Skip to main content
Log in

Insertion in the coding region of the movement protein improves stability of the plasmid encoding a tomato mosaic virus-based expression vector

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A major obstacle in the genetic manipulation of tomato mosaic virus (ToMV) is the instability of the plasmid containing the infectious full-length cDNA of the ToMV vector, which often prevents the subcloning of a foreign gene of interest into the vector. We found that an insertion of a 0.3–1.6-kbp DNA fragment in the movement protein (MP) coding region effectively attenuated bacterial toxicity of the plasmid and greatly increased plasmid yield. Accumulation of a modified ToMV containing a 0.3-kb insertion in the MP coding region was comparable to that of a modified ToMV without an insertion in tobacco BY-2 protoplasts, while an insertion more than 0.6 kb significantly reduced accumulation of the viral RNA. The modified ToMV vector containing a 0.3-kb insertion was easily manipulated to introduce a coding sequence for human interferon-gamma (HuIFN-γ) and successfully utilized to produce HuIFN-γ in both BY-2 protoplasts and transgenic BY-2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boyer J-C, Haenni A-L (1994) Infectious transcripts and cDNA clones of RNA viruses. Virology 198:415–426

    Article  PubMed  CAS  Google Scholar 

  2. Dohi K, Nishikiori M, Tamai A, Ishikawa M, Meshi T, Mori M (2006) Inducible virus-mediated expression of a foreign protein in suspension-cultured cells. Arch Virol 151:1075–1084

    Article  PubMed  CAS  Google Scholar 

  3. Dohi K, Mori M (2007) Expression of active enzymes from an inducible tomato-mosaic virus-based vector in cultured transgenic tobacco BY-2 cells. Plant Biotechnol 24:367–373

    CAS  Google Scholar 

  4. Donson J, Kearney CM, Hilf ME, Dawson WO (1991) Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proc Natl Acad Sci USA 88:7204–7208

    Article  PubMed  CAS  Google Scholar 

  5. Dowson WO, Lewandowski DJ, Hilf ME, Bubrick P, Raffo AJ, Shaw JJ, Grantham GL, Desjardins PR (1989) A tobacco mosaic virus-hybrid expresses and loses an added gene. Virology 172:285–292

    Article  Google Scholar 

  6. Fujiyama K, Saejung W, Yanagihara I, Nakado J, Misaki R, Honda T, Watanabe Y, Seki T (2006) In planta production of immunogenic poliovirus peptide using tobacco mosaic virus-based vector system. J Biosci Bioeng 101:398–402

    Article  PubMed  CAS  Google Scholar 

  7. Hamamoto H, Sugiyama Y, Nakagawa N, Hashida E, Matsunaga Y, Takemoto S, Watanabe Y, Okada Y (1993) A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato. Biotechnology 11:930–932

    Article  PubMed  CAS  Google Scholar 

  8. Ishikawa M, Okada Y (2004) Replication of tobamovirus RNA. Proc Jpn Acad Ser B 80:215–224

    Article  CAS  Google Scholar 

  9. Johansen IE (1996) Intron insertion facilitates amplification of cloned virus cDNA in Escherichia coli while biological activity is reestablished after transcription in vivo. Proc Natl Acad Sci USA 93:12400–12405

    Article  PubMed  CAS  Google Scholar 

  10. Kumagai MH, Turpen TH, Weinzettl N, Della-Cioppa G, Turpen AM, Donson J, Hilf ME, Grantham GL, Dawson WO, Chow TP, Piatak M Jr, Grill LK (1993) Rapid, high-level expression of biologically active α-trichosanthin in transfected plants by an RNA viral vector. Proc Natl Acad Sci USA 90:427–430

    Article  PubMed  CAS  Google Scholar 

  11. Lai MMC (2000) The making of infectious viral RNA: no size limit in sight. Proc Natl Acad Sci USA 97:5025–5027

    Article  PubMed  CAS  Google Scholar 

  12. Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101:6852–6857

    Article  PubMed  CAS  Google Scholar 

  13. Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotech 23:718–723

    Article  CAS  Google Scholar 

  14. Mori M, Zhang G-H, Kaido M, Okuno T, Furusawa I (1993) Efficient production of human gamma interferon in tobacco protoplasts by genetically engineered brome mosaic virus RNA. J Gen Virol 74:1255–1260

    Article  PubMed  CAS  Google Scholar 

  15. Mori M, Kaido M, Okuno T, Furusawa I (1993) mRNA Amplification system by viral replicase in transgenic plants. FEBS Lett 336:171–174

    Article  PubMed  CAS  Google Scholar 

  16. Nishikiori M, Dohi K, Mori M, Meshi T, Naito S, Ishikawa M (2006) Membrane-bound tomato mosaic virus replication proteins participate in RNA synthesis and are associated with host proteins in a pattern distinct from that observed for non-membrane-bound ones. J Virol 80:8459–8468

    Article  PubMed  CAS  Google Scholar 

  17. Pogue GP, Lindbo JA, Garger SJ, Fitzmaurice WP (2002) Making an ally from an enemy: plant virology and the new agriculture. Annu Rev Phytopathol 40:45–74

    Article  PubMed  CAS  Google Scholar 

  18. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  19. Satyanarayana T, Gowda S, Ayllón MA, Dawson WO (2003) Frameshift mutations in infectious cDNA clones of Citrus tristeza virus: a strategy to minimize the toxicity of viral sequences to Escherichia coli. Virology 313:481–491

    Article  PubMed  CAS  Google Scholar 

  20. Takamatsu N, Ishikawa M, Meshi T, Okada Y (1987) Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J 6:307–311

    PubMed  CAS  Google Scholar 

  21. Tamai A, Kubota K, Nagano H, Yoshii M, Ishikawa M, Mise K, Meshi T (2003) Cucumovirus- and bromovirus-encoded movement functions potentiate cell-to-cell movement of tobamo- and potexvirus. Virology 315:56–67

    Article  PubMed  CAS  Google Scholar 

  22. Turpen TH (1999) Tobacco mosaic virus and the virescence of biotechnology. Philos Trans R Soc Lond B Biol Sci 354:665–673

    Article  PubMed  CAS  Google Scholar 

  23. Yamaya J, Yoshioka M, Meshi T, Okada Y, Ohno T (1988) Expression of tobacco mosaic virus RNA in transgenic plants. Mol Gen Genet 211:520–525

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Nam-Hai Chua for plasmid, and Mses. Sayuri Hamada, Akiko Mizuno, Akiko Taki and Chizuko Kaneko, and Messrs. Tomoaki Satoh and Shin-ya Kunikado for technical assistance. This work was supported by a grant from Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency. Analysis of DNA sequencing was conducted with CREST-Akita Plant Molecular Science Satellite Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Mori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dohi, K., Tamai, A. & Mori, M. Insertion in the coding region of the movement protein improves stability of the plasmid encoding a tomato mosaic virus-based expression vector. Arch Virol 153, 1667–1675 (2008). https://doi.org/10.1007/s00705-008-0165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-008-0165-z

Keywords

Navigation