiallyMoving Structures” at PCM-CMM-
2015 Conference in Gdansk, see [1].
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Fig. 1 Sketch of hot-dip galvanizing line

In order to optimally control the position of the correction roll and the gas wiping dies, a computationally
efficient mathematical model of the shape in terms of the transversal deflection of the strip is required. A princi-
pal challenge ofmodeling the strip in the hot-dip galvanizing line is that the history of elasto-plastic deformation
has to be considered. Effectively, a state variable that describes the elasto-plastic deformation history of each
material point has to be conceptually moved with the strip through the plant. Furthermore, material models
for plastic deformation are generally nonlinear and have to be numerically integrated along the deformation
increments. Moreover, at the correction and the stabilization roll, the degree of deformation in terms of the strip
curvature is a priori unknown. In [8], empirical relations for the strip curvatures at the correction and stabiliza-
tion roll are used that were originally found for tension levelers [9]. Hira et al. [5] reported that these empirical
relations are not accurate enough. A model of the strip in a tension leveler was proposed by Steinwender et al.
[16,17]. However, the evolution and the transport of the intrinsic residual quantities due to plastic deformation
still have to be computed along with the determination of the shape of the strip. Stadler et al. [14] presented a
model for the special case of periodic elasto-plastic bending of a strip which is transported on rollers in a strip
processing plant. Here only a uniaxial ideal-elastic ideal-plastic material is employed and the bending line is
systematically solved for the a priori unknown contact points between the strip and the rolls. Generally, the
problem can be solved by fully discretized FE models, which usually entail high computational costs [6,16].

In this paper, a first-principle, quasi-static model of the elasto-plastic bending line of the strip is presented.
Because the model will be used for feedforward control and dynamic optimization of the adjustment of the
gas wiping dies, emphasis is put on computational efficiency and low numerical complexity, thereby accept-
ing a lower global accuracy. Thus, supposing small deformations, the one-dimensional model focuses on the
transversal displacement in order to calculate the mean strip displacement at the gas wiping dies. Based on
the results in [5,8], in the framework of small strain plasticity, the history of plastic deformation up to the
stabilization roll is systematically taken into account assuming a plane state of stress. Thus, residual curvatures
of the strip after the stabilization roll such as crossbow and coil-set can be calculated. Moreover, the numerical
integration of the model of elasto-plastic deformation is algorithmically separated from the calculation of the
actual bending line. This is facilitated by the following simplifications. Assuming Euler–Bernoulli hypotheses,
the distribution of the longitudinal strain (in transport direction of the strip) over strip thickness is expressed
in terms of the strip curvature and a mean longitudinal strain. Furthermore, the longitudinal tension force is
assumed to be uniform in longitudinal direction and the mean strain is adapted in each deformation increment
in order to meet this constraint. In fact, sets of candidate relations between the strip curvature and the bending
moment are computed and stored in lookup tables (LUT) before the calculation of the bending line. From these
sets, concurrent with the numerical solution of the bending line, those relations are determined that fulfill the
balance equations of the problem. In this way, the influence of different roll settings on the strip displacement
can be efficiently calculated and analyzed.

This paper is structured as follows: In Sect. 2, the detailed configuration of the strip and the rolls in the zinc
bath is described and basic assumptions are introduced. In Sect. 3, the elasto-plastic material model based on
the Prandtl–Reuß equations is summarized and customized for the application of strip bending in the hot-dip
galvanizing line. The numerical implementation of this model, which relates the curvature and the bending
moment of the strip, is briefly discussed. The differential equation for the displacement of the strip subject to
tension and bending is derived in Sect. 4. The numerical discretization of the boundary value problem of the
strip bending is presented and an algorithm to find the unknown points of contact between the strip and the
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rolls is proposed. Results of simulation studies and a model validation based on measurements are shown in
Sect. 5. Conclusions are given in Sect. 6.

2 Problem configuration and fundamental modeling assumptions

Figure 2 shows the rolls and the considered domain of the strip. Consider that the roll ρ ∈ {BR,CR,SR,TR}
has the center position xρ and the radius rρ . In the considered domain, the roll touches the strip at the a priori
unknown points

xcρ =
{
xρ + rρ sin(αc

ρ) for ρ ∈ {BR,SR},
xρ − rρ sin(αc

ρ) for ρ ∈ {CR,TR}, (1)

where αc
ρ refers to the angular position of these contact points. The z-coordinates wc

ρ of these contact points
read as

wc
ρ =

⎧⎪⎨
⎪⎩
rρ
(
cos(αc

ρ) − 1
)

for ρ ∈ {BR,SR},
rρ
(
1 − cos(αc

ρ)
)− zCR for ρ = CR,

rρ
(
1 − cos(αc

ρ)
)

for ρ = TR,

(2)

where zCR > 0 is the horizontal center displacement of the correction roll, which serves as a control input,
see Fig. 2. Outside the considered domain, i.e., for x < xcBR and x > xcTR, the strip wraps around the bottom
roll and the tower roll, respectively. There, the strip is bent with the constant curvature κρ = r−1

ρ defined by
the radius rρ , ρ ∈ {BR,TR}, of the respective roll. Here, the thickness of the strip is small compared to the
roll diameter and thus neglected.

In Sect. 4.1, the quasi-stationary boundary value problem (BVP) for the bending line of the strip in the
domain xcBR < x < xcTR is formulated. Replacing the empirical formulations used in [5,8], this allows to
calculate the unknown peak curvatures at the correction roll and the stabilization roll based on first principles.
Together with the deformation history defined by the bends at the bottom roll and at the deflection rolls of the
upstream sections of the plant, these curvatures determine the state of elasto-plastic deformation of the strip
after the stabilization roll.

Models developed in [16,17] describe the deformation of the strip along its complete path through a ten-
sion leveler, where the strip may usually wrap around the rolls, e.g., the bridle rolls. Clearly, this involves
large deformation with considerable rotations. As pointed out in [16,17], consideration of these effects entails
significant computational effort. For the considered hot-dip galvanizing line, the deformation is modeled in
particular between the bottom and the tower roll, where under most operating conditions the strip does not
wrap around the correction roll and the stabilization roll. In this considered domain, the highest deflection
is determined by the adjustment zCR of the correction roll relative to the ideal passline of the strip. For the
considered plant (cf. Table 1), the maximum slope dw/dx of the strip can be estimated by

− zCR
xCR − xBR

≈ zCR
xSR − xCR

≈ 0.15

for the majority of practical values zCR ≤ 60mm. Based on this observation, only small deformations of the
strip and small contact angles (|αc

ρ | � 1) are assumed. Furthermore, the Euler–Bernoulli hypothesis for beam
bending is assumed. Consequently, based on the assumption of small angles, it is decisive for the accuracy of
the model that ∣∣∣∣dwdx

∣∣∣∣ < w′
max, xcBR < x < xcTR
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Strip
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Fig. 2 Roll configuration
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is met for the considered application. Generally, the parameter w′
max has to be determined by more accurate

models of higher order, which is beyond the scope of this paper.
In longitudinal direction, a tension controller sets a constant strip tension at a driven roll just before the

bottom roll and a speed controller sets the strip speed at the driven tower roll. Generally, the tension force in the
strip increases between the bottom roll and the tower roll. The tension difference between these rolls carries
the weight of the strip, drives the undriven zinc bath rolls, and performs the work of the plastic deformation. In
this paper, the strip deflection w in the domain x ≤ xgwd is of particular interest. Because of xgwd � xTR, the
gravitational force of the strip in this domain is small compared to the tension force N̂ and thus is neglected
for x ≤ xgwd. In the domain x > xgwd, the strip is almost straight. Here, the tension force has only a minor
influence on the quasi-static bending deformation of the strip. Thus, the gravitational force is also neglected
in this domain. Moreover, friction forces at the pivot-mounted zinc bath rolls are neglected. Thus, the contact
forces at the rolls have only radial components, meaning that together with the assumption of small contact
angles αc

ρ , the longitudinal component is negligibly small. In addition, also the change in tension due to plastic
work is neglected. In the considered application, strip speeds are about 2ms−1 and the total elongation of the
strip between bottom roll and tower roll is small (maximum longitudinal plastic strain is about 4×10−4 mm−1

for the load cases considered in this paper). Thus, the increase in kinetic energy of the strip is small and the
respective difference of the tensional force for accelerating the strip is neglected. Hence, the strip is assumed
to be subject to a uniform tensional force N̂ . This central assumption decouples the transversal deflection from
the momentum balance in longitudinal direction.

3 Material model of elasto-plastic strip bending

3.1 Stress–strain relations: Prandtl–Reuß equations

A common model describing the incremental elasto-plastic deformation are the Prandtl–Reuß equations, cf.
[4,10,18] for the theoretical foundations and [8,9] for their application to strip processing lines. In the follow-
ing, the Prandtl–Reuß equations are briefly repeated from the literature.

Generally, the Prandtl–Reuß equations are used in conjunction with the yield law of von Mises, which is
known to give good results for metal plasticity [4]. Utilizing Einstein summation convention, von Mises’ yield
condition reads as

si j si j − 2

3
σ 2
yld = 0, (3)

where

si j = σi j − 1

3
σkkδi j (4)

are the components of the deviatoric stress tensor, σi j the components of the stress tensor, δi j is the Kronecker
delta, and i, j, k ∈ {x, y, z}. The parameter σyld is the yield stress, a quantity referring to a uniaxial stress
state which is usually obtained experimentally. Generally, σyld may depend on additional parameters like the
temperature and some hardening mechanism. Experience from the plant operators indicates that for typical
materials under usual operating conditions no distinct hardening mechanism is observed. Moreover, specific
parameters for such mechanisms are not readily available. Hence, strain hardening is not considered and ideal-
elastic ideal-plastic material behavior is subsequently used. In the zinc bath and in upstream process steps, the
strip temperature exceeds 460 ◦C and thus the yield stress σyld is significantly lower than at room temperature.
Because the strip temperature does not vary much while the strip travels through the zinc bath, σyld is assumed
to be constant during this phase. Generally, thermal expansion is not considered.

For the hot-dip galvanizing line, the dependence of the yield stress on the deformation rate can be neglected
because the deformation rates are low. For a material point, the Prandtl–Reuß equations describe the total strain
increment dεi j and take the form [10]

dεi j = 1 + ν

E
dσi j − ν

E
dσkkδi j + 3

2

si j
σyld

dε̄ p, (5a)

where E is Young’s modulus, ν is Poisson’s ratio, and dε̄ p is the increment of the scalar-valued equivalent
plastic strain.
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(a) (b)

Fig. 3 a Infinitesimal strip element with plane state of stress and zero lateral curvature. b Relation between curvature and strain

For the elastic case, i.e., si j si j < 2/3σ 2
yld and dε̄ p = 0, (5a) exactly represents Hooke’s law. In the

elasto-plastic case, i.e., dε̄ p > 0, the total derivative of the yield condition (3),

si jdsi j = 0, (5b)

brings along an additional equation, which describes that the stresses remain on the yield surface during yield-
ing. However, if hardening mechanisms should turn out to have significant influence, (5b) can be extended
accordingly, see [18]. The set (5) consists of seven equations for the six components dσi j of the tensor of stress
increments, the six components dεi j of the tensor of strain increments, and the increment of equivalent plastic
strain dε̄ p. In the next paragraphs, assumptions are made so that (5) can be uniquely solved for given strain
increments in longitudinal direction of the strip, cf. [5,8,9].

The local coordinate system x–y–z used for the strip is shown in Fig. 3a. The longitudinal direction of
the strip movement is the direction x . Because of the bending and tension loads, stress components in the
x–y plane dominate compared to stress components in thickness direction. Hence, a plane state of stress and
the Euler–Bernoulli hypothesis are assumed, i.e., σzz = σxz = σyz = 0. Because of this assumption, (5a)
shows that also the shear strain increments dεxz and dεyz vanish. Moreover, it is assumed that the bending and
tensional deformation is constant along the width direction y. Clearly, the rolls prevent a transversal deflection
(along the direction z) and thus lateral curvature. Due to the Euler–Bernoulli hypothesis, this entails that the
strain εyy is constant with respect to the thickness direction. Furthermore, the mean lateral contraction due to
the longitudinal tension is assumed to be negligibly small. Hence, εyy = 0 (dεyy = 0) is used. Strictly, this
assumption entails nonvanishing stresses σyy in lateral direction at the strip edges, which cannot be carried by
the rolls. However, as the strip is much wider than thick, this effect is assumed to be negligible in the sense
of the principle of Saint-Venant. Moreover, vanishing (increments of) shear strains and stresses are assumed,
i. e., dεxy = 0, dσxy = 0, εxy = 0, and σxy = 0, respectively. The change in the thickness is not of interest.
Hence, dεzz is not considered in the following. Finally, the nonlinear relations between the longitudinal strain
increment dεxx and the increment of equivalent plastic strain dε̄ p as well as the stress increments dσxx and
dσyy can be found for the plastic domain in the form

dε̄ p = 2 σyld
(
ν σxx − 2 ν σyy − 2 σxx + σyy

)
(4 ν − 5)σxx 2 + (8 − 10 ν )σxxσyy + (4 ν − 5)σ 2

yy︸ ︷︷ ︸
ep(σxx ,σyy)

dεxx
(6a)

dσxx = − E
(
σxx − 2 σyy

)2
(4 ν − 5)σxx 2 + (8 − 10 ν )σxxσyy + (4 ν − 5)σ 2

yy︸ ︷︷ ︸
gp,x (σxx ,σyy)

dεxx
(6b)

dσyy = − E
(
2 σxx − σyy

) (
σxx − 2 σyy

)
(4 ν − 5)σxx 2 + (8 − 10 ν )σxxσyy + (4 ν − 5)σ 2

yy︸ ︷︷ ︸
gp,y(σxx ,σyy)

dεxx
(6c)

For the elastic domain, the inequality

σ 2
xx − σxxσyy + σ 2

yy < σ 2
yld, (7)
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cf. (3), and

dε̄ p = 0 (8a)

hold. In this case, (5) (then representing Hooke’s law) yields relations that are independent of the total stresses,

dσxx = E

1 − ν2
dεxx = ge,xdεxx , (8b)

dσyy = νE

1 − ν2
dεxx = ge,ydεxx . (8c)

Thus, at a given material point, the stresses and the state of plastic deformation only depend on the evolu-
tion of the longitudinal strain εxx . Starting from initial values σxx,0, σyy,0, and ε̄

p
0 , the absolute values can be

obtained by integration of (6) or (8), e.g., for σxx ,

σxx =
∫ εxx

εxx,0

gξ,x (σxx , σyy)dε̃xx + σxx,0, (9)

where ξ ∈ {e, p} depends on the yield condition (3).

3.2 Relation between bending moments and strip curvature

The stress resultants with respect to bending at a cross section of the strip with the height h and the width b
are the bending moments

Mx = b
∫ h/2

−h/2
zσxxdz, (10a)

My = b
∫ h/2

−h/2
−zσyydz. (10b)

Assuming small deformations and the Euler–Bernoulli hypothesis, the longitudinal strain εxx in (6)–(9) can
be expressed in terms of the mean longitudinal strain ε̂xx and the strip curvature κx , i. e.,

εxx (ε̂xx , κx , z) = ε̂xx − zκx , (11)

see Fig. 3b. The respective increment dεxx follows as

dεxx (ε̂xx , κx , z) = dε̂xx − zdκx . (12)

By inserting (9) into (10a), the bending moment Mx can be calculated for a given evolution of the strip
curvature κx,0 → κx ,

Mx = b
∫ h/2

−h/2
z

(∫ εxx (ε̂xx ,κx ,z)

εxx (ε̂xx,0,κx,0,z)
gξ,x (σxx , σyy)dε̃xx

)
dz + b

∫ h/2

−h/2
zσxx,0dz︸ ︷︷ ︸

=Mx,0

, (13)

where ε̂xx,0, κx,0, and Mx,0 are the initial values of the mean longitudinal strain, the strip curvature, and the
bending moment, respectively, at the beginning of the considered deformation.

The strip is subject to a tensional force N̂ , which is presumed to be uniform along the strip. Because the
plastic bending of the cross section under tensional load leads to a permanent elongation of the strip, i.e., ε̂xx
increases, ε̂xx in (11) is adjusted such that

N̂ = b
∫ h/2

−h/2

(∫ εxx (ε̂xx ,κx ,z)

εxx (ε̂xx,0,κx,0,z)
gξ,x (σxx , σyy)dε̃xx

)
dz

︸ ︷︷ ︸
!=0

+ b
∫ h/2

−h/2
σxx,0dz︸ ︷︷ ︸

=N̂

(14)
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holds in each cross section of the strip, see [8]. Note that using (11) subject to (14) for the calculation of (9)
leads to stress profiles that are asymmetric with respect to the mid-plane z = 0 of the strip.

As long as the deformation increment is purely elastic, the bending deformation does not alter the mean
strain ε̂xx , i.e., dε̂xx = 0. The strain increments in (13) can then be written in terms of the strip curvature κx
only, i. e., dεxx = −zdκx . By using (8) in (9), the linear elastic bending moment thus follows from (13) as

Mx = −Kb(κx − κx,0) + Mx,0, (15)

where Kb = Ebh3/12(1 − ν2) is the bending stiffness. For both the purely elastic and the elasto-plastic
case, (13) constitutes a unique function Mx (κx ), as long as the deformation in terms of κx is monotonically
increasing or decreasing.

3.3 Numerical implementation

For the computation of local stresses according to (9) and the stress resultants (10), the cross section is dis-
cretized along the direction zwith the constant grid size
z.Moreover, each interval of amonotonic deformation
evolution κx,0 → κx is equally discretized with the step size
κx . At each spatial grid point zi , the actual, finite
strain increment follows from (12). Here, dε̂xx is iteratively adjusted such that (14) holds for each step of κx .

If the deformation is elastic, (9) can be analytically solved. If at a spatial grid point zi the current strain
increment 
εxx would cause the stresses to exceed the yield surface, i. e., σ 2

xx − σxxσyy + σ 2
yy > σ 2

yld,

the strain increment is divided into an elastic increment 
εexx and an elasto-plastic increment 
ε
p
xx , i. e.,


εxx = 
εexx + 
ε
p
xx . The magnitude 
εexx of the entirely elastic deformation step can be exactly calculated

by inserting (9) with the expressions from (8) into the yield condition, cf. Eq. (7),

σ 2
yld =

(
−
εexx E

ν2 − 1
+ σxx,0

)2

−
(

−
εexx E

ν2 − 1
+ σxx,0

)(
−ν 
εexx E

ν2 − 1
+ σyy,0

)
+
(

−ν 
εexx E

ν2 − 1
+ σyy,0

)2

.

(16)
From the two roots 
εexx,1 and 
εexx,2 of (16),


εexx,1,2 = 1

2

ν2 − 1

E(ν2 − ν + 1)

(
(2 − ν)σxx,0 + (2ν − 1)σyy,0

±
(
4(ν2 − ν + 1)σ 2

yld − 3ν2σ 2
xx,0 + 6νσxx,0σyy,0 − 3σ 2

yy,0

) 1
2
)

, (17)

the one is chosen whose sign corresponds to the current loading direction. In the elasto-plastic domain, (6) is
integrated by means of the forward Euler method. If for the given strain increment (6a) would yield dε̄ p < 0,
the material point is elastically unloaded according to (8), starting from a stress state on the yield surface.

The numerical computation of the stresses can be considerably accelerated if the mean tensile stress due to
the tensional force N̂ is significantly smaller than σyld. In this case, themean strain ε̂xx in (11) and the constraint
(14) can be neglected, i.e., pure bending is assumed. Hence, the stress increments at each spatial grid point zi
can be independently integrated, and due to symmetry, only one half of the strip thickness needs to be computed.
A uniform discretization of the given deformation evolution κx,0 → κx is not required. For each grid point, the
complete step of elastic deformation can be determined by (17) and integrated in one step. For the elasto-plastic
domain, the relations (6) are integrated by means of Runge–Kutta schemes with variable step length.

Finally, the stress resultants (10) are numerically integrated utilizing the trapezoidal rule at each point
of the curvature grid. In Sect. 4.2, it will be motivated that in the considered application, the evolution of the
deformation κx,0 → κx is monotonic between two points of contact of the strip and the rolls. This monotonicity
facilitates the use of unique one-dimensional lookup tables of the form Mx (κx ) and My(κx ). These lookup
tables depend on the initial values of ε̂xx,0 and κx,0, and the initial profiles of σxx,0(z), σyy,0(z), and ε̄

p
0 (z).



2462 M. Baumgart et al.

4 Quasi-static model of a strip under tension

4.1 Boundary value problem

The balance of forces and moments at an infinitesimal strip element, cf. Fig. 4, for dx → 0 reads as [2,3]

Q′
x (x) + q(x) = 0, (18a)

M ′
x (x) − Qx (x) + N̂w′(x) = 0, (18b)

where the spatial derivative is denoted as ( · )′ = d( · )/dx . Due to the assumptions of small deformations, the
forces in Fig. 4 are given with respect to the undeformed element. Distributed transversal loads, e. g., those
caused by cooling air jets [13], are summarized in the load term q(x). Differentiating (18b)with respect to x and
inserting (18a) yields the differential equation for the quasi-static displacement w(x) in z-direction [3,12,15],

M ′′
x (x) + N̂w′′(x) + q(x) = 0, x ∈ (xcBR, xcTR)\{xcCR, xcSR}. (19)

Due to the elasto-plastic deformation, the bending moment Mx (x) nonlinearly depends on the strip curvature
κ(x) ≈ w′′(x), cf. Sect. 3.

The BVP (19) is complemented by the following boundary and interface conditions at the contact points
xcρ with ρ ∈ {BR,CR,SR,TR}: At all contact points xcρ , the deflection is prescribed by the roll surface as
formulated in (2). Clearly, the strip touches the rolls tangentially. Hence, for small angles, the unknown contact
angles αc

ρ in (1) and (2) have to satisfy w′(xcρ) = −αc
ρ . At x

c
BR, the curvature is given by the roll curvature,

w′′(xcBR) = −r−1
BR. The bending moment Mx,BR follows from the deformation history defined by the bends at

upstream deflection rolls including the bottom roll. Hence, for the bottom roll

w(xcBR) = wc
BR, (20a)

w′(xcBR) = −αc
BR, (20b)

Mx (x
c
BR) = Mx,BR ↔ w′′(xcBR) = −r−1

BR (20c)

hold. At the intermediate rolls, i. e., x = xcρ , ρ ∈ {CR,SR}, the slope and the bending moment (and with it
the curvature) have to be continuous:

w(xc−ρ ) = w(xc+ρ ) = wc
ρ, (21a)

w′(xc−ρ ) = w′(xc+ρ ) = −αc
ρ, (21b)

Mx (x
c−
ρ ) = Mx (x

c+
ρ ) ↔ w′′(xc−ρ ) = w′′(xc+ρ ). (21c)

Here, xc+ρ and xc−ρ indicate the right- and the left-hand side limit at the respective position. The boundary
conditions at the tower roll are expected to have only minor influence on the strip displacement near the zinc
bath rolls because the tower roll is far away from the stabilization roll. In fact, xTR−xSR > 50m holds. Hence,

xcTR = xTR,

w(xcTR) = 0, (22a)

w′(xcTR) = 0 (22b)

dx

Strip element

x xy
z Mx (x)

N̂
Qx (x)

Mx (x + dx)

N̂

Qx (x + dx)

w dx

q(x)

Fig. 4 Infinitesimal strip element with forces and moments
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can be used. With (20), (21) for ρ ∈ {CR,SR} and (22), 15 equations are defined for the determination of the
12 integration constants of the fourth-order BVP (19) in the three domains xcBR < x < xcCR, x

c
CR < x < xcSR,

and xcSR < x < xcTR and the three unknown contact points in terms of the contact angles αc
BR, α

c
CR, and αc

SR.
Generally, the whole problem (19) with the boundary conditions (20)–(22) can be solved by means of

some discretization scheme. However, the discretization of the large domain xcSR < x < xcTR highly increases
the dimension of the problem, although only the deflection of the strip close to the stabilization roll is of
interest. Therefore, the problem is simplified by assuming elastic behavior, i. e., dε̄ p = 0, in the domain
xcSR < x < xcTR, which holds true for most relevant operating conditions. In this case, and for vanishing q(x),
the affine constitutive law (15) holds and (19) has the analytical solution

w(x) = wSR|TR(x) = C0 + C1x︸ ︷︷ ︸
String solution

+C2 exp

⎛
⎝( N̂

Kb

) 1
2

x

⎞
⎠+ C3 exp

⎛
⎝−

(
N̂

Kb

) 1
2

x

⎞
⎠

︸ ︷︷ ︸
Bending solution

(23)

between the two points of contact xcSR and xcTR, indicated by the subscript “SR|TR.” This analytical solution
consists of a linear part, the so-called string or membrane solution, and an exponential part, which describes
the bending deformation. The boundary conditions (21a) and (21c) for ρ = SR, and (22) are used to analyt-
ically determine the coefficients C0 to C3. The solution is thus parameterized by the a priori unknown value
w′′(xcSR) = κx,SR, i.e., wSR|TR = wSR|TR(x; κx,SR). The spatial derivative of this analytical expression at
x = xcSR replaces the continuity condition (21b) and the newboundary conditions at the stabilization roll read as

w(xcρ) = wc
ρ, (24a)

w′(xcSR) = w′
SR|TR(xcSR; κx,SR) = −αc

SR. (24b)

Hence, the bending line does not need to be solved numerically after the stabilization roll. The influence of this
segment on the solution before the stabilization roll is now completely contained in the boundary condition
(24b).

The assumptions that justify to model the strip as a one-dimensional beam do not strictly hold for x > xcSR,
see also Sect. 4.5. Away from the rolls, the lateral bending moment My vanishes and the strip develops a
deflection profile in lateral direction. However, comparisons with a plate model show that the solutions of
these two models (in terms of the mean transverse deflection) agree very well, in particular in the domain of
interest near the gas wiping dies. Hence, it can be concluded that the beam model is sufficiently accurate to
compute the deflection of the strip at the gas wiping dies as well as the strip curvature w′′ and the bending
moment Mx in the region x > xcSR.

4.2 Deformation history of the quasi-static strip model

In transient operation situations, each cross section has its individual state and history of deformation, which
is transported along with the strip. Considering this transport in numerical models involves significant com-
putational effort, cf. [6]. However, in the considered quasi-static case, the bending line does not vary and each
cross section undergoes the same evolution of curvature. Hence, only the deformation history of one example
cross section needs to be considered to parametrize the constitutive law Mx (κx ) used in (19).

At xcBR, the initial profiles σxx,BR(z), σyy,BR(z), and ε̄
p
BR(z) and the initial values ε̂xx,BR, κx,BR = −r−1

BR,
and Mx,BR are defined by the deformation history in upstream process steps and at the bottom roll. In general,
the direction of deformation in terms of the curvature κx between two rolls is not determined in advance
but depends on the actual boundary conditions and the transverse loads, cf., e.g., [14]. However, as it turned
out in all numerical investigations of the considered problem, under normal process conditions, vanishing
transversal forces q and excluding strain-softening materials, the direction of the deformation is monotonic
between the zinc bath rolls and changes only at the contact points xcρ . Therefore, the constitutive relation (13)
can be uniquely parameterized based on the deformation state at the closest upstream zinc bath rolls. Hence,
the bending moment Mx (x) can be formulated for the complete domain in the form

xcBR < x ≤ xcCR : Mx (x) =Mx,BR|CR(κx (x)), (25a)

xcCR < x ≤ xcSR : Mx (x) =Mx,CR|SR(κx (x); κx,CR), (25b)

xcSR < x ≤ xcTR : Mx (x) =Mx,SR|TR(κx (x); [κx,CR, κx,SR]). (25c)
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Fig. 5 Constitutive relation between the bending moment Mx and the strip curvature κx depending on the deformation history

Note that the right-hand sides of (25) depend also on N̂ , σxx,BR(z), σyy,BR(z), ε̄
p
BR(z), ε̂xx,BR, κx,BR, and

Mx,BR. Because the deformation is assumed to be purely elastic in the domain xcSR < x ≤ xcTR, Mx,SR|TR can
be analytically calculated, i.e.,

Mx,SR|TR = −Kb(κx − κx,SR) + Mx,CR|SR(κx,SR; κx,CR). (26)

The relations Mx,BR|CR(κx ) and Mx,CR|SR(κx ; κx,CR) are numerically computed as described in Sect. 3.3 for
a set of different candidate curvatures κx,CR, and the results are stored in a one- and a two-dimensional LUT,
respectively, before solving the BVP (19). In this way, the constitutive relations (25) can be reused when the
BVP is solved for different roll settings. Figure 5 shows examples of these relations as piecewise defined
functions. The actual curvatures κx,CR and κx,SR are finally obtained together with the solution of the BVP
(19) with the boundary conditions (20), (21) for ρ = CR, (24), and subject to (25).

4.3 Numerical implementation

The nonlinear BVP (19) is discretized by means of finite elements. For the finite element shown in Fig. 6, the
weak form of (19) corresponds to the virtual work δW of the forces and moments, which can be written in the
form

δW = 0 =
∫ x2

x1

(
−Mxδw

′′ + N̂w′δw′ − qδw
)
dx

−Q1δw(x1) − Q2δw(x2) + M1δw
′(x1) + M2δw

′(x2), (27)

cf. [2,11]. The deflection, the slope, and the curvature at the element nodes are chosen as the degrees of
freedom, i.e.,

u = [
w(x1), w

′(x1), w′′(x1), w(x2), w
′(x2), w′′(x2)

]T
. (28)

This choice ensures continuity of w, w′, and w′′ at the element interfaces.
For each element of length
x = x2−x1, theGalerkinweighted residualmethod is usedwith trial functions

in the form of Hermite polynomials of fifth order. This gives

w(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 10 (x−x1)3


x3
+ 15 (x−x1)4


x4
− 6 (x−x1)5


x5

(x − x1)
(
1 − 6 (x−x1)2


x2
+ 8 (x−x1)3


x3
− 3 (x−x1)4


x4

)
(x−x1)2

2

(
1 − 3 x−x1


x + 3 (x−x1)2


x2
− (x−x1)3


x3

)
10 (x−x1)3


x3
− 15 (x−x1)4


x4
+ 6 (x−x1)5


x5

− (x − x1)
(
4 (x−x1)2


x2
− 7 (x−x1)3


x3
+ 3 (x−x1)4


x4

)
(x−x1)2

2

(
x−x1

x − 2 (x−x1)2


x2
+ (x−x1)3


x3

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

u = HT(x)u, x1 < x ≤ x2, (29)
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Fig. 6 Finite element with boundary forces and moments

cf. [11]. These fifth-order polynomials allow a quadratic approximation of the curvature inside each element.
This takes into account that the curvature—due to the saturation characteristic of the elasto-plastic rela-
tion between the bending moment and the curvature—may change rapidly in regions where yielding occurs.
Therefore, these tailored fifth-order polynomials generally reduce the required number of finite elements. By
integration of (27) with w(x) from (29), the nonlinear element function is obtained as

N̂Ku − f M (u) = [
Q1, −M1, 0, Q2, −M2, 0

]T + f q(q). (30)

The matrix

K =
∫ x2

x1
H ′(x)

(
HT)′(x) dx (31)

is constant. The integrand of

f M (u) =
∫ x2

x1
Mx (H ′′(x)u)

(
HT)′′(x) dx (32)

contains the nonlinear constitutive law (25). The load f q enters the vector

f q(q) =
∫ x2

x1
q(x)HT(x) dx . (33)

The integrals in (32) and (33) are computed by means of a fifth-order Gauss–Legendre quadrature. For assem-
bling the complete set of equations in the considered domain xcBR ≤ x ≤ xcSR, the degrees of freedom at the
element interfaces are set equal. At the point of contacts, the boundary and interface conditions (20a), (20c),
(21a) for ρ = CR, (24a), and (24b) define the respective nodal degrees of freedom and the bending moments.
In Sect. 4.4, it is described how the remaining boundary and interface conditions are used to determine the
contact angles αc

ρ , ρ ∈ {BR,CR,SR}.
The result (23) indicates for purely elastic sections that bending solutions exponentially decay away from

the boundary points. Inspired by this observation, the step sizes of the FEMmesh are chosen as follows: Close
to the rolls, a finemesh is usedwhich evolves from aminimum to amaximum step size according to a geometric
series. In the region where the bending solution is expected to have decayed to a certain degree (e. g., to 1% of
the initial value), the maximum step size is uniformly used. The algebraic problem (30) is assembled for all
elements, normalized, and solved for u by means of the Newton–Raphson method. Here, a reasonable initial
guess is found from the solutionwith purely elasticmaterial behavior. Using this initial guess, the solution of the
full elasto-plastic problem is obtained within 1–15 iterations depending on howmuch of the strip is plasticized.

4.4 Contact algorithm

Generally, the unknown contact angles αc
ρ in (1) with ρ ∈ {BR,CR,SR} can be directly determined together

with the solution of the FE equations (30) taking into account also the boundary conditions (20b), (21b) for ρ =
SR and (24b). However, these conditions directly vary the domain boundaries xcρ , cf. (1). A different approach
for solving the contact problem is to introduce Lagrangian multipliers, cf., e.g., [16]. In this case, however,
the applicable branch of the constitutive law (25) could change for elements that are candidates for being in
contact with rolls because it is not clear in advance in which direction they are loaded. In order to avoid these
kinds of problems, the contact conditions are solved in an outer loop by means of the fix-point iteration scheme

(αc
ρ)i+1 = −w′ (xcρ ((αc

ρ

)
i

))
, ρ ∈ {BR,CR,SR} (34)
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with xcρ((αc
ρ)i ) according to (1). In each iteration i , the nonlinear BVP (19) is solved in an inner loop with fixed

boundaries. Usually, 2–5 iterations of (34) are required to solve the whole problem with sufficient accuracy.
Clearly, the radius of the strip curvature at the correction roll and the stabilization roll cannot exceed the

respective roll radius. Hence, if the solution of the BVP (19) in an inner loop of the contact algorithm yields
w′′(xcCR) ≥ r−1

CR, the problem is automatically reformulated and the bending line is solved only for the domain
xcCR ≤ x ≤ xcTR. Because the curvature is now known at the correction roll, boundary conditions in analogy
to (20) are defined at xcCR. The boundary conditions (24) at the stabilization roll remain the same and only the
unknown contact angles αc

CR and αc
SR have to be determined. If the strip curvature reachesw′′(xcSR) = −r−1

SR , a
further increase in zCR would not lead to a change in the crossbow deformation of the strip after the stabilization
roll. In this case, the control input zCR is saturated, which marks the limit of a meaningful operating range.
Scenarios beyond this point do not need to be covered by the numerical analysis.

4.5 Maximum crossbow after the stabilization roll

Between the stabilization roll (SR) and the tower roll (TR), the strip passes a long segment without support
(approximately 55m). In this segment, the transversal deformation of the strip in lateral direction is not gen-
erally restricted. Here, the strip would be more accurately modeled as a plate rather than a beam, cf., e .g. [7],
where the strip is modeled as a plate considering purely elastic deformation only. However, based on the state
of elasto-plastic deformation calculated with the beam model and the material model (5) for plane stress, the
tendency of the strip shape in lateral direction can be captured, cf. [5,8]. Far away from the rolls, the bending
moment My , cf. (10b), of an ideal infinitely long strip must vanish as this long strip is essentially free in lateral
direction. Because the elasto-plastic bending at upstream rolls also leads to a plastic deformation in lateral
direction, the release of My gives rise to a lateral curvature (in width direction), the so-called crossbow.

Therefore, after the stabilization roll, the strain increment dεyy does not vanish and is thus related to the
curvature κy , i. e., dεyy = −zdκy . Based on Hooke’s law [i. e., (5) with dε̄ p = 0], the relations

dσxx = −z
E

1 − ν2
(dκx + νdκy), dσyy = −z

νE

1 − ν2
(νdκx + dκy) (35)

for the stress increments are obtained. The stabilization roll enforces κy,SR = 0. By analogy to (13), inserting
the integrals of (35) for given linear elastic deformations κx,SR → κx and 0 → κy into (10) yields[

Mx
My

]
= Kb

[−1 −ν
ν 1

] [
κx − κx,SR

κy

]
+
[
Mx,SR
My,SR

]
. (36)

Due to the straightening effect of the tensional force N̂ on the large domain between stabilization roll and
tower roll (xcSR < x ≤ xcTR), it is assumed that the curvature κx is reduced to zero, κx = 0. The remaining
curvature κy,max for entirely released bending moment My = 0 follows from (36) as

κy,max = νκx,SR − My,SR

Kb
. (37)

With κy,max being constant along the strip width, the strip takes the form of a circular arc. The maximum
deflection 
wy,max of the strip (difference center-border) is thus approximated by


wy,max = −κy,maxb2

8
. (38)

5 Numerical results

5.1 Simulation study

Typical parameters of a hot-dip galvanizing line and of an example strip are listed in Table 1. For these
parameters, numerical results are presented thatwere computedwith aMATLAB® implementation of themodel
on a standard PC (Quadcore CPU Intel i7 Haswell, 3.5 GHz, 16GBRAM).With a reasonable discretization
z
of the strip thickness and 
κx of the curvature evolution, cf. Table 1, the generation of the 2D lookup table for
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Table 1 Parameters of the plant, the strip, and the numerical discretization of the constitutive law

Parameter Symbol Value

Plant
Radius bottom roll rBR 0.8m
Radius correction and stabilization roll rCR, rSR 0.125m
Distance BR–CR xCR−xBR 0.42m
Distance CR–SR xSR−xCR 0.395m
Distance SR–TR xTR−xSR 56.8m

Strip
Width b 1m
Thickness h 1mm
Young’s modulus E 160GPa
Yield stress σyld 150MPa

Constitutive law
Grid size thickness 
z 0.042mm
Grid size curvature 
κx 0.016m−1

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7 Bending lines, curvatures, and bending moments for different tensional forces and zCR = 45mm.

the constitutive law takes up to 4min. If the asymmetric case for a nonvanishing mean strain ε̂xx is considered.
However, if the mean tension is neglected, the lookup table is computed within 8 s. In the presented example,
the asymmetric case was simulated. The domain between bottom roll and stabilization roll has been discretized
with 167finite elements, cf. Sect. 4.3. The bending line including the contact points is typically computedwithin
2–8s, depending on how much of the strip is plasticized. For the considered load cases with zCR ≤ 60mm,
the absolute strip slope |w′| ≤ 0.17mm−1. The absolute values of the contact angles |αc

ρ | < 0.16 rad, which
would lead to longitudinal components of radial reaction forces at the rolls that are smaller than 2.5% of the
tensional force N̂ . These results show that the assumption of small angles is sufficiently met.

In Fig. 7, the bending lines w(x), the curvatures κx (x), and the bending moments Mx (x) are shown for
an adjustment of the correction roll zCR = 45mm, and two tensional forces N̂ = 10 kN and N̂ = 20 kN. In
both cases, the strip is elasto-plastically bent before it touches the correction and the stabilization roll (dotted
sections). The contact points are marked by crosses. In the purely elastic sections, the curvatures in Fig. 7b, e
show an exponential evolution according to the analytical solution in (23). In the elasto-plastic sections, just
before the contact points, the curvatures undergo a rapid change. In the case of N̂ = 20 kN, cf. Fig. 7e, the
extreme curvatures at the correction roll and the stabilization roll are significantly higher than for N̂ = 10 kN,
cf. Fig. 7b. The associated bending moments do not vary that much between the two cases because of the
saturation characteristic of the bending moment as a function of the curvature.
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(a)

(b)

(c)

(d)

Fig. 8 Bending moment versus curvature

(a) (b)

Fig. 9 Maximum crossbow deflection (a) and strip deflection at the gas wiping dies (b) as functions of the adjustment of the
correction roll

These relations between the curvature κx and the longitudinal bending moment Mx as well as the lateral
bending moment My are shown in Fig. 8 for both tensional forces. A comparison of Mx in Fig. 8a, c shows
that the magnitude of the curvature κx,SR at the stabilization roll is considerably higher in the second case.
This leads to the observation that, compared to the first case, the bending moment Mx,SR|TR changes its sign
for vanishing κx , cf. also Fig. 7c, f. In Fig. 8b, d, the lateral bending moment My is not given for the domain
SR–TR because in this domain the constitutive relationMy(κx ) based on the assumption κy = 0 is not intended
to model the situation where κy is generally not restricted. However, the values of the curvature and the lateral
bending moment My , see Fig. 8b, d, at the stabilization roll are of interest because they define the maximum
crossbow deflection 
wy,max of the strip, cf. (37) and (38).

The maximum deflection is shown in Fig. 9a as a function of the adjustment of the correction roll
zCR ∈ [5, 70mm]. Typically, this relation has two zero crossings, cf. [5,8]. The first occurs when only the
bending at the correction roll is plastic; the second occurs when also the bending at the correction roll is plastic.
The latter case is usually associated with higher contact forces at the rolls. From Fig. 9a, it can be inferred
that with higher tensional forces smaller adjustments of the correction roll are required to obtain a vanishing
crossbow deflection (
wy,max = 0).

For the considered strip, the deflection at the gas wiping dies (here xgwd = 1.2m, cf. Fig. 2) versus the
adjustment of the correction roll is presented in Fig. 9b. The strip is straightened more for higher tensional
forces and the deflection at the gas wiping dies is thus smaller. The slight kinks of the curves at zCR = 35mm
(N̂ = 10 kN) and zCR = 25mm (N̂ = 20 kN) mark the onset of plastic bending at the correction roll.

5.2 Validation

A measurement-based validation of the presented strip model is difficult because the strip deflection cannot
be easily measured at the position of the gas wiping dies. However, the operator-defined mean transversal
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(a) (b)

Fig. 10 Comparison of measured and calculated strip deflection at the gas wiping dies for 53 strips from a typical production
schedule

adjustment zgwd,meas of the gas wiping dies can be taken as an indicator of the strip deflection that is required
to achieve a symmetric zinc coating on both sides of the strip. For a sample of 53 strips from a typical production
schedule, this adjustmentwas comparedwith the calculated strip deflectionw(xgwd). Because the absolute value
of zgwd,meas is not exactly known, the zero-mean values zgwd,meas,zm = zgwd,meas− z̄gwd,meas andwzm(xgwd) =
w(xgwd) − w̄(xgwd) are considered, where z̄gwd,meas and w̄(xgwd) are the mean values of the respective 53
samples. Figure 10a shows that the model is in good accordance with the approximate measurement for a wide
range of deflections. The frequency distribution of the model error affirms this finding. Note that in the model
only nominal values of the material parameters E and σyld were used, the deformation history in the furnace
was neglected, and the position of the gas wiping dies might not be exactly alignedwith the passline of the strip.

6 Conclusions

A mathematical model that calculates the elasto-plastic deformation of steel strips at the rolls in the zinc bath
of a hot-dip galvanizing line is proposed. The computation of the model is efficient because the numerical
evaluation of complex elasto-plastic material models and the solution of the boundary value problem of strip
bending are separated. The model directly yields the mean strip deflection after the stabilization roll and, based
on the elasto-plastic state of deformation at the stabilization roll, the maximum crossbow deflection. These
results can be utilized in feedforward control for the position of the gas wiping dies and the correction roll in
order to achieve a homogeneous zinc coating that is equal and uniform on both sides of the strip.
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