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Abstract The rabies virus envelope glycoprotein (RVGP)

is the main antigen of rabies virus and is the only viral

component present in all new rabies vaccines being pro-

posed. Many approaches have been taken since DNA

recombinant technology became available to express an

immunogenic recombinant rabies virus glycoprotein

(rRVGP). These attempts are reviewed here, and the rele-

vant results are discussed with respect to the general

characteristics of the rRVGP, the expression system used,

the expression levels achieved, the similarity of the rRVGP

to the native glycoprotein, and the immunogenicity of the

vaccine preparation. The most recent studies of rabies

vaccine development have concentrated on in vivo

expression of rRVGP by viral vector transduction, serving

as the biotechnological basis for a new generation of rabies

vaccines.

The rabies vaccine and the rabies virus
glycoprotein (RVGP)

Rabies is one of the most fatal diseases caused by viral

infection in humans. With few exceptions, humans that

develop symptoms of rabies virus infection inevitably die.

Like other members of the genus Lyssavirus, family

Rhabdoviridae, rabies virus is a negative sense, single-

strand RNA virus carrying five proteins: a nucleoprotein, a

phosphoprotein, a matrix protein, an envelope glycoprotein

(RVGP) and a viral polymerase [1] (Fig. 1). The structure

of the glycoprotein of vesicular stomatitis virus, a well-

studied member of the family Rhabdoviridae, has recently

been determined [2, 3]. Since then, considerable insight has

been gained into rhabdovirus structure [4] and virus entry

mechanisms [5]. Nevertheless, due to essential differences

in the immune mechanisms involved in infections by dif-

ferent rhabdoviruses, studies related to rabies vaccine

development need to involve the RVGP directly.

Classical rabies vaccines consist of whole inactivated

viruses, that have the same antigenic characteristics as wild

type viruses. Immunization with whole inactivated virus

has been shown to induce virus-neutralizing antibodies

directed against RVGP, activation of helper and cytotoxic

T cells and protection against lethal intracerebral challenge

with rabies virus [6, 7]. The main reason that further

research toward a new rabies vaccine candidate is needed is

the high cost of producing rabies vaccine in rabies-virus-

infected cell culture [8, 9]. In some developing countries

with high incidence of rabies, it is necessary to have a less

expensive vaccine, allowing preventive immunization,

preferentially after a single dose [10, 11]. Other important

reasons include the risks of production and administration

of the current whole inactivated virus vaccine and the

logistic concerns of a multi-vaccination schedule for pre-

and, particularly, post-exposure vaccination [12, 13].

The RVGP is the only antigen able to confer full pro-

tection against rabies [14] and is the only component pre-

sent in all new rabies vaccines that have been proposed

[10]. When properly folded and glycosylated [15, 16], the

RVGP molecule (Fig. 1B and C) is fully immunogenic,

bearing epitopes for humoral and cell-mediated immune

responses [6, 7, 17–19]. It has been shown that RVGP is an

important determinant for the induction of innate immune

responses and different pathogenic mechanisms induced by

different rabies virus strains [20].
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The native RVGP is located in the rabies virus envelope

and the plasma membrane of infected cells before virus

budding. The native RVGP is a 505-amino-acid, 65-kDa

glycoprotein that contains an intracytoplasmic region, a

hydrophobic transmembrane region and an ectodomain

region (Fig. 1B and C). The association of three RVGP

monomers results in the homotrimerization of the molecule

[21] (Fig. 1B and C). The oligomerization state of RVGP

seems to be essential for interaction of rabies virus with

target membrane receptors [22, 23] and, to a certain extent,

for the induction of neutralizing antibodies leading to pro-

tection against rabies virus infection [24–27]. The RVGP is a

special molecule that combines characteristics of class I and

II virus fusion proteins [28]. It is able to bind to at least three

different receptors, allowing virus endocytosis [29, 30]: the

neurotrophin receptor (p75NTR) [31, 32], the nicotinic

acetylcholine receptor [33], and the neural cell adhesion

molecule [34]. Virus-cell membrane fusion mediated by

RVGP through hydrophobic interactions occurring in a low-

pH environment completes the infection process after virus

penetration [35, 36]. It has been shown that the RVGP can be

found in three different antigenic conformations: a ‘native’

state, an activated hydrophobic state, and a fusion-inactive

state [22, 36]. In addition to the fact that these different

RVGP conformations are very important for the processes of

virus budding and fusion, they present different epitopes and

are not equally recognized by neutralizing antibodies

directed against mature or native RVGP [36].

Beyond its utilization for virus infection studies and

anti-rabies vaccination, RVGP has also been used for

studies of the nervous system. It has been used for mapping

or tracing neuronal connections for better understanding

nervous system processes [37]. Recently, RVGP-derived

peptides have been utilized to deliver siRNA to specific

neuronal cells or macrophages expressing acetylcholine or

GABA receptors [38–41] or to deliver therapeutic proteins

to the central nervous system [42–44]. In the field of tox-

inology, the affinity of snake neurotoxins for the acetyl-

choline receptor has been studied in comparison with an

RVGP-derived peptide [45] as well as the whole RVGP as

an antagonist [45].

The potential use of a stable, oligomerized form of an

rRVGP for virus infection or nervous-system studies and

immunization purposes has justified new research approa-

ches for the establishment of recombinant systems for

expression of rRVGP [9].

rRVGP expression in cell systems

The pathway to the establishment of an expression system

able to produce promising levels of a high-quality rRVGP

also includes the determination of how close the rRVGP is

to a specific native RVGP. Despite the availability of

modern biochemical analytical tools, the best method of

comparison is still the analysis of the immune response

upon animal inoculation. It is well known that the

immunogenic quality of the recombinant molecule itself is

dependent on its oligomeric structure [46, 47]. Many

approaches for producing high levels of the immunogenic

form of rRVGP have the problem that one is working with

an unstable and hydrophobic molecule. After synthesis,

RVGP undergoes post-translational modifications, and at

least one sequon must be glycosylated to allow the RVGP

to reach the cell surface [48]. As rRVGP is not primarily

responsible for virus budding [49], it does not protrude in

the form of vesicles, remaining in plasma membrane until

cell lysis [49]. In early studies, the discovery of the

importance of the plasma membrane and, consequently, the

viral envelope for RVGP stability led to research on new

vaccines based on a RVGP presented in liposomes [14]. To

avoid the difficulties caused by hydrophobicity, some

genetic and biochemical approaches were tried in order to

obtain a vaccine constituted from an immunogenic soluble

form of rRVGP, or just the soluble ectodomain. However,

despite the potential value of soluble forms of rRVGP as

diagnosis tools [50, 51], these approaches produced only

poorly immunogenic molecules [46, 52, 53] and suggested

an essential role of the transmembrane domain in the cor-

rect folding of the ectodomain, where the most important

epitopes are located [47] (Fig. 1). Further studies using a

DNA vaccination approach showed that the native trans-

membrane domain was required for an adequate humoral

immune response [54]. Additionally, immunization with

RVGP-derived peptides bearing predicted or mapped epi-

topes generated antibodies of only moderate immuno-

genicity [55]. The complete failure of these attempts to

produce a soluble and immunogenic form of rRVGP or an

rRVGP with a more stable transmembrane domain stressed

the importance of research and development projects to

establish an expression system capable of producing high

levels of functional native-like rRVGP [56–59].

Given the wide distribution of rhabdoviruses in nature

and the act that membes of this viral genus are capable of

infecting plants, mammals, and also insects, it is reasonable

to investigate rRVGP expression using different systems.

In fact, rRVGP has been expressed in many cell systems,

showing encouraging results in immunization studies

[60–62]. Eukaryotic systems are appropriate for rRVGP

expression, as it is known that only the N-glycosylated

rRVGP is transported from Golgi complex to the cell

membrane [63] and that rRVGP folding and glycosylation

patterns are important for its immunogenicity [15, 64]. The

RVGP has three sequons for potential N-glycosylation

(Asn-X-Ser/Thr) in the ectodomain: Asn37, Asn247,

Asn319 [65]. In general, expression in eukaryotic systems,
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by virus infection or recombinant means, produces an

rRVGP with efficiently glycosylated Asn247 and Asn319

[48]. The glycan composition is dependent on the bio-

chemical machinery of the host cell and seems to be a

determinant of immunologic properties. For example,

when rRVGP was expressed in Saccharomyces cerevisiae,

the rRVGP was found to be associated with the yeast

membrane and was able to protect guinea pigs but not mice

against lethal challenge [66]. The authors argued that the

difference was a consequence of immunizing animals by

different routes. More likely, the characteristic high-man-

nose glycosylation pattern of yeast [67] was not appropri-

ate for rRVGP stabilization and full immunogenic

properties. Further studies also showed that this rRVGP

was not processed normally, resulting in abnormal folding

and multimer formation. These observations strongly dis-

couraged new approaches for producing full-length rRVGP

in yeast systems [68]. More recently, it was demonstrated

that a trimeric rRVGP ectodomain produced in Hansenula

polymorpha had good antigenic properties and was suit-

able for use as an antigen in diagnostic tools [51].

The rRVGP has also been expressed in plants [69–75].

This approach in general results in properly folded and

glycosylated rRVGP, as is the case in Agrobacterium

tumefaciens-transformed tomato plants expressing the

rRVGP under the control of a cauliflower mosaic virus

promoter [76]. The rRVGP was found in leaves and fruit by

immunoprecipitation and western blotting methods [77].

High-level rRVGP expression in tobacco plants was

achieved by using genetic engineering techniques, leading

to rRVGP being retained in the endoplasmic region [77].

Surprisingly, a glycoprotein form that was not attached to

the cytoplasmic membrane showed a high level of

immunogenicity in intraperitoneally immunized mice when

compared to the commercial vaccine [77]. It is claimed that

the main advantage of producing rRVGP in plants is the

possibility of oral delivery. For this purpose, rRVGP was

combined in a chimeric peptide containing antigenic

determinants from RVGP and rabies virus nucleoprotein

and cloned as a translational fusion product with the alpha

mosaic virus (AlMV) coat protein (CP) [12]. Spinach

(Spinacia oleracea) plants infected with AlMV recombi-

nants were then successfully used for oral-boosting anti-

rabies vaccination, protecting mice against challenge

infection [12]. However, in the context of a post-exposure

vaccination, when a rapid and intense immune response is

needed, the oral immunization may not be adequate for

rabies prevention, restricting oral vaccination with rRVGP

to pre-exposure immunization [12].

Promising insect-cell-based systems have also been

evaluated for rRVGP expression [56, 78, 79]. The

expression of rRVGP in Spodoptera frugiperda (Sf9) cells

using a recombinant baculovirus with the rRVGP gene

under the control of a polyhedrin promoter produced a

glycoprotein with good structural and immunogenic char-

acteristics when administered anchored to the cytoplasmic

membranes of baculovirus-infected cells [78]. The poten-

tial use of rRVGP produced in a baculovirus–insect cell

system was further evaluated more recently, when a puri-

fied form of rRVGP produced in Sf9 cells infected with a

recombinant baculovirus was found to be immunogenic

when tested in mice, as evidenced by high virus-neutral-

izing antibody titers in sera and 100% protection upon

virulent intracerebral challenge [56].

Drosophila melanogaster Schneider 2 (S2) cells have

been intensively studied as host cells for rRVGP produc-

tion [79]. Many aspects related to rRVGP expression in

different media, controlled culture conditions with different

substrate concentrations, pH, temperature and oxygenation

and their consequences for rRVGP productivity have been

described [79–83]. The rRVGP produced in S2 cells was

oligomerized and immunogenic, protecting mice against

challenge infection with rabies virus [58].

The use of mammalian cells in large-scale processes for

producing rabies virus for vaccination is the basis of many

second-generation rabies vaccines. In this context, it is of

note that there are only a few reports of stable rRVGP

expression in mammalian cells. One reason is that the

glycosylation pattern of rRVGP might also be critical in

mammalian systems. As for many other recombinant pro-

teins, it depends on the cell type used and may change with

cell culture conditions [84, 85]. For example, when both

neuroblastoma cells (NA) and baby hamster kidney cells

(BHK-21) were transfected with a vector derived from

retroviruses for rRVGP expression, only the glycoprotein

expressed in BHK-21 cells was correctly glycosylated.

Furthermore, rRVGP expressed constitutively in BHK-21

cells and that produced after rabies virus infection showed

different glycosylation patterns [86]. In fact, the quality of

the expressed rRVGP should be carefully considered. It

was demonstrated by another group that, in BHK-21 cells,

the formation of essential rRVGP epitopes was dependent

on culture conditions [64]. Similar results were found when

comparing rRVGP expression in COS-1, neuroblastoma,

and BHK-21 cells, where different glycosylation patterns

were found that were due to the influence of host factors

[52, 87]. Finally, rRVGP expression in CHO cells, possibly

the most-used mammalian cell expression system, has been

used preferentially for glycosylation studies rather than for

immunization purposes [48, 63, 88, 89].

Reverse genetics, a powerful tool for studying functions

of genes, has been increasingly used for molecular engi-

neering of RNA viruses. The potential for applying this

approach to rabies virus dates from the introduction of

reverse genetics to virus investigation [90, 91]. Since then,

great progress has been made in RNA virus reverse
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genetics and vaccine design [92]. The possibility of uti-

lizing reverse genetics for attenuation of rabies virus and

construction of viral vectors can be envisaged, and this

opens promising perspectives in rabies vaccinology [93].

rRVGP purification

Another important feature of the expression of rRVGP on

cell membranes for vaccination purposes is the requirement

for an efficient purification process. The purification of

native RVGP from virus suspensions is a well-established

process [94]. It is based on the ultracentrifugation of cell

supernatant after virus budding for isolation and concen-

tration of rabies virus [94]. Following virus dissociation

with a detergent-containing buffer, a new ultracentrifuga-

tion in a sucrose gradient is performed for the separation of

viral proteins [94, 95]. Immunoprecipitation is another

technique that has been used to purify RVGP [15]. The

drawback associated to this methodology is that, in general,

the oligomerization status of the glycoprotein is compro-

mised, so it is a technique of choice mainly for analytical

purposes [15, 30, 87]. Although these methodologies are

very efficient for native RVGP purification or analysis,

they are not optimal for the application of rRVGP to

immunization studies in which rRVGP has to retain its

immunogenic properties [30, 66, 86, 96]. The challenge in

rRVGP purification is to separate the rRVGP from other

cell proteins while retaining its trimeric structure and

important epitopes [97]. This process is generally con-

ducted in a detergent environment to avoid aggregation and

precipitation of rRVGP [95]. Several different detergents

have been used to solubilize the rRVGP. The first detergent

broadly that was used was Triton X-100 [95], but it was

later demonstrated that it caused some denaturation of

rRVGP, and the use of CHAPS (3-[(3-cholamidopropyl)

dimethylammonio]-1-propanesulfonate) allowed the tri-

meric state of rRVGP to be retained [21]. Other detergents

were also tested, but the best results for rRVGP trimer

solubilization were achieved with CHAPS or OGP (octyl

b-D-glucopyranoside) [56, 94].
The fusion of rRVGP with purification tags is an

approach that is only rarely used. The histidine tag–IMAC

strategy was applied for the purification of a truncated form

of rRVGP without a transmembrane domain [53] and for

an rRVGP under denaturing conditions [52]. In both cases,

the resulting rRVGP was not immunogenic. Purification

methods based on FPLC and ion exchange columns or gel

filtration were also used [98] with low recovery of trimeric

rRVGP. The best progress on rRVGP purification was

achieved by those working with tobacco leaves. When

extracted from plant cells and purified by ion exchange

chromatography followed by immunoaffinity [77] or

concanavalin A affinity chromatography [96], the rRVGP

maintained its conformation and immunogenicity in mice.

However, it is clear that the current procedures for purifi-

cation of rRVGP from cell membranes are more laborious

than purification of RVGP from the virus. Additionally,

expression levels of membrane protein in recombinant

animal cell systems are generally low in comparison to

those of soluble proteins [99, 100]. The low rRVGP

expression levels attained using different cell systems, even

when using strong DNA promoters, is another difficulty of

this approach [56, 86, 101]. Altogether, these drawbacks

usually make expression of rRVGP in cell systems labo-

rious and discouraging for further vaccination studies.

Viral vectors for RVGP expression

Another strategy for development of a new rabies vaccine

that has been studied is the use of a viral vector

[102–111, 113–122, 124–128]. Many viruses were geneti-

cally engineered for rRVGP expression in vivo. The most

successful program of rabies wildlife immunization is based

on an oral vaccine consisting of a mildly attenuated recom-

binant vaccinia virus (VACV) expressing the RVGP gene

[82]. For nearly 20 years, this rRVGP viral vector system has

been used to immunize red foxes, raccoons, coyotes and

skunks and has been crucial for the elimination of rabies in

parts of Europe and the significant reduction of the incidence

of rabies in the United States [103, 104]. In addition to

VACV, adenovirus-based vectors expressing rRVGP have

also been proposed for immunization of wildlife [105, 106].

This recombinant respiratory virus was shown to induce high

levels of rabies-virus-neutralizing antibodies, and 100% of

immunized mice survived a lethal rabies virus challenge

[107]. The development of recombinant adenovirus-based

rabies vaccines has led to a number of studies in which the

recombinant adenovirus and vaccinia virus systems were

compared. For example, the vaccinia vectorwas successfully

utilized for anti-rabies immunization of raccoons (Procyon

lotor) in a very large program of wildlife vaccination [86],

and the immunization of raccoonswith a rRVGPadenovirus-

based vaccine also resulted in protection in trials

[105, 106, 109]. Another recent study showed that an aden-

ovirus-based rabies vaccine may be more effective than the

traditional vaccinia-based vaccine for the immunization of

raccoons [110]. However, studies have shown that neither

vaccine is appropriate for immunization of striped skunks

(Mephitis mephitis), and therefore the appropriate recombi-

nant vectors to use for anti-rabies immunization is still a

matter of debate.

Although genetically modified rabies virus strains have

been shown to induce long-lasting protective immune

responses in animals [111, 112], researchers have studied
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new viral vectors for veterinary rabies immunization

[113–115]. The most important animal in the epidemiology

of rabies worldwide is undoubtedly the dog. Low doses of

recombinant Newcastle disease virus (NDV) expressing

rRVGP protected dogs from challenge with a street rabies

virus for more than one year, suggesting that immunization

with an NDV-vectored vaccine can induce long-lasting,

systemic protective immunity against rabies in dogs [113].

Another study showed that canine herpesvirus (CHV),

when used as a live vector for the expression of rRVGP

after intranasal inoculation in dogs, produced higher titers

of neutralizing antibodies against rabies virus than a

commercial, inactivated rabies vaccine [114]. For broad

veterinary immunization, poxvirus-based rabies vaccines

were considered very promising and have been proposed

several times, especially with raccoon poxvirus [115].

Nevertheless, the limitations of their efficacy in some tar-

get species and poor results of oral vaccination have dis-

couraged further studies with these vectors [116]. Other

virus vectors expressing rRVGP that have been proposed

mainly for veterinary immunization include vaccinia virus

Ankara [117], canine adenovirus [118], canine distemper

virus [119], parainfluenza virus 5 (administered by the

intranasal route) [96], canary pox virus recombinant (for

mucosal priming effect) [121] and baculovirus (for oral or

systemic immunization) [30, 78, 122].

It is important to note that the efficacy of immunization

against rabies with a viral vector is almost always evalu-

ated based on neutralizing antibody, cytotoxic T cell acti-

vation and challenge protection. However, as it occurs

in vitro, the conditions for rRVGP production in vivo may

vary, influencing the quality and quantity of rRVGP. The

description of the correlations between RVGP levels

expressed by a rabies virus strain and its pathogenicity and

immunogenicity [87] stimulated some studies with the goal

of increasing rRVGP expression by using a pseudorabies

viral vector [123], which, in general, increased immuno-

genicity. Also, the improved rRVGP presentation by

recombinant inactivated Flury low-egg-passage rabies

virus resulted in higher levels of neutralizing antibodies

[124]. A parapoxvirus (ORF) recombinant expressing

rRVGP was used for rabies immunization of mice, dogs

and cats, inducing high levels of neutralizing antibodies

and providing good protection in mice after intracerebral

challenge [125]. The amounts of recombinant protein

produced in vivo after immunization were not estimated,

but a direct correlation between the virus dose and neu-

tralizing antibodies suggested that the rRVGP levels were

important for the development of a protective immune

response [87, 126].

These studies show that when planning a vectored

rRVGP vaccine, the amount of in vivo-produced and/or

delivered rRVGP is an important feature to take into

account. In this context, a promising Semliki Forest virus

vector carrying an RVGP mRNA (SFV-RVGP) was

shown to be capable of inducing very high levels of

rRVGP in cell cultures [59]. Upon immunization with

SFV-RVGP, mice were shown to develop a strong

humoral and cellular immune response [127]. The same

principle of delivering an mRNA encoding RVGP using a

viral vector was used in the delivery of an mRNA adju-

vanted with protamine, which was able to induce potent

neutralizing antibodies and protection in mice and

domestic pigs [128].

Final remarks

The complexity of the oligomeric rabies virus glycoprotein

expressed on cell membranes hampers the studies of its

structure and function as well as the establishment of a

vaccine based on immunogenic rRVGP produced in cell

culture. It is quite well established that the trimeric form of

RVGP is necessary for infection through receptor binding

and for induction of a protective immune response. There

is ample evidence that, for vaccine purposes, the charac-

teristics of the native RVGP have to be maintained during

expression and purification of rRVGP and vaccine formu-

lation. On the other hand, in terms of vaccine design, the

in vivo expression of rRVGP by a virus vectored for gene

delivery has been shown to be a more straightforward

strategy, since the rRVGP synthesized in vivo is more

likely to possess the required structure and antigenicity.

The available results of studies of the immunogenicity of

viral vectors expressing the rRVGP are very encouraging.

A rabies vaccine based on rRVGP would contribute to

simplifying the industrial bioprocess, quality control, and

endemic rabies control.
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