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Abstract
Traditional weather forecasting approaches use various numerical simulations and empirical models to produce a gridded 
estimate of rainfall, often spanning multiple regions but struggling to capture extreme events. The approach presented here 
combines modern meteorological forecasts from the ECMWF SEAS5 seasonal forecasts with convolutional neural networks 
(CNNs) to improve the forecasting of total monthly regional rainfall across Great Britain. The CNN is trained using mean 
sea-level pressure and 2-m air temperature forecasts from the ECMWF C3S service using three lead-times: 1 month, 3 months 
and 6 months. The training is supervised using the equivalent benchmark rainfall data provided by the CEH-GEAR (Centre 
for Ecology and Hydrology, gridded estimates of areal rainfall). Comparing the CNN to the ECMWF predictions shows the 
CNN out-performs the ECMWF across all three lead times. This is done using an unseen validation dataset and based on the 
root mean square error (RMSE) between the predicted rainfall values for each region and benchmark values from the CEH-
GEAR dataset. The largest improvement is at a 1-month lead time where the CNN model scores a RMSE 6.89 mm lower 
than the ECMWF. However, these differences are exacerbated at the extremes with the CNN producing, at a 1-month lead 
time, RMSEs which are 28.19 mm lower than the corresponding predictions from the ECMWF. Following this, a sensitivity 
analysis shows the CNN model predicts increased rainfall values in the presence of a low sea-level pressure anomaly around 
Iceland, followed by a high sea-level pressure anomaly south of Greenland.

1  Introduction

Rainfall variation plays a significant role in the long-term 
investment strategy and typically takes two forms across 
Great Britain. First is the effect of droughts, or prolonged 
periods of lower-than expected rainfall, such as that fol-
lowing the wet summer of 2012, which resulted in farm-
ers struggling to grow and harvest crops and a heightened 
risk of wildfires (Kendon et al. 2013). The second effect is 
flooding from high levels of precipitation, with two promi-
nent examples of this being storms Ciara and Dennis from 
February 2020, which resulted in over £300 million worth of 
damage and costing the lives of five people (Griffith 2020). 
Therefore, it is important to increase our understanding of 
the processes controlling the temporal and spatial occur-
rences and magnitudes to help build societal resilience.

Previous research has demonstrated that the magnitude 
and spatial distribution of rainfall are tied to the patterns 
of atmospheric circulation (Utsumi et al. 2017; Baker et al. 
2018; Gimeno et al. 2020). This is especially true during 
winter, when the precipitation variability over the British 
Isles is heavily influenced by the North Atlantic Oscilla-
tion (NAO), an index which is characterised by the pressure 
difference between the Azores and Iceland (Brown 2018). 
The NAO has been found to exert a strong influence on the 
storm track and strength of extra-tropical cyclones crossing 
the North Atlantic Ocean (Huntingford et al. 2014). These 
storms which originate over the North Atlantic are the main 
contributors to European rainfall (Gimeno et al. 2020). Other 
studies have identified links between NAO and flood levels 
(e.g. Hannaford and Marsh 2008; Macdonald et al. 2010).

Neal et al. (2016) created two classification models to 
investigate the synoptic atmospheric conditions leading to 
dry and wet periods, respectively, across the entire UK. The 
classification models grouped daily atmospheric conditions 
into either one of thirty or one of eight types depending on 
which model was being used. These models were developed 
by using daily sea-level pressure patterns across northern 
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Europe and the North Atlantic and clustering them using 
a simulated annealing variant of the k-means clustering 
algorithm. Neal’s models use the mean sea-level pressure 
anomalies across the North Atlantic to classify every day 
into one of thirty different circulation types. Subsequently, 
the set of 30 circulation types was reduced to a smaller set 
consisting of eight circulation types, the most prominent 
of which represent the positive and negative phases of the 
NAO. Using these eight patterns, Richardson et al. (2017) 
were able to show how certain patterns such as a negative 
NAO with a blocking pattern or anticyclonic conditions over 
the UK result in drier conditions than average. Furthermore, 
Richardson et al. (2017) also showed how a positive NAO 
pattern or a strong cyclonic pattern to the south west of the 
UK can result in wetter than average conditions. Similarly, 
Ummenhofer et al. (2017) used clustering techniques to 
group the precipitation rates across Europe into five types. 
The average sea-level pressure anomalies for each of these 
types were grouped together and showed strong relationships 
between the dominant pressure systems over the Arctic and 
Europe to the precipitation variability over the UK. None 
of the studies listed above appear to include temperature as 
a covariate despite the key relationship between tempera-
ture and rainfall via the Clausius-Clepyeron (CC) relation 
which states a warmer atmosphere can hold more water 
than a cooler one (Blenkinsop et al. 2015). The relation-
ship between temperature and rainfall via the CC relation is 
evident but varies across a spatial domain even as small as 
the UK (Blenkinsop et al. 2015). Further studies also show 
a stark contrast in synoptic temperature conditions related to 
heavy or intense rainfall events (Allan et al. 2020).

Baker et al. (2018) used several linear regression models 
to explain up to 76% of regional rainfall variability in the 
UK using a series of selected sea-level pressure metrics. 
Richardson et al. (2020) further expanded the work on the 
original circulation pattern analysis of Richardson et al. 
(2017), to show that weather patterns can be used to inform 
both medium-range precipitation forecasting, highlighting 
that the use of the weather patterns in forecasting increased 
the accuracy of the drought forecast. Recently there has been 
a move towards the use of neural networks to predict future 
rainfall. A review by Pham et al. (2020) found that neural 
networks can generally predict daily and sub-daily rainfall 
to within 10 mm or less. Kumar et al. (2019) used a neural 
network to predict the monthly rainfall totals across several 
hydrologically homogeneous regions in India. However, the 
greatest success was reported by Haidar and Verma (2018), 
who developed a one-dimensional convolutional neural 
network (CNN) using climate variables (including, but 
not limited to, max temperature, min temperature, south-
ern oscillation index, dipole mode index and interdecadal 
pacific oscillation) to predict monthly rainfall total in east-
ern Australia. They found that the resulting model showed 

higher predictive performance than the recently released 
Australian Community Climate and Earth System (Hudson 
et al., 2017). Recently, CNNs have been shown as capa-
ble at predicting gridded precipitation; first, Larraondo 
et al. (2019) use geopotential height fields across the North 
Atlantic to predict total 3-hourly precipitation across West-
ern Europe presenting more accurate results than alternative 
traditional machine learning approaches such as regression. 
In contrast, Rasp and Thuerey (2021) used a large number 
of input variables including geopotential height, tempera-
ture, wind speeds, specific humidity and 6-h accumulated 
precipitation to predict gridded rainfall estimates with cells 
5.625°. Although both studies present promising results, 
neither provided a true sub-seasonal forecast. An image-
based CNN would allow the interpretation of images, such 
as those used by Neal et al. (2016) but using the powerful 
inference offered by the CNN architecture shown by Haidar 
and Verma (2018), Larraondo et al. (2019) and Rasp and 
Thuerey (2021).

The present work fills this gap by producing a novel sub-
seasonal rainfall forecasting methodology which uses image-
based convolutional neural networks along with the mete-
orological forecasts from the ECMWF. The convolutional 
neural networks used are a novel deep learning approach, 
which combine both high-resolution sea-level pressure and 
2-m air temperature forecast patterns across the North Atlan-
tic to produce regional, monthly rainfall predictions. These 
models are then compared to the ECMWF SEAS5 precipi-
tation forecasts (Johnson et al. 2019) using three different 
lead times (1 month, 3 months, and 6 months). To begin 
with, this study describes the datasets and pre-processing 
carried out (Section 2), before introducing CNNs in Sec-
tion 3, detailing the architecture and training progress of the 
selected model in Section 3. The forecasts from the CNN 
are then compared with those from the SEAS5 system (Sec-
tion 4), before making concluding remarks regarding the 
potential for CNNs to be used to predict regional rainfall.

2 � Data

Training the CNNs requires three key datasets: (1) the 
benchmark (observed) regional precipitation, (2) the fore-
casted mean-sea level pressure and (3) 2 m air temperature 
(2AT) patterns across the North Atlantic. Forecast precipita-
tion is then also required to allow a comparison between the 
accuracy of the CNN model and that of the ECMWF SEAS5 
model. This section begins by describing the extraction of 
the observed and forecasted regional rainfall before describ-
ing the process of extracting forecasted North Atlantic mean 
sea-level pressure (MSLP) and North Atlantic 2AT data. 
Finally, this section concludes by describing the separation 
of the dataset into training, testing and validation.
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2.1 � Regional precipitation

Regional, series of observed monthly precipitation totals 
(mm) covering the land surface of Great Britain are 
extracted from the CEH-GEAR (Tanguy et al. 2019) and 
the forecasted precipitation totals (mm) extracted from 
the ECMWF SEA5 (Johnson et  al. 2019). The CEH-
GEAR dataset represents the benchmark precipitation and 
is used to train the CNN model. The predictions made 
by the CNN are then compared to the precipitation hind-
casts made by the ECMWF SEA5 service. Both datasets 
are used to produce average cumulative monthly rainfall 
between 1993 and 2017 for the 13 regions administrative 
regions of Great Britain (Fig. 1).

2.1.1 � Benchmark regional rainfall

The CEH-GEAR dataset is a daily-mean rainfall dataset 
provided on a 1 km × 1 km grid covering the British Isles. 
The dataset spans the years 1950 to 2017; however, only 
data from 1993 to 2017 were used in this study due to 
the more limited range of the ECMWF hindcasts dataset 
as described in the Section 2.1.2. First, the daily CEH-
GEAR data were aggregated to monthly values (mm). 
Next, the monthly rainfall data were further aggregated 
spatially to represent rainfall in each of the 13 regions. 
This was achieved by defining 598 points at 20 km inter-
vals across the UK as shown in Fig. 1a. For each region, 
a representative monthly rainfall value is represented by 
the average monthly cumulative total of all points within 
the region’s boundaries.

2.1.2 � ECMWF SEAS5 forecast regional rainfall

Forecast of bias-corrected rainfall data provided by the 
ECMWF SEA5 model was retrieved through the for three 
different lead times, 1 month, 3 months, and 6 months. As 
the ECMWF SEA5 results are provided as an ensemble of 
52 model realisations, the ensemble mean is used. Rainfall 
data for each lead time variant is provided in cumulative 
monthly values (mm) at a global resolution of 1° × 1° cells; 
the data used in this study is bound between [100°W, 70°N] 
and [20°E, 10°N]. This data is then aggregated for each 
region to produce a total monthly rainfall value for each 
region for the months available. To do this for a given region 
and month, the month’s rainfall data is first retrieved and is 
represented by a matrix of 1° × 1° cells. Next, each point 
within the selected region takes the value of the CEH-GEAR 
cell which contains it. Finally, the values for each point can 
be averaged to produce a total monthly rainfall value for the 
given region during the given month. Completing this opera-
tion for each month and each region produces a rainfall data 
matrix of size [13, 288] ([N-Regions, N-Months]).

2.2 � Meteorological data

Similarly to the rainfall data discussed in Section 2.1.2, the 
large-scale atmospheric dataset used in this study is provided 
at a 1° × 1° resolution and is obtained from the ECMWF 
SEA5 system and provided bias-corrected (Johnson et al. 
2019). The variables of interest are the bias-corrected MSLP 
and bias-corrected 2AT. Both variables are provided glob-
ally and are forecasted using multiple lead times, with the 
MSLP provided in units of Pascal and the 2AT provided in 
Kelvin, as discussed above the ensemble mean is taken for 

Fig. 1   The 13 regions of Great Britain (a) and the corresponding 20 km by 20 km points (b) used to aggregate monthly rainfall totals (mm)
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both the MSLP and 2AT patterns. As this study is focus-
sing on the synoptic conditions in the North Atlantic Ocean, 
a subset of the data between − 100°–20° longitude and 
10°–70° latitude was extracted for each of the three chosen 
lead times (1 month, 3 months and 6 months). For each lead 
time, each month is then represented by two matrices of size 
121 × 61, one for the 2AT and the second for the MSLP with 
each entry representing a 1° × 1° spatial cell. The resulting 
dataset consists of 288 matrices for AT and 288 matrices 
for MSLP, one for each month covering the 24-year study 
period (1993–2017).

2.3 � Data separation

The final step in data preparation is to distinguish the data 
used for training, testing and validation. The training data 
will be used to train and optimise the network, the testing 
data will be used in a hold-out testing scheme to ensure 
that the models are not overfitting, and finally, the valida-
tion data will be used to evaluate model performance after 
development. To begin, the validation dataset is set to con-
tain the data from the years 2013 to 2017; then, the remain-
ing months are split randomly between training (70%) and 
testing (30%).

3 � Forecasting method

Three convolutional neural networks (defined below) were 
developed to forecast the monthly regional rainfall values 
across Great Britain using three different lead times; the 

inputs and outputs of each CNN are shown in Fig. 2. This 
section introduces convolutional neural networks, their 
components and the architecture of the network followed 
by an outline of the training method including details on the 
data standardisation procedure used prior to training. CNNs 
are selected due to their capabilities of interpreting image 
data where traditional neural networks would fail, covering 
a wide variety of applications from tumour identification 
(Yang et al. 2019) to video classification (Karpathy et al. 
2014).

3.1 � Network structure

Convolutional neural networks (CNNs) are a type of neu-
ral network that specialise in interpreting data that are in 
image form, which in the present case are images consist-
ing of two matrices: the 2AT and the MSLP patterns. The 
resulting input matrix for each month is a 3D matrix of size 
[2 × 121 × 61], the first [121 × 61] slice containing the MSLP 
and the second containing the 2AT. During training, this 
matrix is fed through the layers in the CNN with each layer 
performing a unique matrix transformation; the layers used 
in the models for this study are detailed below.

The name (CNN) is derived from the networks’ use of 
convolutional (i.e. a layer which performs many different 
operations on the input) layers. An example convolutional 
layer is provided in Fig. 3. Here, the layer accepts a [3 × 3] 
matrix as its input matrix; it then passes a predefined kernel 
(mask) over the image in increments (also known as the step 
size) of one pixel. At each step, the kernel is multiplied by 
the pixels underneath it, then summing the resulting values 

Fig. 2   The three forecast models showing their inputs and outputs
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to produce the output of this step. The outputs of each step 
are put back together to form a new lower-resolution image. 
In this case, the kernel (defined here as a 2 × 2 block with a 
row of two 1 s above a row of two 0 s, indicating the kernel 
is looking for a horizontal line) has identified a horizontal 
line at the top of the image and no horizontal lines below 
this. This can be seen in Fig. 3 where a 2 is produced for 
both the top left and top right hand corners indicating that 
both of these contain some or all of a horizontal line. In 
practice, it is common to use multiple kernels at each layer 
such that each layer can capture many different features. 
These result in an output matrix larger than that of the input 
matrix; for example, if three kernels of size [2 × 2] were 
used on a [3 × 3] matrix input, the resulting output would be 
3 × [2 × 2] (three kernels of size [2 × 2]).

Using multiple kernels in a single layer then presents a 
problem of complexity, increasing the size of the data as 
it moves through the convolutional layer further increases 
the computational resources needed for processing. To 

counteract this, the implementation of max-pooling lay-
ers are used, which also reduce the dimensionality of the 
data. Max-pooling layers look through a kernel but instead 
of multiplying the pixels under it; the patch simply takes 
the maximum pixel value and uses this to represent its 
output. This process is illustrated in Fig. 4 using a vari-
ation of the [3 × 3] matrix present in Fig. 3. As the max 
pooling layers generally follow a convolutional layer the 
input, they receive is a multi-dimensional matrix, in the 
example described in the above paragraph the output pro-
vides 3 × [2 × 2] matrices (one [2 × 2] for each kernel). 
Each kernel’s output is processed independently, such that 
the number of matrices outputted by max pooling layers 
stays the same as the number which are given to them. 
However, these matrices will have reduced dimensions. 
Take for example an output from a convolutional layer of 
5 × [3 × 3] matrices; feeding this into a max pooling layer 
as shown in Fig. 4 will produce 5 × [2 × 2] matrices.

Fig. 3   A convolution applied to a 3-by-3 image using a 2-by-2 kernel. The kernel is moved over the image by one pixel at a time, calculating the 
value of the subsection by multiplying the kernel by the pixels highlighted and summing the result

Fig. 4   A max-pooling operation applied to a 3-by-3 image using a patch of size 2-by-2. As the patch moves across the image, it extracts the 
maximum pixel value at each timestep
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Max-pooling layers enable the CNN to reduce the dimen-
sionality of the data. Relating this back to the datasets 
described in Section 2, the input is a 3D matrix ([variables, 
latitude, longitude] = [2, 61, 121]), but the output is a vector of 
length 13 (a monthly rainfall value for each of the 13 regions), 
so a final set of layers is needed to convert the multi-dimen-
sional outputs of the convolutional/max-pooling layers to a 1D 
matrix. To do this, a linear layer is used; an example of which 
is shown in Fig. 5. The linear layer consists of several nodes 
each of which is connected by a weighted edge to every pixel 
in the output of the layer before it (also referred to as fully con-
nected layers). The output (y) for all nodes in the linear layer 
can then be calculated as

where x is an array containing the output of the previous 
layer and the weights matrix WT is of size 

[
|x| × |y|

]
 . and b is 

a randomly initialised bias term (of size 
[
|y| × 1

]
 ). The result-

ing vector y is then passed through an activation function, 

(1)y = xWT
+ b,

which in this case is a rectified linear unit function on each 
element; this activation function applies an absolute function 
to the values, ensuring that all output values in y are positive.

The architecture of the CNNs produced for this experi-
ment is shown in Fig. 6. It consists of two convolutional 
layers, two max pooling layers and two linear layers. Fig-
ure 6 also shows how the size of the data moving through 
the network is changing; in the first convolutional layer, for 
example, the original input image is split into 16 × [30 × 60] 
matrices. This indicates that in the first convolutional layer, 
there are 16 randomly generated kernels (all kernels used 
are of size (2, 2)); the kernels are randomly generated to 
enable to identification of features which may not have been 
previously known. An activation layer then follows each con-
volutional layer using the ReLU function ( max(x, 0) ). These 
are then reduced in size through the first max-pooling layer 
before being fed into the second convolutional and max-
pooling layers. Following these, the output is passed through 
two linear layers, the first containing 100 neurons and the 
second containing 13. This final linear layer of 13 neurons 

Fig. 5   A linear layer example following a max pooling layer. This 
example shows a max pooling layer with output dimensions [8, 3, 7] 
feeding into a linear layer of size [1, 100]. The max-pooling output is 
first flattened into a 1D vector. Each value in this vector is then con-

nected to every node in the linear layer via a weighted edge which 
results in a weights matrix of size [8 × 3 × 7, 100] . The linear layer 
then uses these weights and the flatened max-pooling vector to calcu-
late the layer’s output as described by Eq. 2

Fig. 6   Architecture of the convolutional neural network model. Each 
layer is provided with the number of dimensions of its output matrix. 
For example, the first convolutional layer has an output size of [16, 

30, 60]; this also indicates the number of filters used in the layer (16). 
These are followed by max-pooling layers and finally two dense lin-
ear layers
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outputs the monthly rainfall predictions for each of the 13 
regions.

3.2 � Training

As two separate variables with different scales and units are 
used for the input, they are standardised separately, such 
that both the 2AT matrix and mean sea level pressure were 
standardised by the mean and standard deviation of each of 
their individual matrix elements. Once standardised, these 
images were recombined into the [2 × 61 × 121] matrices 
required for training. Next, to reduce the potential for over-
fitting, the data are split randomly into two groups; a train-
ing and a validation dataset. The training dataset was used 
for training the weights of the CNN, whereas the validation 
data was used to compare the model predictions to those 
of the ECMWF system. Hence, of the data available, the 
months between 2013 and 2017 were retained for validation 
purposes and the remaining months between 1993 and 2012 
were used for training. To train the weights of the CNN, the 
Adam optimisation (Kingma and Ba 2015) method is used 
along with the root mean-squared error (MSE) defined as

Finally, to ensure that the models are optimal, a stopping 
condition is used through a hold-out testing scheme; on each 
epoch, the testing data is used to calculate a testing loss. If 
after 5 epochs the testing loss does not reduce, the training 
scheme will revert the parameters to the epoch with the low-
est testing error.

4 � Validation results

This section details first a comparison between the forecast-
ing capability of the trained CNN model developed in this 
study and the existing ECMWF model using only the vali-
dation dataset which was not used during training and then 
breaks down the CNN model to identify what features have 
been identified in the large-scale data as being most influen-
tial for informing the predictions (Section 4.2).

4.1 � Model comparisons

To ensure a fair comparison, only validation data is used to 
compare the ECMWF and the CNN models. Figure 7 shows 
both the CNN and ECMWF predictions against the bench-
mark rainfall for the validation dataset. For all three lead 
times, the CNN shows wider spread in its predictions, espe-
cially when predicting the lower rainfall values. Decreas-
ing the lead time from 6 to 3 months appears to make little 

(2)RMSE(x, y) =

�∑n

i=1
(yi − xi)

2

n
.

difference to the distribution of the predictions. However, 
at a 1 month lead time, the ECMWF predictions present a 
smaller range of predicted rainfall which comes at the cost 
of constant over prediction of the lower rainfall values and 
under-prediction of the higher rainfall values. Contrary to 
this, the CNN model yields a larger variation in the predic-
tions of very low and very high rainfall amounts but appear 
to be less biased.

As shown in Table 1, the 3-month variants of both models 
perform the best, with the lowest RMSE scores. This trend 
is found in both the validation RMSE scores and the overall 
dataset RMSE scores. In all lead times and in both dataset 
variants, the CNN outperforms the ECMWF model; this is 
to be expected in the overall dataset (training, testing and 
validation) as the CNN was specifically trained using the 
data being evaluated. However, this does not explain the 
increased accuracy the CNN has in the validation dataset 
which was not available during training.

Further investigating the bias in the models towards the 
central range of rainfall values, Fig. 8 shows a summation 
of the residuals (differences between the benchmark and 
predicted rainfall) against the benchmark rainfall values for 
a 3-month lead time. This illustrates the strong under pre-
diction of the higher rainfall values in both the CNN and 
ECMWF predictions; moreover, this highlights a weaker 
bias in the CNN model with approximately half the final 
cumulative residual compared to the ECMWF predictions. 
Following this, a weaker bias can be seen in the rainfall 
values leading up to 100 mm with a general trend of over 
prediction in both models, of which the CNNs bias appears 
stronger. A similar trend is seen for both 1-month and 
6-month lead time predictions.

Identification of any regional or seasonal bias in the pre-
dictions is investigated based on proportional errors which 
are generated for each of the 13 regions across Great Britain 
and for each of the 12 months of the year. To do this, the 
mean-absolute error (MAE) is used to calculate the differ-
ences between the two series; the general equation for the 
MAE is defined as

Subsequently, the MAE can then be used to calculate the 
proportional regional error (PRE) for a given region i:

Here, the mean absolute error between the benchmark 
rainfall series ( pi ) and predicted rainfall series ( p̂i ) is divided 
by the mean benchmark rainfall ( pi ) for the given region i . 
This indicates how far away the predictions are based on the 

(3)MAE(x, y) =

∑n

i=1
��yi − xi

��
n

(4)PREi =
MAE(pi, p̂i)

pi
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region’s average rainfall value. Similarly, the proportional 
monthly error (PME) can be calculated as

As with Eq. 3, the difference between the benchmark 
series ( pm ) and predicted rainfall series ( ̂pm ) is divided 

(5)PMEm =
MAE(pm, p̂m)

pm

by the mean benchmark rainfall (pm) for month m where 
m = 1,… , 12 . Figure 9 (top row) shows the proportional 
error for each region and each month of the year.

The values of PREs are below 52% for all lead times 
and all regions; despite this, at a 1-month lead time, there 

Fig. 7   Validation rainfall predictions against benchmark rainfall for both the CNN and ECMWF methods in all three lead times: a 1 month, b 
3 months and c 6 months

Table 1   The RMSE scores for both the CNN and ECMWF models 
covering all three lead times given the validation dataset and the over-
all dataset are given

Model Lead time RMSE

Validation Overall

CNN 1 46.47 38.09
3 43.27 37.99
6 48.53 39.02

ECMWF 1 53.36 47.50
3 48.65 45.86
6 49.60 52.26

Fig. 8   Cumulative residual of both methods using a three-month lead 
time against the actual regional rainfall
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is a disparity between the CNN and the ECMWF predic-
tions. The CNN errors at a 1-month lead time are highest 
for regions in the south east of Great Britain (London, South 
East England and East of England), whereas the ECMWF 
errors are higher for the west of Great Britain (Wales, South 
West England and North West England). This can be attrib-
uted to the known rainfall gradient across the UK, where 
western regions are likely to receive higher levels of rainfall 
and geographic effects produce a rain-shadow over the east 
(Mayes and Wheeler 2013). As described above and shown 
in Fig. 8, the ECMWF model produces larger errors for the 
higher rainfall values which are those occurring more in 
the west and north west regions, whereas the CNN provides 
more accurate predictions for the higher rainfall values 
which according to Fig. 9 comes at the cost of predicting 
east and south eastern rainfall. However, due to the differ-
ent drivers of rainfall across the UK (Baker et al. 2018), this 
error could be representing the CNN identifying one rainfall 
driver and discounting the others.

The bottom row of Fig. 9 shows values of PME and high-
lights significant bias in the forecasted precipitation between 
month of the year. First, the CNN across all three lead times 
produces high errors for April, June and September, whereas 

the ECMWF forecasts have the largest proportional errors 
for April, September and October. However, the magnitude 
of these errors is different, with the CNN mis-predicting 
June rainfall by 100% of June’s average rainfall, whereas the 
ECMWF forecasts only mis-predict June by 47.5%. Septem-
ber is shown to be difficult to predict with both models pro-
ducing an error of 91.1% of the average September rainfall.

4.2 � Sensitivity analysis

The benefit of using a convolutional neural network is that 
the weights between each layer can be used to identify the 
pixels of the input matrix which attribute the most to a given 
region’s rainfall prediction. To do this, the integrated gra-
dients method is employed (Sundararajan et al. 2017). Inte-
grated gradients determine the importance of each pixel in 
the original image for, in this case, increasing the predicted 
rainfall value. For example, a negative attribution value 
indicates a pixel lowered the resulting rainfall prediction, 
whereas a positive attribution increases the resulting rainfall 
value. Figure 10 shows the normalised attribution of each 
MSLP (a) and 2AT (b) pixel for both North West England 
(top) and South East England (bottom).

Fig. 9   Regional and monthly rainfall areas as a proportion of the average rainfall for the given month or region. This is given for both methods 
and all three lead times: a 1 month, b 3 months and c 6 months
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Figure 10a shows three dominant areas of interest for both 
NW and SE England; firstly, a strong negative attribution 
can be seen south west of Iceland, stretching towards the 
south west of the UK. This negative attribution will increase 
the magnitude of the rainfall prediction for both NW and 
SE England if the meteorological patterns contain a nega-
tive MSLP anomaly. Should the region instead contain a 
positive MSLP anomaly the rainfall values will decrease. In 
contrast, the second and third areas of interest are shown by 
the positive attribution values to the east of Newfoundland 
and surrounding Cape Verde, west of Africa. These regions 
of positive attribution will amplify the rainfall predictions 
if they contain positive MSLP anomalies and decrease the 
prediction if they contain negative MSLP anomalies.

The amplification of rainfall values due to a low-pres-
sure anomaly to the west of the British Isles as shown in 
Fig. 10a agrees with the findings of previous studies (Rich-
ardson et al. 2017; Ummenhofer et al. 2017; Baker et al. 
2018; Richardson et al. 2020). However, Fig. 10a also 
shows an extra region of higher pressure, south of Green-
land, which further amplifies rainfall magnitude. This 
extra high-pressure anomaly could aid in the creation of 
a deep pressure gradient, increasing wind speeds between 
the centres and further enhancing mixing of the cold polar 
air from the North and the warm moist air from the south. 

This mixing of cold and warm air is further shown by 
Fig. 10b which presents a combination of both positive and 
negative 2AT attributions around the UK. All lead times 
present a band of negative 2AT attributions stretching 
from the North Atlantic Ocean in a north easterly direction 
across the south of Great Britain towards Sweden and Nor-
way. This band of negative 2AT is surrounded by mostly 
positive 2AT attributions and indicates a strong 2AT gradi-
ent in the area. However, for increasing the prediction for 
SE England, the attributions show a less distinct charac-
terisation between the air masses indicating strong mixing 
of the cold and warm air masses.

Furthermore, the MSLP positive attributions around 
Cape Verde could indicate that the models are also enhanc-
ing rainfall when the MSLP anomaly differences between 
the north and mid-Atlantic Ocean are highest. This 
agrees with the findings of Baker et al. (2018), who also 
show that a pressure difference between a point between 
Scotland and Iceland and a point near Africa correlates 
strongly to rainfall in the UK. These MSLP differences 
appear to simulate the North Atlantic Oscillation index 
(NAO) which determines the MSLP difference between 
Iceland and the Azores. A heightened NAO is known to 
correspond to increased rainfall in the UK as highlighted 
by Brown (2018).

Fig. 10   Normalised attribution 
values for increasing rainfall 
predictions in both NW England 
(top) and SE England (bottom)
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5 � Conclusion

This paper has shown for the first time that convolutional 
neural networks (CNN) can be used as a tool for enhancing 
monthly, regional rainfall forecasting in the UK through 
the interpretation of forecasted mean sea-level pressure 
and 2-m air temperature patterns. Three CNN models were 
trained using monthly, regional rainfall from the CEH-
GEAR dataset and MSLP and 2AT anomaly patterns from 
the ECMWF monthly hindcasts. Each model was trained 
using a different lead time—either 1 month, 3 months, or 
6 months. A validation dataset was then used to compare 
the predicted regional rainfall values with those of the 
ECMWF precipitation hindcasts given at the same lead 
times. The CNN models were then analysed using an inte-
grated gradients technique to explore how it made its pre-
dictions. The key results are as follows:

1.	 The CNNs provided more accurate regional monthly 
rainfall totals than the ECMWF SEAS5 model across 
all three lead times.

•	 The CNN predicts the validation regional monthly 
rainfall totals with a lower RMSE than the ECMWF 
SEAS5 model for all three lead times. The RMSE 
improvements are as follows: 6.89 (1 month), 5.38 
(3 months) and 1.07 (6 months).

•	 Predicting the entire dataset including the training, 
testing and validation data series the CNN mod-
els continue to outperform the ECMWF SEAS5 
predictions by the following RMSE differences for 
each lead time: 8.96 (1 month), 7.87 (3 months) 
and 13.24 (6 months).

•	 The CNN model’s residuals indicate the CNN has 
higher accuracies when predicting the heaviest 
rainfall events compared with the ECMWF SEA5 
model.

2.	 The CNN models show spatial and seasonal bias in its 
predictions.

•	 The CNNs provide the most accurate results for 
northern and western regions of Great Britain but 
do not perform as well for the eastern and south-
eastern regions.

•	 The CNNs perform well for some months of the 
year (December, July, August, November and May) 
but produce very large errors for the months of 
June, September and April (over double the aver-
age rainfall for the month of June).

3.	 Sensitivity analysis was performed to identify how the 
CNNs were making their predictions, resulting in the 
following findings:

•	 A strong negative MSLP anomaly to the west of 
Great Britain is a key feature relating to increased 
rainfall predictions. However, a positive MSLP 
anomaly to the west of Great Britain will decrease 
the amount of rainfall predicted.

•	 A positive MSLP anomaly to the east of Newfound-
land but to the west of the negative MSLP anomaly 
identified in point 1, and another positive MSLP 
anomaly over Cape Verde, will also enhance rain-
fall magnitudes over Great Britain. If these regions 
were to contain negative MSLP anomalies instead, 
the rainfall predictions would be reduced.

•	 A combination of positive and negative 2AT anom-
alies over the British Isles will also increase the 
monthly rainfall total predictions made by the CNN 
models.

While the study presented here was limited on the avail-
able data, future work could focus on the application of this 
forecasting method to provide higher-resolution forecast 
in both time and space dimensions. There is also now the 
opportunity to explore other meteorological variables using 
CNNs to identify where these variables may matter using 
an integrated gradients analysis. Another potential option 
is to modify the method presented in this paper to output a 
probabilistic forecast instead of a point-forecast which could 
form a future body of methods capable of improving both 
rainfall forecasting and our understanding of the processes 
which lead to rainfall.
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