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dISF group phylogenetically affiliate with dual-host fla-
viviruses despite their apparent insect-restricted pheno-
types. Examples of dISFs include Marisma mosquito virus 
(MMV) and Nanay virus (NANV) in addition to Barkedji 
virus (BJV), Chaoyang virus (CHAOV), Donggang virus 
(DONV), Ilomantsi virus (ILOV), Lammi virus (LAMV), 
Nhumirim virus (NHUV) and Nounané virus (NOUV). 
MMV was originally isolated from Ochlerotatus caspius in 
Italy in 2001 to 2007 [17]. NANV was originally isolated 
from Culex (Melanoconion) ocossa in Peru in 2009 [6]. All 
these dISFs have had most, if not all, of their genomes fully 
sequenced aside from MMV and NANV for which partial 
envelope and/or NS5 gene sequence data are available. The 
objective of this study was to fully sequence the genomes 
of MMV and NANV.

MMV (isolate HU4528/07) and NANV (isolate 
PRD316/PER/09) were obtained from the World Refer-
ence Center for Emerging Viruses and Arboviruses at the 
University of Texas Medical Branch in Galveston, TX. 
MMV and NANV had been passaged four and at least five 
times, respectively in C6/36 (Aedes albopictus) cells prior 
to receipt and each virus underwent an additional pas-
sage in C6/36 cells at Iowa State University. Total RNA 
was extracted using Trizol Reagent (Invitrogen, Carls-
bad, CA) and RNA was fragmented using RNase III and 
assessed for quality using an Agilent 2100 Bioanalyzer 
(Agilent, Santa Clara, CA). Libraries were constructed 
using the Ion Total RNA-Seq Kit v2 (ThermoFisher, Carls-
bad, CA) and barcoded using the Ion Xpress™ RNA-Seq 
Barcode 1-16 Kit (ThermoFisher). Libraries were assessed 
for quality and analyzed at the Genomic Technologies 
Facility at Iowa State University using an Ion Proton 
Sequencer (ThermoFisher). All ion-Torrent reads were 
mapped to Ae. albopictus and Ae. aegypti genomes using 
Bowtie 2 [13]. Unmapped reads were analyzed using the 

Abstract We determined the complete genomic sequences 
of two previously discovered insect-specific flavivi-
ruses, Marisma mosquito virus (MMV) and Nanay virus 
(NANV), using a combination of high-throughput sequenc-
ing, reverse transcription-polymerase chain reaction, 5′ and 
3′ rapid amplification of cDNA ends and Sanger sequenc-
ing. Complete polyprotein amino acid sequence alignments 
revealed that the closest known relatives of MMV and 
NANV are Donggang virus (89% identity, 95% similarity) 
and Nounané virus (53% identity, 70% similarity), respec-
tively. Phylogenetic inference is in agreement with these 
findings. Potential programmed −1 ribosomal frameshift-
ing sites were bioinformatically identified in the genomes 
of both viruses.

Viruses in the genus Flavivirus (family Flaviviridae) can 
be divided into three distinct groups based on their host 
ranges and mode of transmission [2]. Dual-host flavivi-
ruses are transmitted horizontally between hematophagous 
arthropods (i.e. mosquitoes and ticks) and vertebrate hosts. 
Viruses in the other two groups possess vertebrate-specific 
or insect-specific host ranges. Insect-specific flaviviruses 
(ISFs) are further divided into classical ISFs (cISFs) and 
dual-host affiliated flaviviruses (dISFs). Viruses in the 
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sortMeRNA program [12] to remove rRNA-related reads. 
All remaining reads with Phred values ≥33 were subjected 
to de novo SPAdes (ver 3.5.0) assembly [1]. Contigs were 
mapped to a reference flavivirus genome using LASTZ 
[9]. Alignment files were manually verified on TABLET 
[16]. Reverse transcription-polymerase chain reaction and 
Sanger sequencing were used to close gaps and confirm 
the accuracy of assembled contigs. The 5′ and 3′ ends of 
each genome were identified using 5′ and 3′ rapid amplifi-
cation of cDNA ends, respectively. Briefly, a DNA adaptor 
(5′-rApp/TGGAATTCTCGGGTGCCAAGGT/ddC-3′) was 
ligated to the viral genomic and anti-genomic RNAs using 
T4 RNA ligase (New England BioLabs, Ipswich, MA). 
Complementary cDNAs were created using SuperScript 
III (Invitrogen) and an adapter-specific primer. PCRs were 
performed using adapter- and gene-specific primers, and 
amplicons were subjected to Sanger sequencing.

The complete genome of MMV consists of 10,848 nt. 
(Genbank Accession No. MF139576) and contains a 5′ 
untranslated region (UTR) of 119 nt., a long open reading 
frame (ORF) of 10,353 nt., and a 3′ UTR of 376 nt (Fig-
ure 1a). The predicted amino acid sequence of the MMV 
polyprotein was aligned to other amino acid sequences in 
the Genbank database revealing that the closest known rel-
atives of MMV are DONV (89% identity, 95% similarity) 
and ILOV (71% identity, 83% similarity). The complete 
genome of NANV is slightly smaller (10,804 nt; Genbank 
Accession No. MF139575) and contains a 5′ UTR of 106 
nt., a long ORF of 10,299 nt., and a 3′ UTR of 399 nt (Fig-
ure 1b). Amino acid sequence alignments revealed that the 
closest known relatives of NANV are NOUV (53% identity, 
70% similarity) and NHUV (52% identity, 69% similarity).

The phylogenetic placements of MMV and NANV, 
relative to other members of the Flavivirus genus, were 
assessed using the Bayesian Markov chain Monte Carlo 
based method implemented in MrBayes [15]. Complete 
polyprotein amino acid sequences were aligned using 
MUSCLE [5] and a phylogenetic tree was constructed 

using MrBayes (Figure 2). MMV is most closely related 
phylogenetically to DONV. Both viruses belong to a dis-
tinct clade that also includes CHAOV, LAMV and ILOV. 
NANV is most closely related phylogenetically to NOUV 
and these two viruses belong to a distinct clade that also 
includes BJV and NHUV.

The sequences of MMV and NANV were inspected for 
potential −1 ribosomal frameshifting (−1 PRF) motifs 
because several groups of flaviviruses, including dISFs, 
appear to utilize −1 PRF during translation of their 
genomic RNA [2, 7, 10, 14]. Such frameshifting occurs 
at specific sites which normally comprise a slippery hep-
tanucleotide sequence and a 3′-adjacent RNA structure. 
In eukaryotes, the consensus motif for the slippery hep-
tanucleotide is X_XXY_YYZ, where XXX represents any 
three identical nucleotides although a number of exceptions 
occur (such as GGA), YYY represents AAA or UUU, Z is 
A, C or U, and underscores represent codons in the original 
reading frame. The 3′ RNA structure is normally a stem-
loop or pseudoknot and is separated from the shift site by 
a spacer region of 5–9 nt. PRF has been predicted to occur 
in the NS2B region of CHAOV, DONV, LAMV, and ILOV 
[2, 10] and the ability of the identified motifs to stimulate 
−1 PRF has been verified in reporter constructs [8]. MMV 
contains a conserved G_GAU_UUU shift site sequence 
followed by a predicted RNA stem-loop structure in the 
NS2B region, as previously described for CHAOV, DONV 
and LAMV (Figure 3a). As noted previously, the −1 frame 
ORF varies considerably in length from six codons in 
DONV to 107 codons in CHAOV and LAMV. Similarly to 
DONV, MMV has a six-codon ORF.

The genome of NANV harbors a U_UUU_UUU poten-
tial shift site that aligns with the U_UUU_UUA shift site 
previously proposed in NOUV (Figure 3b), and tested in 
reporter constructs [8]. While the NOUV shift site is fol-
lowed by a compact 13-bp stem-loop, the potential shift 
site in NANV is followed by a more extended potential 
stem-loop. Nonetheless, the stem-loop has a stable base 
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Fig. 1  Schematic representation of each flavivirus genome and polyprotein. Genomic organization of (A) Marisma mosquito virus and (B) 
Nanay virus. Lengths of the 5’ and 3’ untranslated regions as well as the structural and nonstructural protein genes are drawn to scale
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(seven consecutive Watson-Crick pairs, four being G:Cs) 
and is within the critical 5–9 nt. separation from the shift 
site. While the simple presence of a shift site and poten-
tial RNA structure should be viewed with caution (as they 
may occur spuriously, and not all RNA structures have 
the correct geometry to efficiently stimulate frameshift-
ing [4]), the conservation of such features at a similar 
genomic location between related species lends weight to 
−1 PRF predictions. Thus, it seems plausible that NOUV 

and NANV may represent another group of flaviviruses 
that utilize −1 PRF.

In summary, we report the complete genome sequences 
of two previously discovered ISFs, MMV and NANV, and 
provide bioinformatic evidence that both viruses utilize –1 
PRF. It remains to be proven whether dISFs evolved from 
dual-host flaviviruses or are themselves the precursors but 
the former theory has been favored [11]. A rapidly grow-
ing number of ISFs have been discovered in recent years, 

Fig. 2  Phylogenetic tree for genus Flavivirus. Complete polyprotein 
amino acid sequences were aligned using MUSCLE [5]. Regions of 
ambiguous alignment were excised using Gblocks [3] with default 
parameters, after which 1604 amino acid positions were retained. 
A maximum likelihood phylogenetic tree was estimated using 
the Bayesian Markov chain Monte Carlo method implemented in 
MrBayes version 3.2.3 [15] sampling across the default set of fixed 

amino acid rate matrices, with one million generations, discarding the 
first 25% as burn-in. The figure was produced using FigTree (http://
tree.bio.ed.ac.uk/software/figtree/). The tree is midpoint-rooted, and 
nodes are labelled with posterior probability values where different 
from 1.00. Species names are color-coded as follows: cISFs—blue; 
dISFs—green; no known vector (NKV) flaviviruses—red; mosquito/
vertebrate flaviviruses—purple; tick/vertebrate flaviviruses—black
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and the availability of complete genome sequence data 
will allow for more robust comparative genomic studies 
between dual- and single-host flaviviruses and could, ulti-
mately, provide novel insight into the evolutionary mech-
anisms that condition their differential host ranges and 
transmissibilities.
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