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Summary. Papillomaviruses (PVs) are simple double-strand DNA viruses whose
virion shells are T = 7 icosahedrons and composed of major capsid protein L1 and
minor capsid protein L2. L1 alone or together with L2 can self-assemble into virus-
like particles (VLPs) when expressed in eukaryotic or prokaryotic expression
systems. Although the VLPs lack the virus genome DNA, their morphological and
immunological characteristics are very similar to those of nature papillomaviruses.
PVVLP vaccination can induce high titers of neutralizing antibodies and can effec-
tively protect animals or humans from PV infection. Moreover, PVVLPs have been
good candidates for vehicles to deliver epitopes or genes to target cells. They are
widely used in the fields of vaccine development, neutralizing antibody detection,
basic virologic research on papillomaviruses, and human papillomavirus (HPV)
screening. Besides the structural biology and immunological basis for PV VLPs
used as vehicles to deliver epitopes or genes, this review details the latest findings
on chimeric papillomavirus VLPs and papillomavirus pseudoviruses, which are
two important forms of PV VLPs used to transfer epitopes or genes.

Abbreviations

PV Papillomavirus; VLPs virus-like particles; cVLPs chimeric virus-like particles;
HPV human papillomavirus; DCs dendritic cells; LCs Langerhans cells; IL inter-
leukin; TNF tumor necrosis factor; INF interferon; CTLs cytotoxic T lymphocytes

Introduction

Papillomaviruses (PVs), members of the family Papillomaviridae, are simple
double-strand DNA viruses that infect squamous or mucosal epithelia and produce



2134 Y.-F. Xu et al.

a range of epithelial neoplasms, both benign and malignant, in most animals and
humans. Until now, 118 PV types have been completely described, and many
new types have been detected by preliminary data such as subgenomic ampli-
cons. More than 80 human papillomavirus (HPV) types have been defined, and
many of these HPV types are ubiquitous and globally distributed (http://hpv-web.
lanl.gov/stdgen/virus/cgi-bin/hpv organisms.cgi?dbname=hpv). The detailed in-
formation on PV classification has been reviewed by de Villers EM et al. [15].
The papillomavirus virion shells consist of L1 protein (the major capsid protein)
and L2 protein (the minor capsid protein). L1 protein alone or together with
L2 protein can self-assemble into virus-like particles (VLPs) when expressed in
eukaryotic or prokaryotic expression systems. zur Hausen et al. [95] observed
that infection with HPVs might be responsible for human cervical cancer, which
was confirmed by numerous subsequent studies. Because cervical cancer is the
second-most common cancer in women, more attention has been paid to HPV
research, especially on PV VLP-based epitope or gene delivery [73, 82], effective
prophylactic and therapeutic vaccine development [28, 58], the life cycle of
PVs [17], the mechanism of virus evasion from host-cell control [96], and the
epidemiology of HPV infections [2, 53]. We will focus on the structural biology
and immunological characteristics of PV VLPs and the latest studies on chimeric
papillomavirus VLPs and papillomavirus pseudoviruses, which are two important
forms of PV VLPs used as vehicles to deliver epitopes or genes.

Structural biology and immunological characteristics
of papillomavirus VLPs

Structural biology characteristics of papillomavirus VLPs

The papillomavirus virion contains 72 pentamers of L1 protein, centered on the
vertices of a T = 7 icosahedral lattice [83], while L2 protein is present at about 1/30
of the abundance of L1 [38]. The diameter of the PV particles is about 50–60 nm.
Although the PV VLPs lack the virus genome DNA, they are also composed of 72
pentamers of L1 protein, and their morphological characterstics are very similar
to those of the PV virions as well (Fig. 1).

Because it is very difficult to obtain large amounts of PV viruses by in vitro
culture and to obtain suitable crystals of PV virons or VLPs, the crystallographic
study of PV particles has been limited. Chen et al. [13] truncated the 10 N-terminal
residues of HPV16 L1 to overcome the irregularity of the shells formed by the
intact L1 for successful crystallization and expressed the truncated HPV16 L1 in
E. coli. The truncated L1 could assemble into a 12-pentamer, T = 1 icosahedron,
named “small VLP”, whose outer diameter was 318A

◦
, and the X-ray crystallo-

graphic analysis was performed at 3.5A
◦

resolution. The L1 monomer contains 12
β-strands, 6 loops, and 5 helices (Fig. 2). These loops extend towards the outer
surface of the capsid, and the loop sequences are quite variable among different
papillomavirus types [13]. Mutagenesis of the hypervariable loop domains has
revealed the binding sites of several neutralizing monoclonal antibodies against
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Fig. 1. Structure of papillomaviruses (PVs) and PV virus-like particles (VLPs). A.
Electron micrograph of negative-stained human papillomavirus (HPV)16 L1 VLPs with
1% uranyl acetate solution. Bar represents 100 nm. B. The structure model of bovine

papillomavirus(BPV) [83]

Fig. 2. The human papillomavirus (HPV) 16
L1 monomer structure [13]. Secondary structural
elements are labeled, with letters B–J for β-strands and
h1–h5 for the 5 α-helices. Loops between strands are
labeled B–C, C–D, etc. The first and the last residues
are marked N (20) and C (474), respectively. A primed
label (F′) denotes a segment of polypeptide chain
from the clockwise neighbor within the pentamer; a
double-primed label (G′′), one from the anticlockwise
neighbor

HPV11 [47–49] or HPV6 [50], showing that many neutralizing epitopes lie in the
loop domains.

Immunological characteristics of papillomavirus VLPs

Though papillomavirus VLPs lack the virus genome DNA, they are structurally
and immunologically similar to the infectious viruses as judged by electron
microscopic imaging studies and their ability to bind type-specific and confor-
mation-dependent monoclonal antibodies. Many studies have demonstrated that
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vaccination with PV VLPs by different methods can induce high titers of type-
specific neutralizing antibodies (IgG and IgA) and effectively protect animals [5,
37, 38, 41, 44, 49, 57, 60, 79] and humans [1, 6, 7, 19, 21, 27, 32, 40, 54, 64, 65, 71,
87, 99] from papillomaviruses infection. The phase II randomized, multicentre,
double-blind placebo-controlled clinical trials of bivalent (HPV16 and HPV18)
VLPs vaccine and quadrivalent (HPV6, 11, 16 and 18) VLPs vaccine, which were
conducted by GlaxoSmithKline and Merck, respectively, have been finished. Both
vaccines were very effective in protecting women against incident and persistent
HPV infections [32, 87]. What’s more, since the VLPs do not contain the viral
genome, they are not harmful. So PV VLPs are considered good candidates for
both prophylactic and therapeutic vaccines against PV infection. Besides their
safety and high immunogenicity, the following characteristics make PV VLPs
good candidates for vehicles to deliver epitopes or genes.

Papillomavirus VLPs themselves are good “adjuvants” and can induce strong
T-helper cell responses. A lot of studies have demonstrated that PV VLPs can
activate dendritic cells (DCs) [3, 42, 70, 90–93]. DCs are a family of professional
antigen-presenting cells (APCs) with a unique capacity to initiate and modulate
cell-mediated immune responses. A wide range of stimuli, such as infectious
virus and inflammatory cytokines, can induce DC maturation, which is associated
with the up-regulation of co-stimulatory molecules (reviewed in [39, 66]). The
activated DCs then migrate to regional lymph nodes and induce T cell activation.
Immature DCs can efficiently bind and rapidly internalize PV VLPs, which is
followed by DC maturation. DCs activated by PV VLPs can induce the secretion
of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor
(TNF)-α, IL-8, and interferon(INF)-α [42, 43]. Although Langerhans cells (LCs)
can effectively bind and take up HPV VLPs, they can not be activated by HPV
VLPs [22–24]. But a recent study showed that heterologous PV VLPs immune
complexes could activate human Langerhans cells [25]. Both DCs and LCs in-
cubated with the VLPs immune complexes could up-regulate surface activation
markers and increase secretion of IL-12 p70 and IL-15. So both DCs and LCs
can be activated by PV VLPs using certain immunization strategies. In addition,
papillomavirus VLPs could bind to a wide variety of cell types [51, 88] through
certain molecules, such as CD16 [90], heparan sulfate [14, 18, 30, 34, 68], and α6
integrin [20, 94]. Therefore, the epitopes or genes encapsidated in the VLPs will
be well delivered to certain immunocytes.

Chimeric papillomavirus VLPs

Chimeric papillomavirus VLPs, which means PV VLPs composed of capsid
proteins (L1 or L1/L2) fused with foreign epitopes or polypeptides in certain
areas, are one of the important forms of PV VLPs used to deliver epitopes or
polypeptides. Some of the different strategies for construction of chimeric PV
VLPs are summarized in Table 1.

It is clear that mutants of PV L1 with some residues in the C-terminus truncated
can also self-assemble into VLPs [59]. As a result, epitopes or short polypeptides,
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Table 1. Different construction strategies of chimeric papillomavirus VLPs

Construction strategy Epitopes or polypeptides References

Fusing epitopes or polypeptides HPV16 E7 (partial and full length gene)∗ [29, 52, 74]
to the C terminus of the C-terminal HPV16 E7 CTL epitope (RAHYNIVTF) [62]
truncated PVs L1 HIV-IIIB gp160 CTL epitope (RGPGRAFVTI) [62]

A fusion polypeptide containing HPV16 E7 B cell [45]
epitope (QAEPD), HPV16 E7 CTL epitope
(RAHYNIVTF), HIV-IIIB gp120 CTL epitope
(RGPGRAFVTI), HIV-IIIB Nef CTL epitope
(PLTFGWCFKL), and HIV-IIIB RT CTL
epitope (VIYQYMDDL)
P1A epitope (LPYLGWLVF) [55]

Replacing certain sequences of HPV16 E7 (partial and full length gene) [52]
PVs L1 by epitopes or polypeptides SV40 tag [52]

HPV16 L2 (LVEETSFIDAGAP) [86]
HIV-1 gp41 B cell epitope (LELDKWAS) [76]
HIV-1 gp41 epitope (ELDKWA) [98]
Mouse CCR5 epitope (HYAANEWVFGNIMCKV) [10]

Inserting epitopes or polypeptides HPV16 E71−50 [52]
into some areas of the PVs L1 HBc epitope (DPASRE) [72]

HIV-1 gp41 B cell epitope (LELDKWAS) [76]

Fusing epitopes or polypeptides HPV16 E7 (partial length gene) [16, 25, 31, 70, 89]
to the C terminus of PV L2

Replacing certain sequences of HPV16 E1E2E7 fusion protein [81]
PVs L2 by epitopes or polypeptides

PVs papillomaviruses, HPV human papillomavirus, CTLs cytotoxic T lymphocytes, HIV human
immunodeficiency virus, HBc hepatitis B core antigen

∗The description or amino acid sequence of the polypeptide is parenthesized

up to 60 amino acids, can be fused to the C-terminus of the truncated PV L1
without disrupting the assembly of VLPs [52]. Until now, many epitopes or short
polypeptides have been added to the C-terminus of the truncated PV L1 (see
Table 1), and these chimeric VLPs (cVLPs) can induce good immune responses
against not only the epitopes or polypeptides but also the VLP shells. Because the
size of epitopes or polypeptides fused to the C-terminus of the truncated PV L1
is limited, large proteins cannot be delivered using this strategy. However, these
large proteins can be delivered well by replacing certain areas of L1 or L2 that
are not important for VLPs assembly, or by fusing them to the C-terminus of L2
(see Table 1). L1 is the major capsid protein, and it has been shown that some
residues in the L1 protein, such as Asp202, Cys175, and Cys428 of HPV16 L1, are
very important for VLP formation. Therefore, those important residues should
not be included in the target replacing area. However, there may be a few potent
important residues in L1. When some areas of L1 were replaced by large proteins,
the efficiency of VLP assembly has been reduced to some extent [76]. While L2
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is the minor capsid protein, it is not as important as L1 for VLPs assembly. So
replacing some sequences of L2 by large genes or fusing large proteins to the C-
terminus of L2 may have less influence on VLP formation than that of L1. Tobery
et al. [81] showed that replacing the area of HPV16 L270−390 by HPV16E1E2E7,
approximately 130 kDa, did not disrupt VLP assembly and that the chimeric VLPs
had good immunogenicity. In addition, co-expression of L1 and L2 can enhance
the efficiency ofVLP formation compared with L1 alone [38]. However, in HPV16
VLPs the ratio of L1 to L2 molecules is about 30:1 [38], that is to say an L1-epitope
fusion would theoretically result in 360 copies of the epitopes being delivered to
the cytosol of an APC, compared to the delivery of 12 copies of the epitopes by
an L2-epitope fusion.

Besides the construction strategies described above, there is another L1-loop-
based construction strategy. Structural biology research on PV VLPs has shown
that the loop regions of L1 are exposed on the outer surface ofVLPs. Some epitopes
fused into these loop regions by insertion or replacement might be displayed on
the outer surface of cVLPs, so these epitopes could be efficiently delivered and
well recognized by the immunocytes, and could induce epitope-specific immune
responses [72] (Table 1).

Given that cervical cancer is one of the leading causes of female cancer mortal-
ity worldwide, especially in developing countries, many studies are focused on the
development of effective prophylactic and therapeutic vaccines. It has been well
demonstrated that expression of early protein E7 is required for the maintenance
of the proliferative state of HPV-infected cells [80, 85]. E7 is considered a tumor
antigen and a potential target for activated T cells in the development of strategies
for immune therapy, and many forms of E7 vaccines, such as purified protein; DNA
vaccine; recombinant vaccinia virus and chimeric VLPs, have been developed as
well. PV L1E7 or L1/L2E7 cVLPs are considered candidates for “dual-purpose”
vaccines inducing neutralizing antibodies, which prevent infection, and cytotoxic
T lymphocytes (CTLs) that can eradicate established infections. Many studies
showed that immunization of a few different forms of L1E7 or L1/L2E7 cVLPs
could induce both strong CTL responses and high-titer, type-specific neutralizing
antibodies against the VLP shells (see the related references listed in Table 1).

Papillomavirus pseudoviruses

Besides the chimeric papillomavirus VLPs, papillomavirus pseudoviruses are
another important form to deliver genes using PV VLPs shells. Although the
DNA molecules encapsidated in PV pseudoviruses are not PV genome DNA,
PV pseudoviruses have very similar structural and immunological characteristics
to native PVs. PV pseudoviruses could be produced by the following methods
illustrated in Fig. 3. Firstly, PV pseudoviruses could be generated by a cell-free
system in vitro [36, 56, 75, 82, 97] (Fig. 3A). PV VLPs were able to package
unrelated plasmid containing target genes by the following process: The purified
PV VLPs could be disassembled by different methods, such as incubation of
VLPs with 5% 2-mercaptoethanol at 4 ◦C for 16 h or with 50 mM Tris–HCl buffer
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Fig. 3. Different strategies of producing papillomavirus (PV) pseudoviruses. A. Using a
cell-free system to produce pseudoviruses in vitro. Purified PV virus-like particles (VLPs)
were disrupted under certain conditions. The disassembled VLPs were co-cultured with the
plasmids containing target genes and could reassemble into pseudoviruses. B. Recombinant-
virus-based production of pseudoviruses. The producer cells were transfected by the plasmid
containing one marker gene. Then the transfected cells were infected by recombinant
viruses containing capsid proteins L1 or L1/L2, which was followed by the formation of
pseudoviruses. C. Producer cells were co-transfected by two recombinant plasmids containing
capsid proteins L1 and L2, respectively, and the pseudogenome plasmid containing a marker
gene, then the pseudoviruses were produced by the transfected producer cells. D. Producing
pseudoviruses in Saccharomyces cerevisiae.Yeast cells were transformed with a recombinant
plasmid containing HPV16 L1/L2 and subsequently with the target plasmid containing a
marker gene. Pseudoviruses then could be generated by yeast cells transformed with both

plasmids

(pH 7.5) containing 150 mM NaCl, 1 mM EGTA and 20 mM dithiothreitol at
room temperature for 30 min. Then the plasmid containing the target gene was
co-cultured with disassembled VLPs. The preparation was then incubated with
CaCl2 (25 mM) and 20% dimethyl sulfoxide at room temperature for 1 h to form
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the pseudoviruses. The second method to produce pseudoviruses was based on
certain recombinant viruses, and is illustrated in Fig. 3B. HPV16 pseudoviruses
were generated in hamster BPHE-1 cells by using a recombinant Semliki Forest
virus [67], and those of HPV 33 and BPV 1 were produced in COS-7 or COS-1
cells by using a recombinant vaccinia virus [73, 84, 46, 100, 101]. The third method
has been reported very recently and it seems to be a better method with higher
production efficiency [8, 9, 61] (Fig. 3C). Briefly, producer cells, including C127,
HaCaT, and 293TT, were co-transfected by two recombinant plasmids containing
L1 and L2, respectively, and the pseudogenome plasmid containing a marker
gene, then the pseudoviruses were produced by the transfected producer cells.
Buck et al. [8] showed that the titers of pseudoviruses produced by this method
could reach the level of several billion transducing units per milliliter, which was
at least 10-million-fold greater than that of the previous method [67]. Finally,
infectious HPV16 peseudoviruses could also be generated in yeast using the two-
step-transformation method [69] (Fig. 3D). Saccharomyces cerevisiae strain 1699
was transformed with an yeast expression plasmid containing HPV16 L1/L2 so
that it could produce HPV16 VLPs, which was followed by being transformed
with a target plasmid containing the green fluorescent protein (GFP) gene as a
marker gene. Subsequently, the yeast cells transformed with both plasmids could
generate HPV16 pseudoviruses.

Although PV VLPs composed of L1 alone can package unrelated plasmid
DNA in vitro [4], the efficiency is enhanced to a great extent by co-expressing
L1 and L2 in the procedure of pseudoviruses production [36, 67, 84, 100]. In
addition, Zhao et al. showed [101] that BPV1 E2 protein could enhance the
packaging of plasmid DNA into BPV1 pseudoviruses. Psuedogenome encapsi-
dation within L1/L2 capsids was largely sequence-independent, and plasmids
completely lacking PV sequences could be packaged efficiently, providing they
were less than 8 kb in size. PV pseudoviruses were structurally indistinguishable
from native viruses and could efficiently infect many cell types [82]. Moreover,
these infections of PV pseudoviruses could be inhibited by type-specific anti-
serum against the same type of PV VLPs [36, 67, 82, 84]. So, if the plasmids
encapsidated by the PV pseudoviruses contained a certain marker gene, such as
GFP [73, 82, 69], β-galactosidase [82, 36, 84, 77], or secreted alkaline phosphatase
(SEAP) [8, 61, 84], these pseudoviruses could be used to analyze the papillo-
mavirus internalization pathways, to detect the level of neutralizing antibodies,
and to test the reactivity of human sera in population-based HPV screening. What’s
more, Pastrana et al. [61] showed that the pseudovirus-based papillomavirus
neutralization assay was high-throughput and appeared to be as sensitive as, but
more specific than, a standard VLP-based enzyme-linked immunosorbent assay
(ELISA).

It is clear that using appropriate adjuvants can enhance vaccine-induced spe-
cific immune responses. Oh et al. [56] showed that the mucosal and systemic
immunogenicity of HPV16 VLPs could be enhanced by encapsidating IL-2 gene
adjuvant.Vaccination of the pseudoviruses encapsidaed with IL-2 gene could elicit
much higher titers of vaginal and salivary HPV16 L1-specific IgA and serum IgG,
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IgG1, and IgG2a antibodies than those of HPV16 VLPs alone. In addition, PV
pseudoviruses encoding IL-2 could fully restore mucosal and systemic immune
responses to vaccinations in aged mice [26]. In aged mice, immunization with
PV pseudoviruses encapsidating the IL-2 gene could activate specific Th cells,
induce specific antibodies and CTL responses, and protect against mucosal viral
challenge.

PVVLPs were shown to induce strongT-helper responses and the concurrentT-
helper responses to theVLPs might enhance the CTL responses against the antigen
encoded by the plasmid in the pseudoviruses. Shi et al. [75] showed that PV pseu-
doviruses could efficiently pseudoinfect mucosal and system lymphoid tissues and
reach Peyer’s patches, lamina propria, and the spleen when administrated orally.
By systemic immunization, PV pseudoviruses induced stronger CTL responses
than plasmid DNA vaccines alone, and by oral immunization, pseudoviruses could
generate specific mucosal and systemic CTL responses and protect mice against
mucosal challenge. Women infected with human immunodeficiency virus (HIV)
are at a greater risk of being co-infected with HPV. HIV-positive women have
a 3–5 times greater risk of developing intraepithelial lesions and a 3–4.5 times
greater risk of developing invasive neoplasia [63]. Zhang et al. [97] showed that
oral immunization with PV pseudoviruses encoding HIV-1 Gag could induce
mucosal and systemic Gag-specific CTL responses which could effectively lyse
Gag-expressing target cells. Furthermore, pseudovirus vaccination could generate
Gag-specific IFN-γ-producing T cells, serum IgG, and mucosal IgA. It would seem
that PV pseudoviruses may be better candidates for prophylactic and therapeutic
vaccines to some infectious diseases.

In summary, PV pseudoviruses are valuable tools for determination of neu-
tralizing antibody and analysis of papillomavirus internalization pathways and are
good candidates for vaccine development.

Conclusions

Papillomavirus VLPs are good vehicles for the efficient delivery of epitopes or
genes to target cells. Now, chimeric papillomavirus VLPs and papillomavirus
pseudoviruses have been widely used in the fields of basic virological studies of
papillomavirus, development of various vaccines, neutralizing antibody detection,
and population-based HPV screening. In order to enhance vaccine immunogenic-
ity, there are still other strategies based on PV VLPs, such as fusing adjuvant
molecules to the capsid proteins to form chimeric VLPs (our unpublished data),
encapsidating nonmethylated CpG motifs into VLPs derived from the hepatitis B
core antigen or the bacteriophage Qβ [78], chemically binding adjuvant molecules
(subunit B of cholera toxin [35]) or antigenic peptides (TNF-α [11, 12], epitope
of influenza type A M2 protein [33]) to PV VLPs. What’s more, DNA molecules
can directly bind to PV VLPs to form a VLP/DNA complex, which is another way
to transfer genes using PV VLPs [4]. It is expected that more types of PV VLP-
based vaccines with higher immunogenicity and better epitopes or gene delivery
systems will be developed in the future.
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