Skip to main content
Log in

Isolates of Citrus tristeza virus that overcome Poncirus trifoliata resistance comprise a novel strain

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The economically important rootstock species Poncirus trifoliata is resistant to most isolates of Citrus tristeza virus (CTV), but not to members of the CTV resistance-breaking (RB) strain presently found in New Zealand. In this study, five known and suspected RB isolates were separated from field mixtures, and their genomes were sequenced in full. It was found that the RB isolates are members of a single phylogenetically distinct clade with an average of 90.3% genomic nucleotide sequence identity to the closest extant isolate, T36. These isolates also show evidence of multiple recombination events throughout their evolutionary history, with T36, T30 and VT-like isolates, and with each other. Finally, the genomic sequences of these isolates show that several genes contain unique polymorphisms that may or may not be involved in overcoming resistance. These data will aid in the understanding of host–virus interactions, and the mechanism of resistance in P. trifoliata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albiach-Marti MR, Mawassi M, Gowda S, Satanarayana T, Hilf ME, Shanker S, Almira EC, Vives MC, Lopez C, Guerri J, Flores R, Moreno P, Garnsey SM, Dawson WO (2000) Sequences of Citrus tristeza virus separated in time and space are essentially identical. J Virol 74:6856–6865

    Article  CAS  PubMed  Google Scholar 

  2. Albiach-Marti MR, Grosser JW, Gowda S, Mawassi M, Satyanarayana T, Garnsey SM, Dawson WO (2004) Citrus tristeza virus replicates and forms infections virions in protoplasts of resistant citrus relatives. Mol Breed 14:117–128

    Article  CAS  Google Scholar 

  3. Bitters WP (1972) Reaction of some new citrus hybrids and citrus introductions to inoculations with tristeza virus in California. In: Price WC (ed) Proceedings of the 5th conference of the International Organisation of citrus virologists. University of Florida Press, Gainesville, pp 112–120

    Google Scholar 

  4. Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035–1047

    Article  CAS  PubMed  Google Scholar 

  5. Borja M, Rubio T, Scholthof HB, Jackson AO (1999) Restoration of wild-type virus by double recombination of tombusvirus mutants with a host transgene. Mol Plant Microbe Interact 12:153–162

    Article  CAS  PubMed  Google Scholar 

  6. Broadbent P, Brlansky RH, Indsto J (1996) Biological characterisation of Australian isolates of Citrus tristeza virus and separation of subisolates by single aphid transmissions. Plant Dis 80:329–333

    Google Scholar 

  7. Dawson TE, Mooney PA (2000) Evidence for trifoliate resistance breaking isolates of Citrus tristeza virus in New Zealand. In: Yokomi RK, Lee RF, Da Graca JV (eds) Proceedings of the 14th conference of the International Organisation of citrus virologists. IOCV, Riverside, pp 69–76

    Google Scholar 

  8. Everett P (1928) Variety and rootstock experiments at Tauranga, seasons 1926–27 and 1927–28. New Zealand J Agric 37:187–192

    Google Scholar 

  9. Fagoaga C, Lopez C, Moreno P, Navarro L, Flores R, Pena L (2005) Viral-like symptoms induced by the ectopic expression of the p23 Gene of Citrus tristeza virus are citrus specific and do not correlate with the pathogenicity of the virus strain. Mol Plant Microbe Interact 18:435–445

    Article  CAS  PubMed  Google Scholar 

  10. Folimonova SY, Folomonov AS, Satyanarayana T, Dawson T (2008) Citrus tristeza virus: survival at the edge of the movement continuum. J Virol 82:6546–6556

    Article  CAS  PubMed  Google Scholar 

  11. Garnsey SM, Barrett HC, Hutchison DJ (1987) Identification of Citrus tristeza virus resistance in citrus relatives and its potential applications. Phytophylactica 19:187–191

    Google Scholar 

  12. Ghorbel R, Lopez C, Fagoaga C, Moreno P, Flores R, Pena L (2001) Transgenic citrus plants expressing the Citrus tristeza virus p23 protein exhibit viral-like symptoms. Mol Plant Pathol 2:27–36

    Article  CAS  Google Scholar 

  13. Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582

    Article  CAS  PubMed  Google Scholar 

  14. Gillings M, Broadbent P, Indsto J, Lee RF (1993) Characterisation of isolates and strains of Citrus tristeza clostero virus using restriction analysis of the coat protein gene amplified by the polymerase chain reaction. J Virol Methods 44:305–317

    Article  CAS  PubMed  Google Scholar 

  15. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  16. Guo HS, Ding SW (2002) A viral protein inhibits the long range signaling activity of the gene silencing signal. EMBO J 21:398–407

    Article  CAS  PubMed  Google Scholar 

  17. Harper SJ, Dawson TE, Mooney PA, Pearson MN (2008) Molecular analysis of the coat protein and minor coat protein genes of New Zealand Citrus tristeza virus isolates that overcome the resistance of Poncirus trifoliata (L.) Raf. Australas Plant Pathol 37:379–386

    Article  CAS  Google Scholar 

  18. Harper SJ, Dawson TE, Pearson MN (2009) Complete genome sequences of two distinct and diverse Citrus tristeza virus isolates from New Zealand. Arch Virol 154:1505–1510

    Article  CAS  PubMed  Google Scholar 

  19. Hilf ME, Karasev AV, Pappu HR, Gumpf DJ, Niblett CL, Garnsey SM (1995) Characterization of Citrus tristeza virus subgenomic RNAs in infected tissue. Virology 208:576–582

    Article  CAS  PubMed  Google Scholar 

  20. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  21. Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME, Koonin EV, Niblett CL, Cline K, Gumpf DJ, Lee RF, Garnsey SM, Lewandowski DJ, Dawson WO (1995) Complete sequence of Citrus tristeza virus RNA genome. Virology 208:511–520

    Article  CAS  PubMed  Google Scholar 

  22. Kasschau KD, Carrington JC (2001) Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HC-Pro. Virology 285:71–81

    Article  CAS  PubMed  Google Scholar 

  23. Kosakovsky Pond SL, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222

    Article  PubMed  Google Scholar 

  24. Kosakovsky Pond SL, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533

    Article  Google Scholar 

  25. Kosakovsky Pond SL, Frost SDW (2005) A genetic algorithm approach to detecting lineage-specific variation in selection pressure. Mol Biol Evol 22:478–485

    Article  Google Scholar 

  26. Lu R, Folimonov A, Shintaku M, Li WX, Falk BW, Dawson WO, Ding SW (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci USA 101:15742–15747

    Article  CAS  PubMed  Google Scholar 

  27. Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563

    Article  CAS  PubMed  Google Scholar 

  28. Martin DP, Posada D, Crandall KA, Williamson C (2005) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21:98–102

    Article  CAS  PubMed  Google Scholar 

  29. Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    Article  CAS  PubMed  Google Scholar 

  30. Martin S, Sambade A, Rubio L, Vives MC, Moya P, Guerri J, Elena SF, Moreno P (2009) Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. J Gen Virol 90:1527–1538

    Article  CAS  PubMed  Google Scholar 

  31. Mawassi M, Mietkiewska E, Gofman R, Yang G, Bar-Joseph M (1996) Unusual sequence relationships between two isolates of Citrus tristeza virus. J Gen Virol 77:2359–2364

    Article  CAS  PubMed  Google Scholar 

  32. Mestre PF, Asins MJ, Carbonell EA, Navarro L (1997) New gene(s) involved in the resistance of Poncirus trifoliata (L.) Raf. to Citrus tristeza virus. Theor Appl Genet 95:691–695

    Article  Google Scholar 

  33. Mooney PA, Dawson TE, Niblett CL (2000) Comparison of the coat protein gene sequences of Citrus tristeza virus in New Zealand. In: Yokomi RK, Lee RF, Da Graca JV (eds) Proceedings of the 14th conference of the International Organisation of citrus virologists. IOCV, Riverside, pp 28–33

    Google Scholar 

  34. Moreno P, Ambros S, Albiach-Marti MR, Guerri J, Pena L (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268

    Article  CAS  PubMed  Google Scholar 

  35. Nagy PD, Simon AE (1997) New insights into the mechanisms of RNA recombination. Virology 135:1–9

    Article  Google Scholar 

  36. Navas-Castillo J, Albiach-Marti MR, Gowda S, Hilf ME, Garnsey SM, Dawson WO (1997) Kinetics of accumulation of Citrus tristeza virus RNAs. Virology 228:92–97

    Article  CAS  PubMed  Google Scholar 

  37. Peremyslov VV, Hagiwara Y, Dolja VV (1999) HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sci USA 96:14771–14776

    Article  CAS  PubMed  Google Scholar 

  38. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  39. Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA 98:13757–13762

    Article  CAS  PubMed  Google Scholar 

  40. Powell CA, Lin Y (2005) Separation of Citrus tristeza virus isolates in mixed infections through transfer by single brown citrus aphids. Hortscience 40:693–696

    Google Scholar 

  41. Rao ALN, Hall TC (1993) Recombination and polymerase error facilitate restoration of infectivity in Brome mosaic virus. J Virol 67:969–979

    CAS  PubMed  Google Scholar 

  42. Reed JC, Kassckau KD, Prokhnevsky AI, Gopinath K, Pogue GP, Carrington JC, Dolja VV (2003) Suppressor of RNA silencing encoded by Beet yellows virus. Virology 206:203–209

    Article  Google Scholar 

  43. Roy A, Brlansky RH (2005) Genomic sequence of Citrus tristeza virus from India represents a new genotype. Phytopathology 96:S101

    Google Scholar 

  44. Rubio L, Ayllon MA, Guerri J, Pappu HR, Niblett CL, Moreno P (1996) Differentiation of Citrus tristeza closterovirus (CTV) isolates by single-strand conformation polymorphism analysis of the coat protein gene. Ann Appl Biol 129:479–489

    Article  CAS  Google Scholar 

  45. Rubio L, Ayllon MA, Kong P, Fernandez A, Polek M, Guerri J, Moreno P, Falk BW (2001) Genetic variation of Citrus tristeza virus isolates from California and Spain: evidence for mixed infections and recombination. J Virol 75:8054–8062

    Article  CAS  PubMed  Google Scholar 

  46. Ruiz-Ruiz S, Moreno P, Guerri J, Ambros S (2006) The complete nucleotide sequence of a severe stem pitting isolate of Citrus tristeza virus from Spain: comparison with isolates from different origins. Arch Virol 151:387–398

    Article  CAS  PubMed  Google Scholar 

  47. Satyanarayana T, Gowda S, Boyko VP, Albiach-Marti MR, Mawassi M, Navas-Castillo J, Karasev AV, Dolja VV, Hilf ME, Lewandowski DJ, Moreno P, Bar-Joseph M, Garnsey SM, Dawson WO (1999) An engineered closterovirus RNA replicon and analysis of heterologous terminal sequences for replication. Proc Natl Acad Sci USA 96:7433–7448

    Article  CAS  PubMed  Google Scholar 

  48. Satyanarayana T, Gowda S, Mawassi M, Albiach-Marti MR, Ayllon MA, Robertson C, Garnsey SM, Dawson WO (2000) Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology 278:253–265

    Article  CAS  PubMed  Google Scholar 

  49. Satyanarayana T, Gowda S, Ayllon MA, Albiach-Marti MR, Rabindran S, Dawson WO (2002) The p23 protein of Citrus tristeza virus controls asymmetrical RNA accumulation. J Virol 76:473–483

    Article  CAS  PubMed  Google Scholar 

  50. Satyanarayana T, Gowda S, Ayllon MA, Dawson WO (2004) Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc Natl Acad Sci USA 101:799–804

    Article  CAS  PubMed  Google Scholar 

  51. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (* and other methods), version 4.0b 10. Sinauer Associates, Sunderland

    Google Scholar 

  52. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 10:1093

    Google Scholar 

  53. Tatineni S, Robertson CJ, Garnsey SM, Bar-Joseph M, Gowda S, Dawson WO (2008) Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology 376:297–307

    Article  CAS  PubMed  Google Scholar 

  54. Vives MC, Rubio L, Lopez C, Navas-Castillo J, Albiach-Marti MR, Dawson WO, Guerri J, Flores R, Moreno P (1999) The complete genome sequence of the major component of a mild Citrus tristeza virus isolate. J Gen Virol 80:811–816

    CAS  PubMed  Google Scholar 

  55. Vives MC, Rubio L, Sambade A, Mirkov TE, Moreno P, Guerri J (2005) Evidence of multiple recombination events between two RNA sequence variants within a Citrus tristeza virus isolate. Virology 331:232–237

    Article  CAS  PubMed  Google Scholar 

  56. Yoshida T (1985) Inheritance of susceptibility to Citrus tristeza virus in trifoliate orange (Poncirus trifoliata Raf.) (In Japanese). Bull Fruit Tree Res Stn B 12:17–25 (abstract)

    Google Scholar 

  57. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank N. Tama, University of Auckland (Ret.), for assistance in transmission and maintenance of the virus isolates. S.J. Harper was funded by a Bright Future Top Achiever Doctoral Scholarship from New Zealand Tertiary Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Harper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 128 kb)

Supplementary material 2 (DOC 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harper, S.J., Dawson, T.E. & Pearson, M.N. Isolates of Citrus tristeza virus that overcome Poncirus trifoliata resistance comprise a novel strain. Arch Virol 155, 471–480 (2010). https://doi.org/10.1007/s00705-010-0604-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0604-5

Keywords

Navigation