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Abstract This paper addresses the prediction of the median peak floor total acceleration (PFA) demand in
spatial elastic structures subjected to seismic excitation. The prediction is based on various response spec-
trum methods of different degrees of sophistication. Beginning with a recently presented complete-quadratic-
combination (CQC) rule for PFA demands, several approximations and simplifications concerning the corre-
lation between modal contributions, peak factors, and cross-spectral moments are discussed, leading to the
proposed modified modal combination rules. On several earthquake-excited multi-story spatial generic frame
structures, the accuracy of the considered rules is assessed. The outcomes of response history analysis serves
as benchmark solution. The results show that the modified CQC rules are simple in practical application and
lead to reliable estimations of the median PFA demand of spatial structures with negligible loss of accuracy if
peak factors are considered.

1 Introduction

In the past, various simplifiedmethods and procedures have been proposed to predict reliably the peak response
of an earthquake-excited structure,without conducting response history analysis (RHA).RHAnot only requires
the computationally expensive direct solution of the equations of motion in a time-stepping procedure but also
sophisticated modeling of the structure, and a set of ground motion records is in general not readily available
for the site of the structure.

Several of these simplified procedures belong to the class of response spectrum methods. The idea of a
response spectrum method is to combine in a statistical fashion the peak response of the corresponding modal
coordinates. Therefore, the coupled set of equations of motion of the multi-degrees-of-freedom (MDOF)
structure is decomposed into modal single-degree-of-freedom (SDOF) oscillators. For each modal oscillator,
the peak response is predicted bymeans of a so-called response spectrum, provided in standards and regulations.
A response spectrum represents the peak response of an earthquake-excited SDOF oscillator as a function of
natural period and damping coefficient. In the subsequent step, the uni-modal peak responses are superposed
to the physical multi-modal peak response of the structure. Response spectrum methods are, however, not
straightforward because the information about the phase shift of the modal peak responses is not available.
Also, the correlation between closely spaced modes should be considered to obtain an accurate prediction of
the seismic response. Thus, most of the response spectrum methods are based on a statistical superposition of
the uni-modal contributions.
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Response spectrum methods have their origin in the 1950s when Rosenblueth [19] proposed the square-
root-of-sum-of-squares (SRSS) modal combination rule. As its name already implies, the squares of the modal
peak response are added and subsequently the square root is taken. In the following decades, more sophisticated
methods have been developed, such as the complete-quadratic-combination (CQC) rule [6,7]. CQC methods
allow to consider the correlation between modal response quantities [6] and to take truncated modes into
account [7]. Consequently, the multi-modal peak response can be estimated more reliably if modes are closely
spaced and/or if modes are in the high-frequency domain (i.e., if modal periods are larger than the lower
corner frequency of the response spectrum). As a further example, more recently the complete SRSS modal
combination rule [10] has been presented.

All of these methods have in common that they have been developed for relative response quantities,
such as structural displacements relative to the base and internal forces. However, in the last two decades the
prediction of the total floor acceleration became more and more the focus of attention [23]. The reason is
the observation that many moderate earthquake events of the past left the load-bearing structure of a building
unimpaired; however, the building content (also referred to as nonstructural component—NSC) was heavily
damaged, causing a long downtime of the building [8,23]. Consequently, in many affected buildings economic
losses from damage to NSCs exceeded by far losses from structural damage, as discussed by Filiatrault and
Sullivan [9]. This contribution [9] summarizes the current knowledge on seismic analysis of NSCs, and it
identifies major knowledge gaps needed for implementation of performance-based seismic design of these
components, representing the next frontier of earthquake engineering [9].

Assessment of vibratory NSCs is often based on the acceleration spectrum of a floor within a supporting
structure subject to a ground motion, referred to as floor response spectrum. Various research efforts have been
made to provide simplified but accurate means of estimating floor response spectra both for elastic and for
inelastic load-bearing structures, such as [1,22,29].

Since themaximum force on a rigidNSC is proportional to the peak total acceleration of its attachment point
in the building, more recently research has been devoted to the development of response spectrum methods
for the prediction of peak floor acceleration (PFA) demands. A first step toward PFA assessment by means of
response spectrummethods was delivered Taghavi andMiranda [24,25]. In this extended CQC rule, where the
original CQC method considering high-frequency modes [7] is specialized for total acceleration demands, the
so-called peak factors are explicitly neglected and simplified expressions for the correlation coefficients are
provided. Recently, Pozzi and Der Kiureghian [17] proposed a CQC rule including peak factors. However, in
their application of this rule to a simple beam structure the peak factors have been omitted. While for the CQC
rule presented in [17] the required correlation coefficients must be numerically computed, Moschen [12] and
Moschen et al. [13] derived analytical expressions for the underlying cross-spectral moments, which allow a
deeper insight into the relationship between the governing dynamic parameters. The latter CQC rule for PFA
demands has been extensively validated on various planar and spatial generic frame structures by comparing
its outcomes with results of RHA [12,13].

In the present contribution, several simplifications of these CQCmethods are introduced, and their accuracy
is evaluated. The ultimate goal is to reveal the degree of sophistication of the CQC modal combination rule
required to reliably predict the median PFA demand of earthquake-excited structures.

2 A response spectrum method for peak floor total accelerations

Point of departure is the coupled set of equations of motion of an elastic multi-degrees-of-freedom (MDOF)
frame structure subjected to uniform base excitation üg(t) [3],

Mü(rel)(t) + Cu̇(rel)(t) + Ku(rel)(t) = −Meüg(t), (1)

where M is the mass matrix, C the damping matrix, and K the stiffness matrix. The vector u(rel)(t) contains
the N relative deformations related to the N dynamic degrees of freedom with respect to the displacement
of the ground, ug(t). The spatial distribution of inertia forces due to the base excitation is governed by the
quasi-static influence vector e. Equation (1) describes the motion of a planar structure or of a spatial structure
subjected to horizontal ground motion in one principal direction. The extension to base excitation of a spatial
structure in both horizontal principal directions is straightforward, however, for the sake of clarity not further
pursued.
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The vector of total accelerations, ü(t) = ü(rel)(t) + eüg(t), is expanded into the N mode shapes φi , i =
1, . . . , N . Then, after some algebra, the solution of Eq. (1) in terms of ü(t) can be approximated by the first
few n (<N ) modal contributions as [13,16,17]

ü(t) ≈
n∑

i=1

φi�i d̈i (t) +
(
e −

n∑

i=1

φi�i

)
üg(t) = ü(n)(t) + r(n)üg(t), (2)

in which �i = (
φ

ᵀ
i Me

)
/
(
φ

ᵀ
i Mφi

)
is the generalized participation factor, and d̈i (t) = d̈(rel)

i (t)+ üg(t) denotes

the total acceleration of the i th modal coordinate. The modal coordinate d(rel)
i (t) is governed by the i th modal

oscillator equation, d̈(rel)
i (t) + 2ζiωi ḋ

(rel)
i (t) + ω2

i d
(rel)
i (t) = −üg(t), where ωi denotes the corresponding

circular natural frequency and ζi the modal damping ratio. In Eq. (2) the high-frequency modal contribution
to the acceleration (relative to the base) has been neglected, and the high-frequency modal contribution of the
ground acceleration is expressed in terms of a residual vector, r(n), in an effort to increase the accuracy if only
a few modal contributions n (<N ) are considered. Based on Eq. (2), in [23] the CQC rule for the mean PFA
demand of the kth degree of freedom, in this paper referred to as CQC-pf rule,

E
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(3)

has been derived in analogy to the original CQC rule [7] applicable to relative peak response quantities, see
also [13,17]. In this equation, φi,k is the kth component of φi , r

(n)
k the kth component of r(n), Sa,i denotes the

i th mean spectral pseudo-acceleration (i.e., the ordinate of the 5% dampedmean pseudo-acceleration spectrum
at the i th period 2π/ωi ), and mPGA represents the mean peak ground acceleration. Note that in a planar frame
structure with lumped masses the kth degree of freedom corresponds to the kth floor. This CQC rule is based
on the assumptions of the normal stationary random vibration theory. For details we refer to [7,13].

The computation of the correlation coefficient between the i th and the j th modal total acceleration, ρi, j ,
the correlation coefficient between the i th modal and the ground acceleration, ρi,g , the peak factor of the i th
modal total acceleration, pi , the peak factor of the ground acceleration, pg, and the peak factor of the response
acceleration in the kth degree of freedom, pk , is summarized in Appendix 1. As outlined in this Appendix,
these quantities are expressed in terms of spectral and cross-spectral moments of the involved random variables
[5]. The cross-spectral moment of order l between the i th and j th modal total accelerations is defined as [5]

λl,i j =
∫ ∞

0
νlGg(ν)Hi (ν)H∗

j (ν)dν for l = 0, 1, 2, . . . , (4)

where Hi (ν) is the transfer function (often referred to as frequency response function (FRF)) of the i th modal
total acceleration d̈i (t),

Hi (ν) = ω2
i + 2iζiωiν

ω2
i − ν2 + 2iζiωiν

, (5)

and the asterisk denotes the complex conjugate. Gg(ν) represents the power spectral density (PSD) that
characterizes the seismic hazard, üg(t), in the frequency domain. In the present study the Kanai–Tajimi PSD,
defined as [11,26]

G(KT)
g (ν) = G0

1 + 4ζ 2
g

(
ν/νg

)2
(
1 − (

ν/νg

)2)2 + 4ζ 2
g

(
ν/νg

)2
, (6)

is utilized as analytical mean PSDmodel of the base excitation. Therein, the normalized PSD of the underlying
white noise process,G0, the characteristic frequency of the groundmotion, νg, and damping ratio of the ground,
ζg, are calibrated to fit the seismic hazard of the considered site.
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When evaluating the cross-spectral moment between the i th total modal acceleration and the ground
acceleration, λl,ig (i.e., j → g), and the spectral moment λl,gg (i.e., i → g, j → g), the FRF of the ground,
Hg = 1 (since limωi→∞ Hi (ν) = Hg = 1), is substituted.

In contrast to the contribution of Pozzi and Der Kiureghian [17], where the cross-spectral moments have
been evaluated numerically, in [12,13] analytical expressions for the required cross-spectral moments between
modal total accelerations have been derived. These expressions are listed in Appendix 2.

3 Approximations of the response spectrum method

Response quantities due to earthquake excitation are assumed to be lognormally distributed [20,21]. This
assumption holds true for spectral pseudo-accelerations as well. Hence, it is reasonable to use a median
pseudo-acceleration response spectrum for modal combination instead of a mean response spectrum. As a
consequence, in Eq. (3) the mean PFA, mPFAk , must be substituted by the median PFA denoted as m̆PFAk .
This also implies that subsequently instead of mean peak factors and spectral mean pseudo-accelerations the
corresponding median values are used, however, without changing the designation of the variables.

In this section, several approximations of the CQC modal combination rule for predicting median PFA
demands according to (3) are proposed. The aim is to reduce the effort of analysis without significantly
decreasing the accuracy of the response prediction.

The assumption that the ratios of the peak factors are unity,

pk
pi

= pk
p j

= pk
pg

= 1, (7)

yields the approximated CQC rule with unit peak factor ratios (CQC-nopf) [17],

m̆PFAk ≈
⎡

⎣
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⎤

⎦

1
2

. (8)

Evaluation of the peak factors involves the computation of the first and the second cross-spectral moments in
order to evaluate the first-passage probability (compare with Appendix 1), an effort which is not necessary
when employing the CQC-nopf rule. Thus, application of this rule simplifies the prediction of the median PFA
demand.

In a further simplification, the modal responses are assumed to be stochastically independent, yielding an
extended SRSS rule with consideration of truncated modes,

m̆PFAk ≈
[

n∑

i=1

(
pk
pi

φi,k�i Sa,i

)2

+
(
pk
pg

m̆PGAr
(n)
k

)2
] 1

2

, (9)

m̆PFAk ≈
[
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(
φi,k�i Sa,i

)2 +
(
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(n)
k

)2
] 1

2

. (10)

Modal combination according to Eq. (9) is referred to as SRSS rule with truncated modes and peak factors
(t-SRSS-pf), and Eq. (10) as SRSS rule with truncated modes and unit peak factor ratios (t-SRSS-nopf).

When additionally the contribution of truncated modes is omitted, the above equations degenerate to

m̆PFAk ≈
[

n∑

i=1

(
pk
pi

φi,k�i Sa,i

)2
] 1

2

, (11)

m̆PFAk ≈
[

n∑

i=1

(
φi,k�i Sa,i

)2
] 1

2

. (12)

Equation (12) is identical with the common SRSS rule [19], in this paper referred to as SRSS-nopf. Including
the peak factors, Eq. (11), yields the modal combination SRSS rule with peak factors (SRSS-pf).
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4 Approximations of the underlying cross-spectral moments

In Appendix 2, the analytical expressions of the underlying cross-spectral moments derived in [12,13] are
listed. Approximation of the cross-sectional moments with respect to the exponent of the damping ratios
makes also the evaluation of the median PFA demands less expensive.

4.1 First-order approximation of cross-spectral moments

Expansion of the sums in Eq. (36) to the first degree of the exponent of the damping ratios yields for the zeroth
cross-spectral moment

λ
(1)
0,i j = G0πωiω jνg

[∑1
m=0

∑1
n=0 ζm

i ζ n
j ξ0,mn(ωi , ω j )

4ζgD4
+ 2νg

∑1
m=0

∑1
n=0 ζm

i ζ n
j ψ0,mn(ωi , ω j )

D1

]
. (13)

This expression is equivalent to a successively first-order Taylor series expansion of the numerator of λ0,i j ,
Eq. (36), at ζi = 0 and ζ j = 0 with the benefit of explicitly using the readily developed functionals
ξ0,mn(ωi , ω j ), ψ0,mn(ωi , ω j ), D1, and D4 presented in [12,13].

Analogously, the first and the second cross-spectral moments, Eqs. (38) and (37), respectively, are subjected
to a first-order expansion with the result

λ
(1)
1,i j = G0ωiω jν

2
g

[
ωi

(π

2
− ζi

)(∑1
m=0

∑1
n=0 ζm

i ζ n
j ψ1,mn(ωi , ω j )

D1

)

+ ω j

(π

2
− ζ j

) (∑1
m=0

∑1
n=0 ζ n

i ζm
j ψ1,mn(ω j , ωi )

D2

)

+ ln (ωi ) ωi

(∑1
m=0

∑1
n=0 ζm

i ζ n
j ψ̂1,mn(ωi , ω j )

D1

)

+ ln
(
ω j

)
ω j

(∑1
m=0

∑1
n=0 ζ n
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j ψ̂1,mn(ω j , ωi )

D2

)]
, (14)

λ
(1)
2,i j = G0πωiω jν

2
g

[
νg

∑1
m=0

∑1
n=0 ζm

i ζ n
j ξ2,mn(ωi , ω j )

4ζgD4
+ 2ω2

i

∑1
m=0

∑1
n=0 ζm

i ζ n
j ψ2,mn(ωi , ω j )

D1

]
,

(15)

in which the approximations
√
1 − ζ 2

i ≈ 1 and arctan (ζi ) ≈ ζi are appropriate for small damping ratios. Since
the third and the sixth terms of Eq. (37) do not significantly contribute to the first cross-spectral moment, these
terms are not considered in λ

(1)
1,i j . The functionals ψ1,mn, ψ̂1,mn and D2 are listed in [12,13].

The first-order expansion of polynomials in the numerator of λ0,ig results in

λ
(1)
0,ig = G0πωiνg

4ζg

ω3
i − ωiν

2
g + 4ω3

i ζ
2
g + ζi

(
4ω2

i νgζg + 4ν3gζg + 16ω2
i νgζ

3
g

)

K (νg, ζg, −ωi , ζi )
. (16)

The functionals K can be found in [12,13].
The correlation coefficients and peak factors based on these first-order approximations of the cross-spectral

moments are referred to as ρ
(1)
i, j , ρ

(1)
i,g , p(1)

k and p(1)
i . Substituting the latter quantities into Eq. (3) instead of the

exact analytical counterparts leads to the first-order approximation CQC rule (foa-CQC-pf).
The first-order approximation CQC rule with unit peak factor ratios (foa-CQC-nopf) denotes response

spectrum analysis with unity peak factors according to Eq. (8) based on first-order approximations ρ
(1)
i, j and

ρ
(1)
i,g .
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4.2 Hybrid approximation of cross-spectral moments

A preliminary study has shown that even a zeroth-order expansion of the first term in the brackets of Eq. (36)
can be used to estimate the correlation coefficients. Accordingly, λ0,i j , respectively, λ

(1)
0,i j degenerates to

λ
(1′)
0,i j = G0πωiω jνg

[
ξ0(ωi , ω j )

4ζgD4
+ 2νg

(
ζiψ0,10(ωi , ω j ) + ζ jψ0,01(ωi , ω j )

)

D1

]
. (17)

λ
(1′)
0,i j is a hybrid type (or a blend) of a first-order and a zeroth-order approximation of λ0,i j . The functionals

ξ0(ωi , ω j ) ≡ ξ0,00(ωi , ω j ), ψ0,10(ωi , ω j ) and ψ0,01(ωi , ω j ) present in this relation read

ξ0
(
ωi , ω j

) = ωiω j

(
ω2
i

(
ω2

j

(
4ζ 2

g + 1
)

− ν2g

)
− ω2

jν
2
g + ν4g

(
1 − 8ζ 2

g

))
, (18)

ψ0,10
(
ωi , ω j

) = ω j

(
2ω6

i ν
2
g + ω2

jν
6
g + 4ω8

i ζ
2
g + 8ω2

i ω
2
jν

4
gζ

2
g − ω4

i ν
2
g

(
2ν2g + ω2

j

(
1 + 8ζ 2

g − 16ζ 4
g

)))
,

(19)

ψ0,01
(
ωi , ω j

) = ω3
i ν

6
g + 4ω9

i ζ
2
g + ω7

i ν
2
g

(
1 − 4ζ 2

g

)2 + 2ω5
i ν

4
g

(
−1 + 4ζ 2

g

)
. (20)

In the same manner, the first term in the brackets of Eq. (38) is subject of a zeroth-order expansion yielding
the following hybrid first-order and zeroth-order approximation of λ2,i j ,

λ
(1′)
2,i j = G0πωiω jν

2
g

[
νgξ2(ωi , ω j )

4ζgD4
+ 2ω2

i

(
ζiψ2,10(ωi , ω j ) + ζ jψ2,01(ωi , ω j )

)

D1

]
(21)

with the functionals

ξ2
(
ωi , ω j

) = ωiω j

(
ν2g

(
ν2g − ω2

j

(
1 + 4ζ 2

g

))
+ ω2

i

(
−ν2g

(
1 + 4ζ 2

g

)
+ ω2

j

(
1 + 4ζ 2

g − 16ζ 4
g

)))
, (22)

ψ2,10(ωi , ω j ) = ψ1,10(ωi , ω j ) − ψ0,10(ωi , ω j ) ψ2,01(ωi , ω j ) = ψ1,01(ωi , ω j ) − ψ0,01(ωi , ω j ). (23)

Correspondingly, the zeroth-order approximation of λ0,ig read

λ
(1′)
0,ig = G0πωiνg

4ζg

ω3
i − ωiν

2
g + 4ω3

i ζ
2
g

K (νg, ζg, −ωi , ζi )
. (24)

These hybrid approximations of the cross-spectral moments are used to derive estimates of the correlation
coefficients and peak factors. For the so-called hybrid approximation CQC rule (ha-CQC-pf) these quantities

(i.e., ρ(1′)
i, j , ρ

(1′)
i,g , p(

1′)
k , p(

1′)
i ) are utilized when evaluating Eq. (3). The hybrid approximation CQC rule with

unit peak factor ratios (ha-CQC-nopf) is based on Eq. (8) using ρ
(1′)
i, j and ρ

(1′)
i,g .

5 Application and assessment

5.1 Characterization of the seismic excitation

In various example problems, the accuracy of the various approximate modal combination rules is validated.
As “exact” reference solutions serve the outcomes of a computationally more demanding response history
analysis (RHA), where the coupled set of equations of motion, Eq. (1), is directly solved. RHA requires a set
of ground motion records adjusted to the site-specific seismic hazard, which is usually defined in terms of the
5% damped pseudo-acceleration design response spectrum, Sad [2].

In the present study, as an example the seismic hazard representative for Century City (Los Angeles, CA;
34.05366◦N, 118.41339◦W) is considered. In Fig. 1 the corresponding design response spectrum, Sad, is shown
by the bold solid line. The spectrum is linearly scaled to the design earthquake spectral response acceleration
parameter at short periods (i.e., in the plateau domain of the response spectrum) SDS = 2.00 g. From the PEER
NGA database [15], 92 site-compatible ground motion records have been selected providing that median and
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Fig. 2 Modeling the ground motion in the frequency domain. Kanai–Tajimi power spectral density (KT-PSD) (black line) fitted
to the normalized median PSD of the ground motions (gray line) [12]

dispersion of the record set match this design response spectrum and a target dispersion of σt = 0.80 in the
frequency range of 0.33Hz ≤ ω/2π ≤ 20Hz (i.e., the period range of 0.05 s ≤ T ≤ 3.00 s). The underlying
evolutionary record selection algorithm is described in [14]. Additionally, Fig. 1 shows the target median ±
one logarithmic standard deviation spectra (bold dashed lines), individual response spectra of the selected
records (solid thin lines in gray) and the actual median, 16 and 84% quantile spectra (lines with markers).

The thin solid line in Fig. 2 corresponds to the normalized median of the individual PSDs of the selected
ground motion records, G(GMs)

g , leaving the integral in the frequency range of 0.01Hz ≤ ν/2π ≤ 20Hz to
unity,

2π
∫ 20

0.01
G(GMs)

g dν = 2π

SF

∫ 20

0.01
G

(GMs)
g dν = 1, (25)

in whichG
(GMs)
g denotes the unscaled median of the individual PSDs of the selected ground motion records. In

the present case the scale factor, SF , is 1.45. Calibration of the characteristic parameters in the KT-PSDmodel,
Eq. (6), to the normalized median PSD of the records yields G0 = 0.18, νg/2π = 1.79Hz, and ζg = 0.78.

5.2 Assessment of the approximations of the cross-spectral moments

Subsequently, the accuracy of the first-order and the hybrid approximations of the cross-spectral moments is
assessed through comparison of the correlation coefficients,which are composed of the cross-spectralmoments.
This intuitive approach is consistent with [5]. Thus, in analogy to the physically meaningful zeroth correlation
coefficients (l = 0), generic correlation coefficients composed of the first (l = 1) and the second (l = 2)
cross-spectral moments are defined [5], compared with Eq. (29),

ρl,i, j = λl,i j√
λl,i iλl, j j

ρl,i,g = λl,ig√
λl,i iλl,gg

for l = 0, 1, 2 (26)

For l = 1 there is no meaningful physical interpretation of Eq. (26), but it is related to the envelope of the
random process [6,27] in order to define the shape factor, qe (Eq. (33)), to evaluate the first-passage probability
(Eq. (32)). The second cross-spectral moment represents the mean square derivative of the random process
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[6,27]. That is, the second cross-spectral moment can be geometrically interpreted as the slope of the random
process.

It should be noted that for reasons discussed in [12] the first and the second correlation coefficient between
the i th modal total acceleration and the ground acceleration is indefinite, compared with Eq. (40).

In the subsequent assessment, the correlation coefficients according to Eq. (26) are evaluated substituting
the rigorous cross-spectral moments specified in Appendix 2 as well the their approximations derived in
Sect. 4.

5.2.1 Correlation coefficients based on the zeroth spectral moments

Figure 3a, b provides graphical representations of the correlation coefficients ρi, j ≡ ρ0,i, j and their approx-

imations, ρ
(1)
i, j ≡ ρ

(1)
0,i, j and ρ

(1′)
i, j ≡ ρ

(1′)
0,i, j , to the filtered white noise input according to the KT-PSD

model. The thick solid line represents the closed-form solution, and the approximations are indicated by
dashed (first-order approximation) and dotted (hybrid-type approximation) lines. The abscissa shows angu-
lar frequency ωi normalized by means of angular frequency ω j in the range of the first lower and higher
octave. For w j/2π = 4.0Hz (left column) and w j/2π = 8.0Hz (right column), respectively, the differences
between the closed-form solution and various approximations of the correlation coefficients are relatively
large and, therefore, appropriate for graphical visualization. It is of relevance to note that the approximated
correlation coefficients for 4.0Hz ≥ ω j ≥ 8.0Hz literally match the closed-form solution [12]. However,
sharp spikes are a result of a very small damping ratio of 0.01, regardless of angular frequency ω j and
the degree of simplification, as shown by the lines with circular markers. If the damping ratio was zero,
the bell shape would degenerate to the normalized Dirac delta function. This can be explained by the fact
that modal response quantities represent orthogonal signals. Increasing the damping ratio smoothens the bell
shape, indicating that modal accelerations are highly correlated regardless of angular frequency ω j , see for
example in Fig. 3b the solid black line with diamond markers representing the correlation coefficient for
ζi = ζ j = 0.20.

The results show that all approximations of the correlation coefficients are in excellent agreement with
the exact solution, however derived with less computational effort. For small damping ratios (ζ ≤ 0.05), the
approximations literally match the closed-form solution (compare lines with circular and triangular markers).
Even for large damping ratios up to ζ = 0.20 the approximations are reasonably accurate (compare lines with
square and diamond markers).

In Fig. 4 the correlation coefficients between modal total acceleration and ground acceleration, ρ0,i,g , the

corresponding first-order approximation, ρ(1)
0,i,g , and the hybrid approximation ρ

(1′)
0,i,g are shown. This compari-

son reveals that both approximations are accurate for damping ratios up to ζ ≤ 0.05, as it is the case in standard
civil engineering structures.
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Fig. 3 Correlation coefficients ρ0,i, j and their approximations ρ
(1)
0,i, j and ρ

(1′)
0,i, j for different damping ratios ζ = ζi = ζ j , evaluated

for frequencies a ω j/2π = 4.0Hz and b ω j/2π = 8.0Hz
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Fig. 4 Correlation coefficients ρ0,i,g and their approximations ρ
(1)
0,i,g and ρ
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0,i,g for different damping ratios ζi
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Fig. 5 Correlation coefficients ρ1,i, j and their approximations ρ
(1)
1,i, j and ρ

(1′)
1,i, j for different damping ratios ζ = ζi = ζ j , evaluated

for frequencies a ω j/2π = 4.0Hz and b ω j/2π = 8.0Hz

5.2.2 Correlation coefficients based on the first and second spectral moments

The correlation coefficients based on the first and second spectral moments, ρ1,i, j and ρ2,i, j , respectively,

and their corresponding approximations, ρ
(1)
1,i, j and ρ

(1′)
1,i, j , and ρ

(1)
2,i, j and ρ

(1′)
2,i, j , respectively, are depicted in

Figs. 5a, b and 6a, b as function of frequency ratio ωi/ω j . Solid lines correspond to the evaluations of the
exact expression of the correlation coefficients, dashed lines to the first-order approximations and the dotted
lines to the hybrid approximations.

It is observed that the difference between ρ1,i, j and its approximations ρ
(1)
1,i, j and ρ

(1′)
1,i, j becomes larger

as ωi increases. However, in the resonance domain (ωi ≈ ω j ) the approximations are very close to the exact

counterpart. Since the underlying approximations of the first cross-spectral moments are identical, also ρ
(1)
1,i, j

and ρ
(1′)
1,i, j are identical.

Both the first-order and the hybrid approximations of the correlation coefficients based on the second
spectral moments provide in the entire frequency range an excellent estimate for relatively small damping
ratios up to ζ ≤ 0.05. In the frequency range ω j/2π ≥ 4.0Hz the approximations literally match the exact
solution regardless of the damping coefficient.

The results discussed herein indicate that for damping ratios ζ ≤ 0.05 the correlation coefficients can
be estimated sufficiently accurate utilizing the proposed approximations of first and second cross-spectral
moments according to Eqs. (14) and (15), respectively, Eq. (21) with less computational effort.



1258 L. Moschen, C. Adam

0.5 0.75 1 1.5 2
0

0.5

1

ωi/ωj

ρ
2
,i

,j
,ρ

(1
)

2
,i

,j
,ρ

(1
′ )

2
,i

,j

(a)

0.5 0.75 1 1.5 2
0

0.5

1

ωi/ωj

ρ
2
,i

,j
,ρ

(1
)

2
,i

,j
,ρ

(1
′ )

2
,i

,j

(b)

ρ2,i,j |ζ = 0.01 ρ
(1)
2,i,j |ζ = 0.01 ρ

(1
′
)

2,i,j |ζ = 0.01

ρ2,i,j |ζ = 0.05 ρ
(1)
2,i,j |ζ = 0.05 ρ

(1
′
)

2,i,j |ζ = 0.05

ρ2,i,j |ζ = 0.10 ρ
(1)
2,i,j |ζ = 0.10 ρ

(1
′
)

2,i,j |ζ = 0.10

ρ2,i,j |ζ = 0.20 ρ
(1)
2,i,j |ζ = 0.20 ρ

(1
′
)

2,i,j |ζ = 0.20

Fig. 6 Correlation coefficients ρ2,i, j and their approximations ρ
(1)
2,i, j and ρ

(1′)
2,i, j for different damping ratios ζ = ζi = ζ j , evaluated

for frequencies a ω j/2π = 4.0Hz and b ω j/2π = 8.0Hz

5.3 Studied structural models

The proposed simplifications of the CQC rule for predicting the PFA demand are evaluated utilizing spatial
6-story, 12-story and 24-story generic structures. Each floor of these structural models is composed of four
massless columns and a horizontal rigid diaphragm, to which an eccentric lumped mass is assigned. The
lumped mass at the roof level is only half of the lumped mass at the story levels within the building. Two types
of structures are considered: steel moment-resisting frame (referred to as SMRF) structures and structures
composed of shear walls (referred to as WALL). Each column of an SMRF structure is modeled as a simple
beam-column element with discrete elastic springs at both ends, representing the flexural stiffness of the story
beams. The models of the WALL structures are composed of the same elements; however, they are stiffer in
the lateral direction than SMRFs. Consequently, the modal properties of SMRF and WALL generic structures
are also different: The fundamental mode shape of a symmetric SMRF structure (i.e., the lumped masses
are centered) is assumed to be linear, while for a symmetric WALL structure a parabolic shape with respect
to the height is assumed. In the considered generic spatial structures the center of mass of each rigid floor
is eccentric with respect to the center of stiffness: eM = [x = 0.30, y = 0.30m]ᵀ (schematically depicted
in Fig. 7a). Thus, these structures exhibit closely spaced modes, which is desirable for evaluation of the
proposed CQC modal combination rules. Figure 7b shows a sketch of the lower stories of these structures.
The fundamental frequencies of the structures match the values specified in ASCE 7-10 [2]. The first three
angular natural frequencies are: ω1 = 7.20, ω2 = 7.33, ω3 = 7.96 rad s−1 (6-story SMRF); ω1 = 4.14, ω2 =
4.21, ω3 = 4.59 rad s−1 (12-story SMRF); ω1 = 2.38, ω2 = 2.42, ω3 = 2.64 rad s−1 (24-story SMRF);
ω1 = 12.58, ω2 = 12.59, ω3 = 31.48 rad s−1 (6-story WALL); ω1 = 7.55, ω2 = 7.55, ω3 = 30.95 rad s−1

(12-story WALL); ω1 = 4.49, ω2 = 4.49, ω3 = 28.2 rad s−1 (24-story WALL). Rayleigh-type damping
is considered with a modal damping ratio of ζ = 0.05 assigned to the fundamental mode and to the 95%
cumulative mass participating mode. Further details to these structures are found in [12].

5.4 Results

The “exact” median PFA demands computed by RHA serve as benchmark solution, exposing the structures in
x-direction to the 92 groundmotions of the Century City record set. That is, each support is excited by the same
ground acceleration series, which represents the second derivative of ground displacement uxg. Exemplary,
the PFA demand is shown for x-component of corner point A, see Fig. 7, and denoted as PFAk in the kth floor
level. To these PFA demands, the outcomes of the various modal combination rules are set in contrast and
subsequently assessed.

Figures 8, 9, 10, 11 show the predicted median PFA demands in terms of profiles with respect to the
normalized building height hrel. The plots of the first row refer to the 6-story, of the second row to the 12-story
and of the third row to the 24-story structures. In the plots of the left column results of the various CQC
methods based on a single-mode approximation are shown, and the outcomes of the right column include all
modes up to the 95% cumulative mass participating mode. Gray solid lines depict the median PFA demands
obtained from RHA.
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(a) (b)

Fig. 7 a Plane view of the eccentric mass at the kth floor level and b isometric view of the first two stories of the spatial structure
[13]

5.4.1 Median peak floor acceleration demand based on modal combination rules considering peak factors

Figures 8 and 9 show the outcomes of the CQC-pf modal combination rule and its simplified counterparts con-
sidering peak factors (i.e., foa-CQC-pf rule, ha-CQC-pf rule, t-SRSS-pf rule, SRSS-pf rule). These outcomes
are set in contrast to the median PFA demands from RHA.

The most important result of this study is that for bothWALL and SMRF structures the full CQC (CQC-pf)
method predicts quite accurately the PFA demands when all modes up to the 95% mass participating mode
are included, see subfigures (b), (d) and (f) of Figs. 8 and 9. Going into more detail, it is observed that for the
considered SMRF structures and the 6-storyWALL structure the CQC-pf method underestimates only slightly
the RHA benchmark solution along the entire structural height. The median PFA demands of the 12-story and
the 24-story WALL structure exhibit a distinct S-shape that is quite accurately approximated by the CQC-pf
rule. However, in the 24-story structure modal combination according to this rule overestimates the amplitude
of the PFA demand in the domain of this S-shape.

Another important observation is that the loss of accuracy is small when using the CQC rules in a multi-
modal approach based on first-order (foa-CQC-pf rule) or hybrid approximations (ha-CQC-pf rule) of the
cross-spectral moments, as shown in the right column of Figs. 8 and 9. Only for the SMRF structures these
simplified rules lead to a minor apparent underestimation of the PFA profiles, see subfigures (a). It is of
relevance to emphasize the simple application of the foa-CQC-pf and ha-CQC-pf rules, because in contrast
the full CQC-pf rule evaluation of the functionals concerning the zeroth and first exponent of the damping
ratio is required only. It can be, thus, concluded that for PFA assessment in civil engineering structures, where
damping is relatively low (i.e., ζ ≤ 5%), both the foa-CQC-pf and the ha-CQC-pf rule can be used instead of
the full CQC-pf method, however, with less effort but without crucial loss of accuracy.

The SRSS method considering truncated modes and peak factors (t-SRSS-pf) and the common SRSS
method with peak factors (SRSS-pf) are not capable of capturing the actual magnitude of the median PFA
demand of the considered spatial structures, regardless of the type of lateral load-bearing system and the
number of stories. The magnitude is in general underestimated by about 20–30%. These outcomes show the
importance of the correlation coefficients between modal total accelerations, and it can be concluded that the
correlation coefficients contribute significantly to the peak response if the modes are closely spaced.

The t-SRSS-pf rule provides only a sufficient accurate estimation of the shape of the PFA profiles when
using all modes up to the 95% mass participating mode. It is also seen that considering truncated modes is
important for PFA demand prediction in the lower story, compare the outcomes of the t-SRSS-pf and the
SRSS-pf modal combination rules.

In contrast, for planar frame structures the t-SRSS-pf rule leads to satisfactory PFA predictions because
the modes are well separated, as is comprehensively discussed in [12,13].

The single-mode approximations of all discussedmodal combinations rules cannot capture the PFAdemand
of the considered spatial structures, as is seen from the outcomes shown in the left column of Figs. 8 and 9,
even not for the mid-rise 6-story configurations. This demonstrates the importance of the contribution of higher
modes on the PFA demand, in particular if modes are closely spaced as it is the case here. Except for the SRSS
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Fig. 8 Median PFA demand profiles for spatial SMRF structures with 6-stories (first row), 12-stories (second row) and 24-stories
(third row). Benchmark solution based on RHA. Outcomes based on the full CQC rule considering peak factors (CQC-pf) and on
various modal combination rules considering peak factors with first mode (left column) and 95% cumulative mass participating
modes approximations (right column)

rule without truncated modes, all other methods based on the fundamental mode only yield the same perverted
PFA demand prediction.

5.4.2 Median peak floor acceleration demand based on modal combination rules neglecting peak factors

Here, the proposed modal combination rules with unit peak factor ratios (i.e., CQC-nopf rule, foa-CQC-nopf
rule, ha-CQC-nopf rule, t-SRSS-nopf rule, SRSS-nopf rule) are assessed. From Figs. 10 and 11 the following
observations are made.

In a multi-modal approach up to the 95% mass participating mode the full CQC rule without peak factors
(CQC-nopf rule) and its counterparts based on a first-order (foa-CQC-nopf rule) or a hybrid approximation
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Fig. 9 Median PFA demand profiles for spatial WALL structures with 6-stories (first row), 12-stories (second row) and 24-stories
(third row). Benchmark solution based on RHA. Outcomes based on the full CQC rule considering peak factors (CQC-pf) and on
various modal combination rules considering peak factors with first mode (left column) and 95% cumulative mass participating
modes approximations (right column)

(ha-CQC-nopf rule) of the underlying cross-spectral moments yield predictions of the median PFA demand
that are in feasible agreement, see the plots of the right column of these figures. However, comparing these
outcomes with the RHA benchmark solution shows that the PFA demand is significantly underestimated by
these methods, revealing that for these structures the contribution of the peak factors should not be omitted.
It is also observed that with increasing number of stories, consideration of the peak factors becomes more
important for PFA demand assessment. This is an important observation for engineering practice because in
general many structures respond in three dimensions although their seismic demand is predicted based on
planar structural models.

The results in the left column of Figs. 10 and 11 also show that a first-mode approximation of the PFA
demand underestimates the actual response significantly, regardless of the usedmodal combination rule and the
considered structural configuration. The first-mode approximation of the common SRSS method (SRSS-nopf
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Fig. 10 Profiles of the median PFA demand for the spatial SMRF structures with 6-stories (first row), 12-stories (second row)
and 24-stories (third row). Reference solution based on RHA, the full CQC rule neglecting peak factors (CQC-nopf) and various
modal combination rules neglecting peak factors based on first mode (left column) and first to 95% cumulative mass participating
mode approximation (right column)

rule) according to Eq. (12) follows the shape of the first mode, and thus, the corresponding PFA demands are
furthest from the RHA benchmark solution. In a multi-mode approximation the results in the upper stories
of the classical SRSS rule and the SRSS rule with truncated modes (t-SRSS-nopf) are almost identical. It is
also observed that the impact of peak factors on the first-mode approximation is negligible for both the SMRF
structures (compare Figs. 8a, c, e and 10a, c, e) and the WALL structures (compare Figs. 9a, c, e and 11a, c, e).

5.4.3 Error quantification

In Table 1 the error of the estimated median PFA demand of all considered modal combination rules with
respect to the response history benchmark solution is quantified for each application example. The utilized



Peak floor acceleration demand prediction 1263

0 1 2 3 4 5

1/6

2/6

3/6

4/6

5/6

6/6

m̆PFA /g

h
r
e
l

(a)

0 1 2 3 4 5

1/6

2/6

3/6

4/6

5/6

6/6

m̆PFA /g

h
r
e
l

(b)

0 1 2 3 4 5

2/12

4/12

8/12

10/12

12/12

12/12

m̆PFA /g

h
r
e
l

(c)

0 1 2 3 4 5

2/12

4/12

8/12

10/12

12/12

12/12

m̆PFA /g

h
r
e
l

(d)

0 1 2 3 4 5

4/24

8/24

12/24

16/24

20/24

24/24

m̆PFA /g

h
r
e
l

(e)

0 1 2 3 4 5

4/24

8/24

12/24

16/24

20/24

24/24

m̆PFA /g

h
r
e
l

(f)

RHA; CQC-nopf; ha-CQC-nopf; t-SRSS-nopf; SRSS

Fig. 11 Profiles of the median PFA demand for the spatial WALL structures with 6-stories (first row), 12-stories (second row)
and 24-stories (third row). Reference solution based on RHA, the full CQC rule neglecting peak factors (CQC-nopf) and various
modal combination rules neglecting peak factors based on first mode (left column) and first to 95% cumulative mass participating
mode approximation (right column)

measure is the root-mean-square (RMS) error

mε =
√√√√ 1

N

N∑

k=1

ε2k (27)

composed of the relative error of each floor acceleration component, defined as

εk =
m̆(mcr)
PFAk

− m̆(RHA)

PFAk

m̆(mcr)
PFAk

, (28)
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Table 1 Root-mean-square error in %

Modal superposition rule Considered modes SMRF/stories WALL/stories

6 12 24 6 12 24

CQC-pf 1 114 115 84 90 126 151
2 45 79 87 32 84 112
95% 3 8 11 5 7 17

foa-CQC-pf 1 119 113 83 108 135 149
2 48 77 86 44 91 110
95% 16 18 20 5 7 17

ha-CQC-pf 1 121 114 84 110 137 150
2 49 78 87 45 93 112
95% 16 18 20 5 7 17

t-SRSS-pf 1 117 116 85 97 129 152
2 79 117 127 71 122 152
95% 39 40 34 49 44 20

SRSS-pf 1 613 1159 2258 426 1227 3926
2 183 417 882 276 845 2755
95% 55 63 78 66 69 74

CQC-nopf 1 131 134 100 92 154 202
2 73 136 212 34 107 155
95% 34 68 115 28 60 76

ha-CQC-nopf 1 131 134 100 93 155 202
2 73 136 212 34 108 155
95% 34 68 115 28 60 76

t-SRSS-nopf 1 134 134 100 100 158 202
2 114 188 281 73 152 204
95% 85 122 171 83 125 146

SRSS 1 785 1720 4625 427 1509 5464
2 249 639 1820 276 1043 3840
95% 107 159 252 111 177 268

Reference solution from response history analysis (RHA)

where m̆(mcr)
PFAk

is the median PFA demand prediction of the kth floor from application of a modal combination

rule, and m̆(RHA)

PFAk
is the corresponding outcome from response history analysis.

A major finding is that the error-based one, respectively, two-mode approximation is in all cases pro-
hibitively large.

As already observed previously, the full CQC-pf rule including all modes up to the 95%mass participating
mode yields for all structures the most accurate PFA demand prediction: For the 6-story SMRF structure, the
RMS relative error is only 3%, for the 12-story structure, it is 8%, and for the 24-story structure, it increases
to 11%. The error for the WALL structures is slightly larger, i.e., 5% for the 3-story and 17% for the 24-story
structure.

Moreover, it is confirmed that the computationally relatively cheap first-order CQC (foa-CQC-pf) and
hybrid CQC (ha-CQC-pf) methods considering peak factors yield feasible approximations of the PFA demand.
While for theWALL structures theRMS error based on these approximations is of the same order as for CQC-pf
rule, for the SMRF structures the error becomes, however, much larger, compare 11% for the 24-story SMRF
based on the CQC-pf rule and 20% based on both the foa-CQC-pf and ha-CQC-pf rule.

The truncated SRSS rule considering peak factors with a maximum error of about 49% might be used in
the pre-design phase of a structure for a quick estimate of the order of the PFA demands.

The remaining modal superposition methods are associated with large errors up to 268% (SRSS rule for
the 24-story WALL structure). This clearly emphasizes the importance of considering correlation coefficients
and peak factors when using modal combination rules for the simplified PFA demand prediction in spatial
structures.

The RMS errors of the various discussed approximations modal superposition rules compared to the full
CQC-pf rule listed in Table 2 underline these findings.

6 Summary and conclusions

The prediction of median peak floor (PFA) acceleration demands of spatial structures exposed to ground
motions in one horizontal direction by means of various modal combination rules has been studied. The
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Table 2 Root-mean-square error in %

Modal superposition rule Considered modes (%) SMRF/stories WALL/stories

6 12 24 6 12 24

foa-CQC-pf 95 13 11 8 1 0 0
ha-CQC-pf 95 14 11 8 1 0 0
t-SRSS-pf 95 39 33 27 44 42 41
SRSS-pf 95 53 55 68 58 67 89
CQC-nopf 95 34 59 106 23 56 110
ha-CQC-nopf 95 34 59 106 23 56 110
t-SRSS-nopf 95 85 110 162 77 121 193
SRSS 95 106 146 231 101 172 313

Reference solution from CQC-pf rule

outcomes of response history analysis have been used as benchmark solutions to proof the accuracy of these
response spectrummethods of various sophistication. Themost accurate consideredmethod is a comprehensive
complete-quadratic-combination (CQC) rule with closed-form expressions for the involved correlation coef-
ficients and peak factors. The proposed simplified versions of this rule represent either first-order or hybrid
Taylor series expansions of the underlying cross-spectral moments, or peak factors, modal correlation and
truncated modes are successively neglected, arriving finally at the classical and well-known square-root-of-
sum-of-squares (SRSS) method.

The results presented in this contribution show that for the prediction ofmedian PFA demands of tall spatial
structures (here twelve and 24 stories) with closely spaced modes only modal combination rules considering
correlation coefficients and peak factors yield reliable results. In the spatial structural systems with six stories,
the contribution of the peak factors on the PFA demand is less pronounced. In contrast, previous studies have
revealed that the PFA demands of planar structures can be predicted by modal combination rules without
correlation coefficients. In the lower stories, truncated modes contribute significantly to the median PFA
demand.

From the results, it can also be concluded that for PFA assessment in commonly damped civil engineering
structures both the CQC methods based on first-order or hybrid Taylor series expansions of the underlying
cross-spectral moments can be used instead of the full CQC method, however, with less computational effort.
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Appendix 1: Correlation coefficients and peak factors

This appendix provides a summary of evaluation of the required correlation coefficients and the peak factors
required to determine the mean PFA demand according to the proposed CQC rules.

The correlation coefficients ρi, j and ρi,g present in Eq. (3) can be expressed in terms of the corresponding
zeroth spectral and cross-spectral moments [4],

ρi, j = λ0,i j√
λ0,i iλ0, j j

, ρi,g = λ0,ig√
λ0,i iλ0,gg

. (29)

The evaluation of the peak factors pk, pi and pg is based on the common assumption of the first-passage
probability for normal stationary random processes X (t) with zero mean as proposed by Vanmarcke [28]. For
details it is referred to [4,5,13,27,28].

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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The i th modal peak factor, pi , and the peak factor of the ground acceleration pg are determined according
to [28]

pi = Sa(ωi )

λ0,i i
, pg = Sa(ωi → ∞)

λ0,gg
(30)

with the readily available pseudo-acceleration response spectrum Sa and the spectral moments λ0,i i and λ0,gg.
The peak factor pk is the outcome of the integral

pk = E [R] =
∫ ∞

0
(1 − FR (r)) dr, (31)

where FR is the first-passage probability [28],

FR (r) = P [R ≤ r ] =
(
1 − exp

(
−r2

2

))
exp

⎛

⎝
−2 fat

(
1 − exp

(
−

√
π
2 qer

))

1 − exp
(
− r2

2

)

⎞

⎠ . (32)

In this equation, fa denotes the mean rate of B-crossings [18], defined as crossings of the barrier level from
below [28], and qe is an empirical shape factor of the PSD of the response process [28],

fa = 1

2π

√
λ2,k

λ0,k
exp

(−r2

2

)
, qe =

(
1 − λ21,k

λ0,kλ2,k

)b/2

, (33)

with b = 1.20. An appropriate approximation of the first-passage time, t , appearing in Eq. (32) is the average
period of the response process, T0, defined as [13]

T0 = 2π√
λ2,k
λ0,k

. (34)

Evaluation of Eqs. (33) and (34) requires the zeroth, first and second spectral moment of the corresponding
random acceleration process based on the following first three multi-modal spectral moments [13]:

λl,k ≈
n∑

i=1

n∑

j=1

φi,k�iφ j,k� jλl,i j , l = 0, 1, 2. (35)

Appendix 2: Cross-spectral moments between modal total accelerations

The zeroth, first and second cross-spectral moment between modal total accelerations, λ0,i j , λ1,i j and λ2,i j ,
respectively, derived in [12,13] are recapitulated,

λ0,i j = G0πωiω jνg

⎡

⎣
∑2

m=0
∑2

n=0 ζmi ζ nj ξ0,mn(ωi , ω j )

4ζgD4
+

2νg
∑4

m=0
∑2

n=0 ζmi ζ nj ψ0,mn(ωi , ω j )

D1

⎤

⎦ , (36)

λ1,i j = G0ωiω jν
2
g

⎡

⎣ ωi

⎛

⎝π

2
− arctan

⎛

⎝ ζi√
1 − ζ 2i

⎞

⎠

⎞

⎠

⎛

⎝
∑6

m=0
∑2

n=0 ζmi ζ nj ψ1,mn(ωi , ω j )
√
1 − ζ 2i D1

⎞

⎠

+ ω j

⎛

⎝π

2
− arctan

⎛

⎝ ζ j√
1 − ζ 2j

⎞

⎠

⎞

⎠

⎛

⎝
∑6

m=0
∑2

n=0 ζ ni ζmj ψ1,mn(ω j , ωi )
√
1 − ζ 2j D2

⎞

⎠

+
⎛

⎝arctan

⎛

⎝ ζg√
1 − ζ 2g

⎞

⎠ − π

2

⎞

⎠

⎛

⎝
∑2

m=0
∑2

n=0 D4ζ
m
i ζ nj ξ1,mn(ωi , ω j ) + D3ζ

n
i ζmj ξ1,mn(ω j , ωi )

4ζg
√
1 − ζ 2g D3D4

⎞

⎠

+ ωi ln (ωi )

⎛

⎝
∑5

m=0
∑2

n=0 ζmi ζ nj ψ̂1,mn(ωi , ω j )

D1

⎞

⎠ + ω j ln
(
ω j

)
⎛

⎝
∑5

m=0
∑2

n=0 ζ ni ζmj ψ̂1,mn(ω j , ωi )

D2

⎞

⎠
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+ ln
(
νg

)
⎛

⎝
∑2

m=0
∑2

n=0 D3ζ
m
i ζ nj ξ̂1,mn(ωi , ω j ) + D4ζ

n
i ζmj ξ̂1,mn(ω j , ωi )

2ζgD3D4

⎞

⎠

⎤

⎦ , (37)

λ2,i j = G0πωiω jν
2
g

⎡

⎣
νg

∑2
m=0

∑2
n=0 ζmi ζ nj ξ2,mn(ωi , ω j )

4ζgD4
+

2ω2
i
∑6

m=0
∑2

n=0 ζmi ζ nj ψ2,mn(ωi , ω j )

D1

⎤

⎦ , (38)

because they are the starting point for further simplifications. The functionals ξl,mn(ωi , ω j ), ψl,mn(ωi , ω j ),

ξ̂l,mn(ωi , ω j ) and ψ̂l,mn(ω j , ωi ) (l = 0, 1, 2) are sortedwith respect to the exponent of the damping coefficients,
m and n, which allows a linearization with respect to damping. They and the further functionals D1–D4 present
in these equations are specified in [12,13]. The lth cross-spectral moment between the i th modal acceleration
and the ground acceleration, λl,ig , follows λl,i j with the limit of ω j to infinity,

lim
w j→∞

(
λl,i j

) = λl,ig. (39)

The zeroth spectral moment and the higher moments of the ground are [12,13]:

λl,gg =
{
G0πνg

(
ζg + 1

4ζg

)
if l = 0

∞ if l = 1, 2, . . .
(40)
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