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Abstract Plasmid DNA vaccines are considered alter-

natives to inactivated influenza virus vaccines to control

influenza. Vaccination with a hemagglutinin (HA)-, HA

ectodomain (HAe)-, or HA subunit 1 (HA1)-based vaccine

can stimulate protective immunity in animals. The aim of

this study was to compare their capacity to induce an

antibody response and protection against influenza virus

infection in mice after DNA vaccination. We constructed

three expression vectors encoding full-length HA, HAe, or

HA1 of the A/California/07/2009 influenza A virus and

designed three animal experiments: (i) BALB/c mice were

immunized twice with 30 lg of the HA, HAe, or HA1

DNA vaccine with high-voltage electroporation (100 V),

and 3 weeks after boosting, they were challenged with a

lethal dose of virus. (ii) Immunization and challenge were

as in experiment i, but with low-voltage electroporation

(10 V). (iii) Mice were immunized once with 50 lg of

DNA and challenged 1 week later. The immunogenic

effects of the three DNA vaccines were evaluated in terms

of antibody titer, survival rate, bodyweight change, and

lung viral titer. In all three experiments, both HA and HAe

induced higher antibody and neutralization titers than HA1.

Following challenge with a lethal mouse-adapted

homologous virus, both HA and HAe reduced the viral

titers in lung washes or offered better protection from

weight loss than HA1 in experiments ii and iii. Thus, HA1

induces a lower immune response than HA or HAe when

used as a DNA vaccination. Our data should be valuable in

choosing the optimal candidate vaccine when faced with

the threat of pandemic influenza.

Introduction

In 2009, a flu pandemic presented a global threat to public

health. It began in Mexico and was caused by a new strain

of the H1N1 influenza virus [1]. The pandemic H1N1 2009

virus (H1N1pdm09) spread rapidly around the world after

the initial outbreak. By the time the World Health Orga-

nization (WHO) [2] had declared a pandemic, 74 countries

and territories had reported laboratory-confirmed infec-

tions. By the end of 2009, this new virus had caused 10,000

deaths. H1N1pdm09 is a novel influenza virus, with a

genome that is a combination of North American and

Eurasian swine influenza virus lineages [3–5]. Although no

donor viruses were isolated from swine, this novel virus

had possibly been circulating for some time in swine before

crossing the species barrier to infect humans [4]. Like other

influenza viruses, the person-to-person transmission of

H1N1pdm09 occurs via respiratory droplets [6], and

H1N1pdm09 appears to spread among people with greater

ease than the seasonal flu virus [7]. In vivo experiments

have also shown that this virus has a greater capacity to

proliferate than seasonal influenza viruses [8–10]. Because

H1N1pdm09 shares low levels of genetic and antigenic

similarity with seasonal influenza viruses [3], vaccines

against these seasonal viruses produce relatively low

immunity to H1N1pdm09 [11, 12].
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Vaccination is the most effective strategy for com-

bating an influenza pandemic. In 2009, monovalent

inactivated vaccines were produced as quickly as possi-

ble once the outbreak was identified. Clinical results

showed that adults immunized with an inactivated vac-

cine displayed greater than 90 % seroconversion [13,

14]. In China, a vaccine production program was laun-

ched as early as June 2009, and the inactivated vaccine

was available several months later. Clinical results

showed that the inactivated vaccine induced satisfactory

results in all age groups [15, 16]. Although the inacti-

vated 2009 H1N1 influenza vaccines have proved

effective in eliciting neutralizing antibodies against the

virus in clinical trials, other candidate vaccines against

H1N1pdm09 must be developed. Plasmid DNA vaccines

have been considered alternatives to inactivated influenza

virus vaccines for controlling influenza. Many studies

have shown that DNA vaccines can protect animals

against influenza A viral infections [17–19], and in our

previous studies, we have demonstrated that DNA vac-

cination in animal models effectively prevented influenza

virus infection [18, 20, 21].

The viral hemagglutinin (HA) protein is a homotrimer.

Each of its single-chain monomers is initially synthesized

as a precursor polypeptide, HA0, which is then cleaved by

host proteases into two subunits, HA1 and HA2 [22, 23].

The HA protein of the influenza A virus is the major

antigen that elicits protective immune response. Antibodies

directed against this surface glycoprotein provide protec-

tion by blocking viral attachment and entry [24]. HA is the

main component of inactivated vaccines directed against

seasonal influenza viruses and also acts as the major anti-

gen for most DNA vaccines [21, 25], subunit vaccines [26,

27], and viral-vector-based vaccines [28–30]. The ectodo-

main of HA (HAe) and HA1, two forms of truncated HA,

has also been used as a vaccine to immunize animals.

Previous studies have demonstrated that a vaccine based on

HAe, an HA1 region of the influenza A virus, induces

neutralizing activity and protection against influenza viral

challenge [31–36], suggesting that HAe and HA1 of the

HA protein play significant roles in the immune response to

viral infection and are attractive targets for vaccine

development. However, no study has compared the

immunogenicity of HA, HAe, and HA1 in mice after DNA

vaccination.

In the work reported here, plasmids expressing the

full-length HA protein or truncated forms of HA (HAe

and HA1) were constructed. We determined the cellu-

lar localization of the antigens and compared their

ability to induce an antibody response and protection

against influenza virus infection in mice after DNA

vaccination.

Materials and methods

Virus preparation

Strain NYMC X-179A [A/reassortant/NYMC X-179A

(California/07/2009 x NYMC X-157)(H1N1)] was gener-

ated by New York Medical College and supplied by the

Centers for Disease Control and Prevention (USA). This

strain is a pandemic vaccine strain recommended for use in

vaccine development [14]. The seed virus was grown in

embryonated eggs with the fifty percent tissue culture

infection dose (TCID50) determined in Madin-Darby

canine kidney (MDCK) cells according to the Reed-Mu-

ench method [37].

Other influenza virus strains [A/PR/8/34 (H1N1),

A/New Caledonia/20/1999 (H1N1), A/Chicken/Henan/12/

2004 (H5N1) and A/Chicken/Jiangsu/7/2002 (H9N2)] were

also used. Viruses were propagated in the allantoic cavities

of 10-day-old embryonated chicken eggs at 37 �C for 48 h

and stored at -80 �C until required. H5N1 virus was

handled in a biosafety level 3 laboratory.

Mouse-adapted virus

All animal experiments were conducted in accordance with

ethical procedures and policies approved by the Wuhan

Institute of Virology’s Institutional Animal Care and Use

Committee. Prior to animal infection for evaluation of the

protective efficacy of DNA immunization, a mouse-adapted

virus was prepared. Strain NYMC X-179A (H1N1) is a

pandemic vaccine strain recommended for use in vaccine

development [14]. The seed virus was almost completely

avirulent for mice. To enhance the virulence of NYMC

X-179A, we produced a mouse-adapted strain by lung-to-

lung passage in mice. Three BALB/c mice were anesthe-

tized, and each was inoculated with 50 ll of the NYMC

X-179A viral suspension (104 TCID50) by intranasal drip.

At 3-5 days post-inoculation, mice were sacrificed and their

trachea and lungs removed. Tissues were washed three

times in a total volume of 2 ml of phosphate-buffered saline

(PBS) containing 0.1 % bovine serum albumin (BSA). The

bronchoalveolar washes were collected and used to infect

the next batch of mice after removing the cellular debris by

centrifugation. The lung-to-lung passage tests were repe-

ated until the virus was lethal for mice. After twenty serial

passages, mice developed clinical symptoms, including

hunched posture, weakness, weight loss, and ruffled fur,

and the viruses exhibited high virulence in mice. We then

plaque purified two of the mouse-passaged viruses. The

final adapted virus was harvested, aliquoted, and stored at

-80 �C. The 50 % mouse lethal dose (LD50) of each stock

was determined using the Reed-Muench method [37].
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Plasmid DNAs

The full-length HA gene from the 2009 H1N1 strain

A/California/04/2009 virus was ligated into the pUC/HA

vector (Shanghai Sangon Biological Engineering Tech-

nology & Services Co., Ltd.). Plasmid pCAGGSP7/HA

was constructed by amplifying full-length HA from pUC/

HA using primers HA-F (50-AAA CTC GAG AGC AAA

AGC AGG GGA AAA TAA A-30) and HA-R (50-AAT

CCC GGG AGT AGA AAC AAG GGT GTT TTT T-30)
and then ligating into the expression vector pCAGGSP7

between the XhoI and SmaI restriction endonuclease sites.

The HAe fragment was amplified from pCAGGSP7/HA

using primers HA-F and HAe-R (50-AAT CCC GGG TCA

CTG GTA AAT CCT TGT TGA TTC C-30). The HA1

fragment was amplified from pCAGGSP7/HA using

primers HA-F and HA1-R (50-AAT CCC GGG TCA TCT

AGA TTG AAT AGA CGG GAT A-30). HAe and HA1

were ligated into pCAGGSP7 between the XhoI and SmaI

restriction endonuclease recognition sites to yield

pCAGGSP7/HAe and pCAGGSP7/HA1, respectively. The

nucleotide sequences of HA, HAe and HA1 were con-

firmed by sequencing. The expression levels of the proteins

encoded by the HA, HAe and HA1 DNA sequences were

confirmed in 293T human embryonic kidney cells as

described previously [38]. Plasmids were propagated in

Escherichia coli DH5a and purified using a QIAGEN-tip

500 plasmid purification kit (QIAGEN, Germany).

Indirect immunofluorescence

COS-7 cells were co-transfected with 2 lg of pCAGGSP7/

HA, pCAGGSP7/HAe or pCAGGSP7/HA1 using Lipo-

fectamine 2000 (Invitrogen) in serum-free medium. After

incubation for 5 h, the medium was replaced with fresh

medium containing 10 % fetal bovine serum. At 24 h post-

transfection, cells were washed with PBS, fixed with 4 %

paraformaldehyde (pH 7.4) for 30 min, permeabilized with

0.2 % Triton X-100 in PBS for 30 min, and stained with

Hoechst 33258 for 30 min. Indirect immunofluorescent

staining was performed with an HA (NYMC X-179A)-

specific rabbit antiserum and FITC-labeled goat anti-rabbit

antisera. Fluorescence imaging was performed with a TCS-

SP2 confocal microscope (Leica, Germany) equipped with

a cooled CCD camera. All measurements were obtained

with a 100 9 oil immersion objective (NA 1.32) and 29

zoom.

DNA immunization by electroporation

In vivo electroporation was carried out according to the

method described by Aihara and Miyazaki [39]. Adult

female BALB/c mice (6–8-weeks old) were immunized

with plasmid DNA dissolved in 30 ll of Tris–EDTA buf-

fer. After injection in the right quadriceps muscle, a pair of

electrode needles 5 mm apart was inserted into the muscle

to cover the DNA injection sites, and electric pulses were

delivered using an electric pulse generator (ECM830;

BTX, San Diego, CA).

Serum antibody assays

Enzyme-linked immunosorbent assays (ELISAs) were

performed in 96-well plates (Costar, Cambridge, MA).

Reagents used in the assays included: inactivated vaccine

against NYMC X-179A diluted to 10 lg/ml (Shanghai

Institute of Biological Products, Shanghai, China), serial

two-fold dilutions of sera from each group of immunized or

unimmunized mice; goat anti-mouse IgG (a-chain specific)

(Southern Biotechnology Associates, Inc., USA) conju-

gated to biotin, streptavidin conjugated to alkaline phos-

phatase (Southern Biotechnology Associates), and p-

nitrophenyl-phosphate. The amount of chromogen pro-

duced was measured based on the absorbance measured at

410 and 630 nm using an ELISA reader (GENios, Tecan).

HAI assay

The hemagglutinin inhibition (HAI) assay was performed

as described previously [40]. Briefly, the sera were treated

with receptor-destroying enzyme (Denke-Seiken, Japan)

and inactivated at 56 �C for 30 min, followed by incuba-

tion with chicken erythrocytes to adsorb nonspecific

agglutinins. The sera from each group of immunized or

unimmunized mice were serially diluted twofold with PBS

in a 96-well polystyrene microtiter plate, 25 ll in each

well. A portion of 25 ll of virus suspension containing 4

hemagglutinin units (HAU) was added to each well. After

incubation of the plate at room temperature for 1 h, 50 ll

of 0.5 % (v/v) chicken red blood cells was added to each

well, and the plate was incubated at room temperature for

30 minutes. The HAI titers were determined as the highest

serum dilution that completely inhibited hemagglutination.

Microneutralization assay

Titers of neutralizing antibodies (NAbs) were determined

as described previously [41]. The serum treated with

receptor-destroying enzyme (RDE) was diluted from 1:20

to 1:2560 in twofold serial dilutions in culture medium

(DMEM containing 100 U/ml penicillin G, 100 lg/ml

streptomycin and 0.5 lg/ml TPCK-treated trypsin). Serum

dilution solutions were mixed with culture medium con-

taining 100 TCID50 of NYMC X-179A at room tempera-

ture for 1 h. The virus-serum mix was then transferred to

MDCK cells. Culture medium (200 ll) was added, and the
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plates were incubated for 72 h. Endpoints were determined

by hemagglutination titer.

Lethal challenge

Mice were anesthetized and challenged with the mouse-

adapted virus strain at 10 9 LD50 by intranasal adminis-

tration in 50 ll of the viral suspension. This infection

caused rapid and widespread viral replication in the lung

and death of the unimmunized mice within 7 days.

Specimens

Mice were anaesthetized with chloroform and then bled

from the heart with a syringe. Serum was collected from

the blood and used in antibody assays. After bleeding, a

ventral incision was made along the median line from the

xiphoid process to the point of the chin. The trachea and

lungs were removed and washed twice by injecting 2 ml of

PBS containing 0.1 % BSA. The bronchoalveolar wash

was used for virus titration after removing cellular debris

by centrifugation [42].

Virus titrations

The bronchoalveolar wash was serially diluted tenfold and

used to inoculate MDCK cells, which were then incubated

at 37 �C and tested for hemagglutination activity 3 days

later. The virus titer of each specimen, expressed as the

TCID50, was calculated by the Reed-Muench method [37].

The virus titer in each experimental group was represented

by the mean ± the standard deviation (S.D.) of the virus

titer per ml of specimens from all mice in each group.

Statistical analysis

Comparisons of experimental groups were evaluated by

Student’s t-test where a P-value less than 0.05 were con-

sidered significant. For survival, probability was calculated

using Fisher’s exact test, comparing the rate of survival in

mice immunized with the viral protein-expressing DNA

with those of the control groups.

Results

Plasmid DNA construction and expression

in mammalian cells

DNA fragments encoding amino acid sequences 1–566,

1–531, and 1–344 of HA from influenza A virus strain

A/California/07/2009 were individually cloned into the

expression vector pCAGGSP7 to generate pCAGGSP7/

HA, pCAGGSP7/HAe, and pCAGGSP7/HA1, respectively

(Fig. 1a). To detect the localization of each protein enco-

ded by the plasmids in mammalian cells, COS-7 cells were

transfected with each plasmid and protein localization was

determined by indirect immunofluorescence. As shown in

Fig. 1b, fluorescent signals were detected in cells trans-

fected with each kind of plasmid DNA. Most of the HA

protein localized on the cell membrane, whereas HAe and

HA1 mainly localized in the cytoplasm. This result shows

that the loss of the transmembrane domains of HAe and

HA1 hindered their attachment to the cell surface, as

observed in previous studies [43, 44].

Adaptation of NYMC X-179A in mice

To identify any amino acid substitutions introduced during

viral passage in mice, the sequences of HA and neur-

aminidase (NA) from mouse-adapted influenza A virus

strain NYMC X-179A were compared with those of the

wild-type virus NYMC X-179A. These two virus clones

have identical viral genomes, but we found three amino

acid differences between the mouse-adapted and wild-type

viruses, one in HA (K145E) and two in NA (Q25R, I210M)

(data not shown). Some mutations, such as K119N, D131E,

G155E, S183P, A198E, R221K, and D222G in HA1 of

pandemic H1N1 influenza virus, have been reported to

occur during viral adaptation in the mouse lung [45, 46].

However, the K145E mutation in HA identified in this

study is unique. NA mutations Q25R and I210M have also

never been investigated. To determine whether the amino

acid changes observed in mouse-adapted NYMC X-179A

occur in other field strains, we selected 1000 field strains

(in 2009–2012, full-length sequences only) from the flu

virus gene database (http://www.ncbi.nlm.nih.gov/

genomes/FLU/FLU.html) and analyzed the mutations at

the corresponding sites. Residue 145K is highly conserved

among the 2009 H1N1 isolates, with only five K145R

mutations and no K145E mutations observed. The mutation

Q25R in the NA protein was present in two of the H1N1

strains examined (2/1000), whereas the other mutation,

I210M, was not observed in any of the field strains (data

not shown).

Antibody-inducing capacity and protective efficacy

of HA, HAe, and HA1 DNA vaccines in mice

after immunization with high-voltage electroporation

To compare the immune responses and protection against

viral infection elicited by these three constructs, 6- to

8-week-old female BALB/c mice (n = 10 per group) were

immunized with 30 lg of pCAGGSP7/HA, pCAGGSP7/

HAe, or pCAGGSP7/HA1 with high-voltage electropora-

tion (100 V). Nonimmunized mice were used as the control
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group. The animals were immunized twice after a 3-week

interval. Serum was collected from the mice 3 weeks after

boosting. Immunoglobulin G (IgG) titers and those of other

antibodies were analyzed after the sera were treated with

RDE. As shown in Fig. 2a, immunization with the HA,

HAe, or HA1 DNA vaccine induced significant antibody

responses compared with that in the control group

(p \ 0.01). Mice immunized with HA had significantly

higher IgG titers than those immunized with HA1

(p = 0.006). The antibody titers of the HAe- and HA1-

immunized mice did not differ significantly, although HAe

induced slightly higher IgG titers than HA1. Consistent

with the results of enzyme-linked immunosorbent assay

(ELISA) studies, the antibodies induced by HA, HAe, and

HA1 exhibited significantly higher hemagglutinin inhibi-

tion (HAI) and neutralization titers than those induced in

the control group. The antibodies induced by the HA1

DNA vaccine also exhibited lower HAI and neutralization

titers than those induced by HA or HAe (Fig. 2b, c),

although these differences were not significant. We also

analyzed the cross-neutralization titers of the antisera from

mice immunized with HA, HAe, or HA1. Several strains of

influenza virus, including A/PR/8/34 (H1N1), A/New

Caledonia/20/1999 (seasonal H1N1), A/Chicken/Henan/

12/2004 (H5N1), and A/Chicken/Jiangsu/7/2002 (H9N2),

were selected for detection. No cross-neutralizing

Fig. 1 a Schematic diagram of

DNA vaccine constructs.

Details of the design and

construction of each plasmid are

given in the Materials and

methods. b Immunofluorescent

confocal microscopic images.

The indicated cDNAs were

expressed in COS-7 cells.

Indirect immunofluorescent

staining was performed with a

specific antibody against

hemagglutinin (HA; clone

NYMC X-179A) raised in

rabbits, followed by a secondary

fluorescein isothiocyanate

(FITC)-labeled goat anti-rabbit

antibody
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antibodies were detected against these viruses (data not

shown).

To determine the protective efficacy of the HA, HAe,

and HA1 DNA vaccines against viral infection, mice were

challenged with 10 9 LD50 of the mouse-adapted virus

3 weeks after boosting. Three and 5 days after infection,

almost no weight loss was observed in the mice immunized

with the DNA vaccines, whereas the mice in the control

group exhibited approximately 15 % and 25 % weight loss,

respectively (Fig. 2e). All mice immunized with the DNA

vaccines were still alive 2 weeks after infection (Fig. 2d),

and very low viral titers were detected in their lungs

(Fig. 2f). The mice in the control group died within

1 week, with high viral titers in their lungs. Thus, two

successive immunizations of mice with the HA, HAe, or

HA1 DNA vaccine with high-voltage electroporation

induced a robust immune response and provided complete

protection against lethal viral challenge, although HA1

Fig. 2 BALB/c mice were immunized twice with 30 lg of

pCAGGSP7/HA, pCAGGSP7/HAe, or pCAGGSP7/HA1 with high-

voltage electroporation (100 V). Three weeks after boosting, the sera

were collected for the titration of IgG, HAI, and NAbs. a Titers of IgG

in the mouse sera after boosting. Anti-HA IgG titers are expressed as

the highest serum dilution that yielded an optical density greater than

twice the mean of similarly diluted negative control samples. The data

shown are the mean antibody titers of the four mice in each group

with standard errors (error bars). b HAI titers in vaccinated mice. HAI

titers of the immune sera were determined as the capacity of the sera

to inhibit virus hemagglutination of chicken red blood cells.

Representative data are geometric means ± SD. c NAb titers in

vaccinated mice. NAb titers are shown as the geometric mean for

each group with SD (error bars). Three weeks after boosting, the mice

were challenged with a lethal dose of mouse-adapted NYMC X-179A

(10 9 LD50). The survival rates, bodyweight changes, and lung viral

titers were determined. d Percentage survival of mice infected with

lethal virus. Mouse survival was monitored daily for 2 weeks.

e Bodyweight loss. Bodyweight loss was observed for 14 days after

infection. f Lung viral titers on day 3 post challenge. The mice were

sacrificed 3 days after viral challenge. The tracheae and lungs were

removed and washed twice by injection of 2 ml of PBS containing

0.1 % bovine serum albumin. The bronchoalveolar wash was used for

virus titration after the cellular debris was removed by centrifugation
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induced a slightly lower antibody response than that

induced by HA or HAe.

Comparison of HA, HAe, and HA1 DNA vaccination

with low-voltage electroporation in mice

In a previous study, we demonstrated that electroporation

following intramuscular injection markedly enhanced the

efficacy of immunization and provided effective protection,

even at a voltage of 10 V [47]. However, the antibody titers

induced in mice gradually decreased as the voltage

decreased [47]. To investigate whether immunization with

the HA, HAe, or HA1 DNA vaccine with electroporation at

a voltage of 10 V could induce a protective immune

response against viral infection, female BALB/c mice

(n = 10 per group) were immunized and challenged as

described above, except with low-voltage electroporation

(10 V). Compared with the experiment described above,

apparent reductions in the IgG antibody, HAI, and neu-

tralizing titers were observed with electroporation at 10 V.

As shown in Fig. 3(a), mice immunized with HA and HAe

displayed higher IgG titers than mice immunized with

HA1. Consistent with the results of ELISAs, the antibodies

induced by the HA1 DNA vaccine displayed lower HAI

and neutralization titers than those induced with HA and

HAe, although the differences were not significant

(Fig. 3b, c).

To determine whether this reduced immune response is

associated with lower protective efficacy against viral

infection, mice were challenged with 10 9 LD50 of the

mouse-adapted virus. All immunized mice survived for

2 weeks (Fig. 3d), although different levels of weight loss

were observed. Three and 5 days after infection, weight

losses of approximately 5 % and 3 %, respectively, were

observed in the HA-immunized mice; 9 % and 8 %,

respectively, in the HAe group; and 18 % and 22.5 %,

Fig. 3 BALB/c mice were

immunized twice with 30 lg of

pCAGGSP7/HA, pCAGGSP7/

HAe, or pCAGGSP7/HA1 with

low-voltage electroporation

(10 V). Three weeks after

boosting, the sera were

collected for the titration of IgG,

HAI, and NAbs. a Titers of IgG

in mouse serum after boosting.

b HAI titers in vaccinated mice.

c NAb titers in vaccinated mice.

Seven days after immunization,

mice were challenged with a

lethal dose of mouse-adapted

NYMC X-179A (10 9 LD50).

Survival rates, bodyweight

changes, and lung viral titers

were determined. d Percentage

survival of mice infected with

lethal virus. e Bodyweight

losses. f Lung viral titers on day

3 post-challenge
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respectively, in the HA1-immunized mice. The mice in the

HA1 group showed a significantly greater loss in body-

weight than the mice in the HA and HAe groups

(p \ 0.01). This demonstrates that viral infection caused

more-severe clinical signs of illness in the HA1-immunized

mice. We then determined the viral loads in the lungs at

3 days postinfection (dpi). The results demonstrated that

HA and HAe significantly reduced the viral loads in the

lungs compared with the high viral loads of the control

group (p \ 0.05). Consistent with the weight loss results,

high viral loads were detected in the lungs of the mice of

the HA1 group. Thus, immunization with the HA or HAe

DNA vaccine using low-voltage electroporation was more

effective in inducing protective immunity against a lethal

viral challenge than immunization with HA1.

HA1 induces less-efficient early protection than HA

or HAe

In our previous study, we demonstrated that a single

immunization with H5 HA DNA vaccine, combined with

electroporation, elicited both humoral and cellular immune

responses, which provided mice with early protection

against avian influenza H5N1 virus [21]. The experiments

described in the preceding sections suggest that the HA1

DNA vaccine induced a weaker immune response than the

HA and HAe vaccines. Therefore, we investigated whether

the HA1 DNA vaccine might also induce a weaker immune

response 1 week after immunization. In this experiment, 6-

to 8-week-old female BALB/c mice (n = 10 per group)

were immunized with 50 lg of HA, HAe, or HA1 with

high-voltage electroporation (100 V). The mice were

immunized once and challenged 7 days later. Sera were

collected 7 days after immunization, and an antibody

analysis showed that the mice in all immunized groups had

a relatively lower antibody response (Fig. 4a–c). Similarly,

the HA1 DNA vaccine also induced lower IgG, HAI, and

neutralizing antibody titers than the HA and HAe DNA

vaccines, although the differences were not significant

(Fig. 4b, c). After challenge, the mice in the HA- and HAe-

immunized groups all survived for 2 weeks (Fig. 4d),

whereas only 80 % (4/5) of the mice in the HA1-immu-

nized group survived. At 3 dpi, viral infection caused a

weight loss of approximately 20 % in each group of mice.

However, the weight losses differed at 5 dpi and were

approximately 11 %, 23 %, and 27 % in the HA, HAe, and

HA1 groups, respectively. The mice in the HA1 group also

showed a more significant loss in bodyweight than the mice

in the HA and HAe groups (p \ 0.01). The weights of the

HA- and HAe-treated mice recovered to the preinfection

level after 2 weeks, but the weights of the HA1-immunized

mice did not recover to the preinfection level (Fig. 4e).

Consistent with weight loss, a high viral load was detected

in the immunized mouse group and was similar to that in

the control group (Fig. 4f). This result indicates that

immunization with the HA1 DNA vaccine, with a chal-

lenge 1 week later, produced a weaker immune response

and less protection than the HA and HAe DNA vaccines, as

indicated by the relative antibody titers, survival rates, and

bodyweight losses.

Discussion

DNA vaccines constitute a powerful alternative to con-

ventional vaccines because they can induce both humoral

and cellular immune responses. Many studies have shown

that H1, H3, H5, H7, and H9 DNA vaccines can protect

animals against viral infection [24, 40, 48–50]. In this

study, we compared the immunogenicity of different forms

of HA in mice. Our results show that two immunizations

with HA, HAe, or HA1 DNA, combined with electropor-

ation at a voltage of 100 V, induced strong immune

responses against the HA protein of the H1N1pdm09 virus.

Protection against lethal viral challenge was also provided

by this DNA immunization regimen. The viral titers were

extremely low or undetectable in the lungs of the immu-

nized mice at 3 dpi (Fig. 2d–f), suggesting that the DNA

vaccines we designed and tested effectively prevented

H1N1pdm09 infection in mice. The HA1 DNA induced

relatively lower IgG antibody, HAI, and neutralizing anti-

body titers than the HA or HAe DNA (Fig. 2a–c). The

differences in the antibody responses observed in this study

are consistent with the results reported previously by

Tongawa et al. [43] and may be predominantly attributable

to the fact that HA1 lacks the stalk domain of HA, which

we deliberately omitted during the construction of the

plasmid and has been shown to elicit a protective immune

response [51]. Another explanation that cannot be excluded

is the different cellular localization of HA, HAe, and HA1

(Fig. 1b), which may have caused different immune

responses to be induced in the mice. Several studies sup-

port this inference [52, 53].

Electroporation following intramuscular injection

markedly enhanced the efficacy of immunization. How-

ever, it has been shown that electroporation can damage the

muscular tissue and cause an inflammatory reaction [54].

During electroporation, animals often feel discomfort,

generated by myospasm. Higher voltages usually produce

more-severe lesions [54]. As a further test of the immu-

nogenicity of HA, HAe, and HA1, we assessed their ability

to induce an immune response after electroporation at a

voltage of 10 V. The antibody titers induced in the mice

decreased as the voltage decreased from 100 V to 10 V, a

phenomenon observed in our previous study [47]. Although

the HA1 DNA induced a protective immune response
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against lethal viral infection, the IgG antibody, HAI, and

neutralizing antibody titers elicited by it were lower than

those elicited by the HA or HAe DNA. Consistent with

these different antibody responses, mice immunized with

HA1 showed greater weight loss and a higher viral load in

lung washes after challenge. The HA1 subunit contains

important neutralizing epitopes and is the region that pre-

dominantly induces the neutralizing activity against influ-

enza virus infections. Some studies have suggested that it

can be used for the development of a subunit influenza

vaccine [55, 56]. However, in contrast to our results,

Khurana et al. [31] reported that bacterially expressed HA1

protein induced higher titers of neutralizing antibodies than

HAe or HA in rabbits and sheep. A possible explanation for

the discrepancies in these studies could be that the bacte-

rially expressed HA1 globular domain, but not HAe or HA,

contains functional structures required for fetuin binding

and red blood cell agglutination [31]. Therefore, the bac-

terially expressed recombinant proteins have folded

structures that are altered during purification. With DNA

vaccinations, because the encoded protein is synthesized in

its native form inside the host cell [57], the antibody

responses induced in mice by HA, HAe, or HA1 DNA

vaccination in our study reflected the real immunogenicity

of the antigen in mice.

The HA, HAe, and HA1 DNA vaccinations induced

early immune responses, as demonstrated by the IgG, HAI,

and neutralizing titers, although only low-level antibodies

were detected at that time (Fig. 4). These results are con-

sistent with our previous study, in which Zheng et al. [21]

observed an early but low-level antibody response in mice

immunized with H5 HA DNA. Although only low-level

antibody responses were induced, [80 % of the mice

immunized with HA, HAe, or HA1 survived a lethal viral

challenge. Thus, in the absence or presence of low-level

neutralizing antibodies, DNA immunization induced early

protection against viral infection, which has also been

observed in other studies. McLauchlan et al. [58] showed

Fig. 4 BALB/c mice were

immunized once with 50 lg of

pCAGGSP7/HA, pCAGGSP7/

HAe, or pCAGGSP7/HA1 with

high-voltage electroporation

(100 V). Seven days after

immunization, the sera were

collected for the titration of IgG,

HAI, and NAbs. a Titers of IgG

in mouse serum after boosting.

b HAI titers in vaccinated mice.

c NAb titers in vaccinated mice.

Seven days after immunization,

the mice were challenged with a

lethal dose of mouse-adapted

NYMC X-179A (10 9 LD50).

Survival rates, bodyweight

changes, and lung viral titers

were determined. d Percentage

survival of mice infected with

lethal virus. e Bodyweight

losses. f Lung viral titers on day

3 post-challenge
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that a dose of DNA induced protection in fish challenged at

either 1 or 4 weeks after vaccination. A similar result was

observed in a horse model, in which the authors showed

that a single dose of vaccine provided early protection

against the development of viremia after challenge, even in

the absence of measurable antibody titers in some horses

[59]. In addition to low-level neutralizing antibodies, the

cellular immune response may be involved in mediating

this early protection. In our previous study [21], mice

immunized once with HA DNA raised significant amounts

of interferon-c-producing cells in response to stimulation

with the H5 HA protein. The present study also showed

that the HA1 DNA vaccine induced lower IgG, HAI, and

neutralization titers than the HA and HAe vaccines

(Fig. 4b, c). Viral infection caused greater weight loss in

mice immunized with HA1, and their bodyweights did not

recover to their preinfection levels (Fig. 4e). These results

confirm that HA1 induced less protective immunity than

HA or HAe, as indicated by their antibody titers, survival

rates, and bodyweight losses.

In summary, we have compared the capacities of HA,

HAe, and HA1 to induce an antibody response and pro-

tection against viral infection. The HA1 DNA vaccine

induced relatively weaker antibody responses and protec-

tive effects in mice than the HA and HAe DNA vaccines.

These results extend our knowledge of the immunogenicity

of different forms of HA protein in mice, which should be

considered when developing vaccines to control influenza.
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