Skip to main content
Log in

Tomato mottle wrinkle virus, a recombinant begomovirus infecting tomato in Argentina

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Begomoviruses seriously threaten tomato production in South America. Here, we present the molecular characterization of a novel tomato-infecting begomovirus isolated in Argentina and demonstrate its infectivity. After cloning and sequencing the complete genome of this new virus, pairwise genetic distance and phylogenetic analyses revealed that it is a novel virus that is closely related to other begomoviruses found in Argentina, Brazil and Bolivia. We have proposed naming the virus tomato mottle wrinkle virus (ToMoWrV), based on symptoms produced upon its biolistic inoculation into tomato plants. Recombination analysis revealed that ToMoWrV is a recombinant, with parental sequences likely belonging to the South American begomoviruses soybean blistering mosaic virus (SoBlMV) and tomato yellow vein streak virus (ToYVSV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams MJ, King AMQ, Carstens EB (2013) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch Virol 158:2023–2030

    Article  CAS  PubMed  Google Scholar 

  2. Rojas MR, Hagen C, Lucas WJ, Gilbertson RL (2005) EXPLOITING CHINKS IN THE PLANT’S ARMOR: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394

    Article  CAS  PubMed  Google Scholar 

  3. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol. 11:777–788

    Article  CAS  PubMed  Google Scholar 

  4. Noueiry AO, Lucas WJ, Gilbertson RL (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76:925–932

    Article  CAS  PubMed  Google Scholar 

  5. Fontes EPB, Gladfelter HJ, Schaffer RL, Petty ITD, Hanley-Bowdoin L (1994) Geminivirus replication origins have a modular organization. The Plant Cell 3:405–416

    Article  Google Scholar 

  6. Albuquerque LC, Martin DP, Avila AC, Inoue-Nagata AK (2010) Characterization of tomato yellow vein streak virus, a begomovirus from Brazil. Virus Genes 40:140–147

    Article  CAS  PubMed  Google Scholar 

  7. Albuquerque LC, Varsani A, Fernandes FR, Pinheiro B, Martin DP, de Tarso Oliveira Ferreira P, Lemos TO, Inoue-Nagata AK (2012) Further characterization of tomato-infecting begomoviruses in Brazil. Arch Virol 157:747–752

    Article  CAS  PubMed  Google Scholar 

  8. Castillo-Urquiza GP, Beserra JE Jr, Bruckner FP, Lima AT, Varsani A, Alfenas-Zerbini P, Murilo Zerbini F (2008) Six novel begomoviruses infecting tomato and associated weeds in Southeastern Brazil. Arch Virol 153:1985–1989

    Article  CAS  PubMed  Google Scholar 

  9. Wyant PS, Gotthardt D, Schäfer B, Krenz B, Jeske H (2011) The genomes of four novel begomoviruses and a new Sida micrantha mosaic virus strain from Bolivian weeds. Arch Virol 156:347–352

    Article  CAS  PubMed  Google Scholar 

  10. Márquez-Martín B, Maeso D, Martínez-Ayala A, Bernal R, Teresa Federici M, Vincelli P, Navas-Castillo J, Moriones E (2012) Diverse population of a new bipartite begomovirus infecting tomato crops in Uruguay. Arch Virol 157:1137–1142

    Article  PubMed  Google Scholar 

  11. Rocha CS, Castillo-Urquiza GP, Lima ATM, Silva FN, Xavier CD, Hora-Júnior BT, Beserra-Júnior JE, Malta AWO, Martin DP, Varsani A, Alfenas-Zerbini P, Mizubuti ESG, Zerbini FM (2013) Brazilian begomovirus populations are highly recombinant, rapidly evolving, and segregated based on geographical location. J Virol 87:5784–5799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225

    Article  CAS  PubMed  Google Scholar 

  13. Chakraborty S, Vanitharani R, Chattopadhyay B, Fauquet CM (2008) Supervirulent pseudorecombination and asymmetric synergism between genomic components of two distinct species of begomovirus associated with severe tomato leaf curl disease in India. J Gen Virol 89:818–828

    Article  CAS  PubMed  Google Scholar 

  14. Instituto Nacional de Estadística y Censos de la República Argentina (2002) Hortalizas: superficie implantada a campo o bajo cubierta por especie, según provincia. Censo Nacional Agropecuario. Available in INDEC Web-page. http://www.indec.gov.ar/agropecuario/cna_defini.asp. Accessed 18 June 2013

  15. Vaghi Medina CG, López Lambertini PM (2010) Genetic diversity of begomovirus infecting tomato in Argentina. In: 6th international geminivirus symposium. 4th international ssDNA comparative virology workshop. Guanajuato, Mexico

  16. Vaghi Medina CG, Ranieri VV, López Lambertini PM (2013) Geographical distribution of begomovirus mixed infections in Argentina. In: 7th International Geminivirus Symposium and 5th International ssDNA Comparative Virology Workshop. Hangzhou, China

  17. Vaghi Medina CG, López Lambertini MP (2012) Tomato dwarf leaf virus, a new world begomovirus infecting tomato in Argentina. Arch Virol 157:1975–1980

    Article  CAS  PubMed  Google Scholar 

  18. Rojas MR, Gilbertson RL, Russell DR, Maxwell DP (1993) Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis 77:340–347

    Article  CAS  Google Scholar 

  19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  20. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  Google Scholar 

  22. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  23. Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Guenoune-Gelbart D, Sufrin-Ringwald T, Capobianco H, Gaba V, Polston JE, Lapidot M (2010) Inoculation of plants with begomoviruses by particle bombardment without cloning: using rolling circle amplification of total DNA from infected plants and whiteflies. J Virol Methods 168:87–93

    Article  CAS  PubMed  Google Scholar 

  25. Haible D, Kober S, Jeske H (2006) Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J Virol Methods 135:9–16

    Article  CAS  PubMed  Google Scholar 

  26. ICTV Official Taxonomy: Updates since the 8th Report (2013). http://talk.ictvonline.org/files/ictv_official_taxonomy_updates_since_the_8th_report/m/plant-official/4838.aspx. Accessed 18 June 2013

  27. Rodríguez-Pardina PE, Hanada K, Laguna IG, Zerbini FM, Ducasse DA (2010) Molecular characterization and relative incidence of bean- and soybean-infecting begomoviruses in northwestern Argentina. Ann Appl Biol 158:69–78

    Article  Google Scholar 

  28. Lefeuvre P, Martin DP, Hoareau M, Naze F, Delatte H, Thierry M, Varsani A, Becker N, Reynaud B, Lett JM (2007) Begomovirus ‘melting pot’ in the south-west Indian Ocean islands: molecular diversity and evolution through recombination. J Gen Virol 88:3458–3468

    Article  CAS  PubMed  Google Scholar 

  29. Martin DP, Lefeuvre P, Varsani A, Hoareau M, Semegni J-Y, Dijoux B, Vincent C, Reynaud B, Lett JM (2011) Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks. PLoS Pathog 7(9):e1002203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lefeuvre P, Lett JM, Varsani A, Martin DP (2009) Widely conserved recombination patterns among single-stranded DNA viruses. J Virol 83:2697–2707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lefeuvre P, Lett JM, Reynaud B, Martin DP (2007) Avoidance of protein fold disruption in natural virus recombinants. PLoS Pathog 3(11):e181

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by AEBIO-242411-INTA-2009 projects. We thank Agr. Eng. Joaquin Fernández De Ullivarri and Agr. Eng. (M.Sc.) Ceferino René Flores for providing us with the infected tomato sample from Salta, and Msc María Lorena Giachero for tomato photography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. López Lambertini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2014_2216_MOESM1_ESM.xlsx

ESM_1 Table summarizing DNA-A and DNA-B sequences from all begomoviruses used in this article for phylogenetic and recombination analysis (XLSX 19 kb)

705_2014_2216_MOESM2_ESM.pdf

ESM_2 a: Common-region characterization of the AR:Pichanal:400:08 isolate. The alignment is composed of DNA-A and DNA-B CR sequences of the AR:Pichanal:400:08 isolate and DNA-A CR sequences of soybean blistering mosaic virus (SoBlMV-EF016486), tomato yellow vein streak virus (ToYVSV-EF417915), solanum mosaic Bolivia virus (SoMBoV-HM585435), and tomato dwarf leaf virus (ToDLV-JN564749). Vertical bars indicate the characteristic common region motifs. Arrows indicate the orientation of the iterons. b left: Schematic representation of the recombination event in AR:Pichanal:400:08; the sequences that most resemble the parental sequences are shown: ToYVSV (KJ413253) in red and SoBlMV (EF016486) in green. A pairwise identity graph is shown to indicate the recombinant breakpoints. Black arrows represent the characteristic begomovirus open reading frame distribution. Black lane indicates the common region. b right: Table summarizing the p-values for all methods implemented in RDP4 that were used to detect this recombination event. (PDF 512 kb)

705_2014_2216_MOESM3_ESM.pdf

ESM_3 Maximum-likelihood (ML) phylogenetic tree based on multiple alignment of full-length DNA-B sequences of AR:Pichanal:400:08, AR:Pichanal:397:08 and 47 related South American begomoviruses (Online resource 1). Only non-parametric bootstrap values over 50 are shown as node support. African cassava mosaic virus (ACMV- AF259895) was selected as an out-group. (PDF 901 kb)

705_2014_2216_MOESM4_ESM.jpg

ESM_4: Leaf mottling and mild wrinkling symptoms exhibited by tomato plants inoculated with RCA products of AR:Piwchanal:400:08 DNA-A and DNA-B by the biolistic method (b) and non-inoculated tomato plant (a). (JPEG 593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaghi Medina, C.G., Martin, D.P. & López Lambertini, P.M. Tomato mottle wrinkle virus, a recombinant begomovirus infecting tomato in Argentina. Arch Virol 160, 581–585 (2015). https://doi.org/10.1007/s00705-014-2216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2216-y

Keywords

Navigation