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Abstract
The algorithm for and results of a newly developed multivariate non-parametric model, the Euclidean distance model (EDM), for
the hourly disaggregation of daily climate data are presented here. The EDM is a resampling method based on the assumption that
the day to be disaggregated has already occurred once in the past. The Euclidean distance (ED) serves as a measure of similarity to
select the most similar day from historical records. EDM is designed to disaggregate daily means/sums of several climate elements
at once, here temperature (T), precipitation (P), sunshine duration (SD), relative humidity (rH), and wind speed (WS), while
conserving physical consistency over all disaggregated elements. Since weather conditions and hence the diurnal cycles of climate
elements depend on the weather pattern, a selection approach including objective weather patterns (OWP) was developed. The
OWP serve as an additional criterion to filter the most similar day. For a case study, EDM was applied to the daily climate data of
the stations Dresden and Fichtelberg (Saxony, Germany). The EDM results agree well with the observed data, maintaining their
statistics. Hourly results fit better for climate elements with homogenous diurnal cycles, e.g., T with very high correlations of up to
0.99. In contrast, the hourly results of the SD and the WS provide correlations up to 0.79. EDM tends to overestimate heavy
precipitation rates, e.g., by up to 15% for Dresden and 26% for Fichtelberg, potentially due to, e.g., the smaller data pool for such
events, and the equal-weighted impact of P in the ED calculation. The OWPs lead to somewhat improved results for all climate
elements in terms of similar climate conditions of the basic stations. Finally, the performance of EDM is compared with the
disaggregation tool MELODIST (Förster et al. 2015). Both tools deliver comparable and well corresponding results. All analyses
of the generated hourly data show that EDM is a very robust and flexible model that can be applied to any climate station. Since
EDM can disaggregate daily data of climate projections, future research should address whether the model is capable to respect and
(re)produce future climate trends. Further, possible improvements by including the flow direction and future OWPs should be
investigated, also with regard to reduce the overestimation of heavy rainfall rates.

1 Introduction

Climate data with high temporal resolution are needed in a
multitude of hydrological models (e.g., WaSim-ETH, MIKE
FLOOD) or ecological models (e.g., SWAT-CN, GASFLUX)
and for climate research and analysis. Additionally, the

investigation of climate-related extremes and the changes in
climate statistics are an important and relevant topic of research.

A common problem is that often only daily observations
are available with sufficient spatial resolutions and sufficiently
long time series since hourly measurements are more difficult,
expensive, and high-maintenance. Hence, hourly time series
are often not available and do not have appropriate lengths or
contain gaps due to failures of the measuring equipment. To
adapt to this lack of data, there are several methods to gener-
ate, complete, or extend the hourly time series of different
climate elements. However, most of them are designed for
the disaggregation of only one or two climate elements focus-
ing on the disaggregation of precipitation as in e.g., Glasbey
et al. (1995), Güntner et al. (2001), Lisniak et al. (2013), Lee
and Jeong (2014), and Lu et al. (2015). Only a few models
have been developed for the disaggregation of more than one
climate element, such as in Debele et al. (2007),Mezghani and
Hingray (2009), or Kim et al. (2016). These disaggregate daily
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temperature data among others. Temperature is the second
most disaggregated climate element.

All disaggregation approaches are based either on paramet-
ric or non-parametric methods. For example, the method of
Lisniak et al. (2013) is a parametric one for the temporal
disaggregation of daily data based on multiplicative random
cascades (MRC) as described by Olsson (1998) and Güntner
et al. (2001). The method of Kim et al. (2016) is also a para-
metric one for statistical downscaling based on generalized
linear modeling (GLM), as described in McCullagh and
Nelder (1989). Beck and Bárdossy (2013) developed an indi-
rect downscaling method based on a fuzzy logical
classification and Bárdossy (1998) used simulated annealing
for the simulation of precipitation time series. Examples of no-
nparametric approaches include the methods of Mezghani and
Hingray (2009), Sharif et al. (2013), Lee and Jeong (2014),
and Lu et al. (2015). These three stochastic approaches are
based on K-nearest neighbor resampling (KNR).

The Euclidean distance model (EDM) presented here is
also based on a non-parametric resampling method. It is able
to disaggregate daily mean/sum values of temperature, precip-
itation, sunshine duration, relative humidity, and wind speed,
filling the need for a model that generates hourly data for a
combination of climate elements and with a physical consis-
tency over all disaggregated climate elements.

The EDMdiffers from theKNRmainly in the kind of a priori
information considered in the classification of the object of in-
terest into preexisting classes. The KNR is based on (i) a suitable
distance metrics (e.g., Euclidean distance, Manhattan distance,
Mahalanobis distance) and on (ii) the consideration of the total
number of objects that have been divided into classes. Hence,
besides the distance measure in the feature space, also, the a
priori probability with which an object can be expected in one
of the preassigned classes is considered. This is quite similar to a
maximum likelihood approach. However, for classes with only
a small number of objects, the signal-to-noise ratio and with it
the goodness of classification can decrease. This may happen,
especially, when the underlying data are not equally distributed
or the sample size of the data is too small. Similar to KNR, also,
the EDM considers a priori information in the disaggregation
process, but here in a kind of memorization of historically sim-
ilar events, known as the method of analogous cases.

The EDM is based on the assumption that the day to be
disaggregated (hereafter called disaggregation day) has occurred
at least once in the past with more or less the same weather
conditions. In the EDM approach, the minimum distance serves
as the pointer to themost similar day in the historical data set. As
disaggregation is an under-determined task, observations, phys-
ical model assumptions, and arguments of plausibility are re-
quired for its solution. The choice of the distance metrics is
arbitrary to some degree. Due to a lack of sufficient a priori
information required for the determination of more sophisticated
metrics (e.g., employing covariance matrices), the Euclidean

distance is used as a sufficiently simple and robust distance
measure for the present purposes. The consideration of themeth-
od of analogous cases has the important advantage of reducing
the degrees of freedom in the disaggregation procedure by in-
cluding direct observations.

Since the EDM works without any calibration or
preassigned classifications, it disaggregates each single day
independently and flexible, and potential changes in the clas-
sifications and climate variations are no limitation for the
EDM. Further, it is a location-independent model that can be
applied to any other region or station. Only observed hourly
and corresponding daily data are required. And also, daily
values outside the observed range of cases can therefore be
disaggregated since only a diurnal cycle of the past is trans-
ferred and due to applied quotients, the daily values are con-
served. But if there are not yet observed characteristics of
diurnal cycles, e.g., caused by climate change, the EDM is
unable to generate this as it always provides more or less a
copy of the past.

The structure and functionality of EDM are explained here.
And its performance is examined by means of the data sets
recorded at the two climate stations Dresden and Fichtelberg
over the period 1995–2014. Both stations are located in the
Free State of Saxony (Germany). Dresden is a lowland station,
and Fichtelberg is a mountain station with a more extreme
climate. Finally, the EDM is compared to the functionality
and performance of the disaggregation tool MELODIST of
Förster et al. (2016).

2 Material

2.1 Case-study region

The Free State of Saxony serves as the case-study region for
this work. Saxony is a federal state within Germany, covering
approximately 18,400 km2 between 11.9°–15.0° E and 50.2°–
51.7° N. Its topography is flat in the North and West, with
low-range mountains in the South. The Ore Mountains
(Erzgebirge) peak at the Fichtelberg, with heights of up to
1200 m a.s.l. Figure 1 shows the geographical locations as
well as the topography of Saxony.

Saxony lies in the westerly wind zone of the mid-latitudes
and within the transition region between the maritime climate
of Western Europe and the continental climate of Eastern
Europe. Its climate is dominated by the North Atlantic and
the orientation of the low-range mountains due to the
governing weather patterns (SMUL 2008).

Due to its climatic characteristics, the SW-NE-oriented Ore
Mountains and the effects of climate change, Saxony is prone
to heavy rainfall events, especially inmountainous regions with
many small and medium catchments and short flood response
times (SMUL 2005). The climate change also leads to water
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balance changes and related problems concerning water avail-
ability, distribution, storage, and usage. Therefore, water bal-
ance, flood modeling, and risk management are important
fields of research in Saxony. Various models, like rainfall-run-
off-models, water balance models, or flood forecasting models,
exist for the river catchments in Saxony. The model WAVOS
(Burek and Rademacher 2007) is used for the water level fore-
casting of the River Elbe. To simulate the water balance of the
Mulde River catchment, the model ArcEGMO (Pfützner et al.
2007; Schumann 2009) was calibrated. The model WaSiM-
ETH (Schulla and Jasper 2007) is used to estimate the water
balance of the Weißer Schöps River catchment. In addition, for
the rainfall-runoff-modeling of the Große Röder River catch-
ment, themodel HBV (Bergström 1992) was adapted. All these
models need highly resolved input data of temperature and
precipitation. The models ArcEGMO and WaSiM-ETH need
data of global radiation or sunshine duration, wind speed, and
vapor pressure or relative humidity.

2.2 Data

2.2.1 Observed climate data

For this study, the six climate stations Chemnitz, Dresden-
Klotzsche, Fichtelberg, Görlitz, Leipzig/Halle, and Plauen of
the German Weather Service (DWD) were selected as they
belong to the same macro-climatic transition zone between
the maritime influenced climate in Western Europe and the
continental climate in Eastern Europe. Further, they also be-
long to the same meso-climatic zone as they are close to each
other (within a radius of 125 km; Fig. 1) and within one fed-
eral state. Due to meso-climatic variations, Kronenberg et al.
(2015) classified four regions of similar climates for Saxony.
The climate stations used for this study spread over all these
four regions. It is recommended to pool only stations of the

same climate region, but this would reduce the available cli-
mate data significantly, especially concerning hourly recorded
data. The consequences of pooling stations of different cli-
mate regions are discussed in Section 4.

For the comparison of the EDM with the disaggregation
tool MELODIST of Förster et al. (2016), the data of the cli-
mate station De Bilt are used. This station is located in the
Utrecht province, Netherlands, about 650 km to the west of
Dresden. De Bilt belongs to the maritime influenced macro-
climatic zone of Western Europe.

The coordinates and altitudes of all climate stations are
listed in Table 1. Figure 1 shows the geographic locations of
the Saxon stations. The observed hourly and corresponding
daily data of the Saxon climate stations were provided by the
DWD and cover the time period between September 1995 and
August 2014. The datasets include the mean temperature
Tmean [°C], precipitation P [mm], sunshine duration SD
[min], relative humidity rH [%], and wind speed WS [m/s] at
10 m height. Additionally, the daily data also include the
minimum and maximum temperature Tmin [°C] and Tmax
[°C]. All of the daily data besides the precipitation data refer
to 00:00 CET and 23:59 CET, where CET ≙ UTC + 1. The
reference time of the daily precipitation data spans between
06:51 CET and 06:50 CET.

The hourly and daily recorded data of De Bilt were provid-
ed by the KNMI and cover the period between January 1981
and December 2014. The datasets include the same climate
elements as the datasets of the Saxon stations.

A basic requirement of the model performance is the phys-
ical consistency between the hourly and the corresponding
daily mean/sum data, i.e., the re-aggregation of hourly data
should not result in deviations from the observed mean/sum
data. To ensure this, the data were corrected for missing values
in an initial step. If hourly values were missing in the data
records, the corresponding gap in the model input data were

Fig. 1 Geographic location and
topography of the Free State of
Saxony, including the
geographical location of the six
selected DWD climate stations
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encoded as − 999.0 and the related daily data were hence not
used for disaggregation.

2.2.2 Objective weather pattern data

As an additional characteristic, the daily objective weather
pattern (OWP) classification of the DWD is used in the pres-
ent study. It consists of 40 pattern classes encompassing all
atmospheric conditions. Each of these classes represents a
certain combination of the general flow direction (5 mean
flow directions, e.g., northwest), the synoptic flow pattern at
two tropospheric pressure levels (four categories: cyclonic/
anticyclonic in 950 hPa/500 hPa), as well as the humidity of
the atmosphere (two categories: humid/dry), resulting in alto-
gether 5 × 4 × 2 = 40 different OWP classes. For the case
study, only the synoptic flow patterns at the two atmospheric
pressure levels and the humidity of the atmosphere are used.
The mean flow direction was not taken into account, due to
very high effort and the lack of a semi-automated procedure to
recognize the mean flow direction from weather charts.

The weather pattern is derived once a day at 12:00 CET,
covers the territory of Germany and its adjacent regions, and is
available since the 1st July 1979. The derivation of this classifi-
cation is described in detail in Bissolli andDittmann (2003). The
OWP data are freely available online at the website of theDWD.

3 Methods

The Euclidean distance (ED) is used as a robust measure of
similarity between two individual sets of daily climate data.
The aim is to find the most similar analogous reference day,
called “basic day” (DB) from records of historical weather
events and to transfer its diurnal cycle to the “disaggregation
day” (DD). The assignment of an actual event to a historical
analog is the essence of the method of “analogous case”.

First, the structure of the ED model (EDM) is presented
schematically in Fig. 2 and outlined below; afterwards, the
methods to compare the disaggregated and observed hourly
data are described.

3.1 Model structure

3.1.1 Setup of the data base

In the first step, the daily datasets of the basic climate stations
and all daily data that have to be disaggregated are imported
into EDM. Additionally, for each station, an accompanying
dataset containing the time of the sunrise and sunset and the
resulting length of the day (LOD) for each Julian day of a year
is imported as a look-up table.

During the import, each basic day is assigned to each of the
three incremental refining weather pattern groups WPG-1,
WPG-2, and WPG-3:

– WPG-1: subdivision with different flow patterns in the
950 hPa level (cyclonic/anticyclonic) providing two
classes

– WPG-2: subdivision with different flow patterns in the
950 hPa level (WPG-1) and additional humidity of the
atmosphere (humid/dry), providing four classes

– WPG-3: subdivision with different flow patterns in the
950 hPa level (WPG-1), humidity of the atmosphere
(WPG-2) and additional with different flow patterns in
the 500 hPa level (cyclonic/anticyclonic) providing eight
classes

To eliminate the units of the climate elements and to
achieve a dataset with an arithmetic mean of 0.0 and an em-
piric standard deviation of 1.0, a Studentization is done for the
daily data of each element and over all stations by

zE ¼ xE−xE
σxE

ð1Þ

where zE is the Studentized daily value of a climate element E,
xE is the daily value to be standardized, xE is the arithmetic
mean of the climate element over all basic stations including
the station to be disaggregated, and σxE is the standard devia-
tion of the element over all basic stations including the station
to be disaggregated.

Table 1 Name, geographical location, altitude, mean annual temperature [°C], mean annual precipitation [mm/a], and mean annual sunshine duration
[h/a] (1961–1990) of the seven used climate stations

Climate station Code Latitude [° N] Longitude [° E] Altitude [m a.s.l.] T [°C] P [mm/a] SD [h/a]

Chemnitz 853 (DWD) 50.79 12.87 418 8.6 690 1533

Dresden-Klotzsche 1048 (DWD) 51.13 13.75 222 8.7 735 1659

Fichtelberg 1358 (DWD) 50.43 12.95 1213 2.9 1231 1517

Görlitz 1684 (DWD) 51.16 14.95 238 8.2 722 1718

Leipzig/Halle 2932 (DWD) 51.43 12.24 131 9.1 635 1683

Plauen 3946 (DWD) 50.48 12.13 386 7.5 634 1471

De Bilt 260 (KNMI) 52.10 5.18 2 10.1 887 1602
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The recorded hourly datasets of some climate elements,
e.g., precipitation and relative humidity, are not normally dis-
tributed and it is not assumed to obtain normality by this
Studentization.

Afterwards, to make the climate elements comparable
among each other, all Studentized data are standardized by
dividing each Studentized daily value, zE , by the range of
all the data:

zEs ¼
zE

min
j¼1::i

zE jð Þ−max
j¼1::i

zE jð Þ ð2Þ

where zEs is the standardized-Studentized daily value of a
climate element E, zE is the Studentized daily value, and min

j¼1::i

zE jð Þ and max
j¼1::i

zE jð Þ are the minimum and maximum values

determined over all climate elements, all stations and all days.

The following steps are carried out separately for each dis-
aggregation day DD.

3.1.2 Selection of an analogous day

If the data of the station to be disaggregated are within the pool
of basic daysDB (i.e., for validation as shown in Section 4.3),
the specific dayDD is excluded to avoid a disaggregation of a
day with its own data. The performance appeared better when
the three preceding and the three subsequent days next to DD
are excluded.

In the first selection step, all basic days DB in the pool are
filtered according to two constraints. If the DD is a precipita-
tion day with P > 0.0 mm, the most similar DB has to be a
precipitation day, too, and if DD has a sunshine duration >
0.0 h, the most similarDB has to have a sunshine duration of >
0.0 h, too.

z-Transformation: =
−

Element combining Euclidean Distance:

= ( 1 ,
− 1 ,

)² + 2 ,
− 2 ,

2
+ …

Selection of the basic day with EDmin

Filtering concerning 

LOD
Optional: Filtering 

concerning OWP

Correction of SD(P)

Output

hourly data

Ratio calculation: RE = ED/EB

Difference calculation (temperature): ∆T = TD-TB

Disaggregation:

ℎ
=

ℎ
∗

ℎ
=

ℎ
+ ∆

Euclidean Distance Model

Observed daily and hourly data (Basic data) 

E1B, E2B,…E7B

Daily data to be disaggregated

E1D, E2D,… E7D

Input

Standardization: =
min
=1..

( )−max
=1..

( )

Fig. 2 Flowchart of the Euclidean
distance model
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Afterwards, the standardized-Studentized daily data of the
selected analogousDB are used to calculate the similarity met-
rics ED as follows:

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zE1s;B−zE1s;D
� �2 þ zE2s;B−zE2s;D

� �2 þ…þ zEis;B−zEis;D
� �2

q

ð3Þ

where zs is the standardized and Studentized daily value, sub-
script E denotes the climate element, index i is the identifier of
the climate element (here e.g., E1 means the maximum tem-
perature), subscript B refers to the basic daily data, and sub-
script D to the daily data to be disaggregated.

The ED is calculated only for all those filtered DB that con-
tain no missing values in the data of the climate elements that
are used for theED calculation or that have to be disaggregated.

The subsequent selection of the most similarDB is based on
the minimization of ED values.

The model performs two different stepwise selection ap-
proaches to filter out the most similar day, both comprising
five steps.

The first selection approach is stepwise filtering the DB ap-
plying a successively refined LOD interval (Selection 1, S1):

1. LOD ± 2 h of the DD

2. LOD ± 1 h of the DD

3. LOD ± 30 min of the DD

4. LOD ± 15 min of the DD

5. Same LOD of the DD

If more than one DB is left after a selection step, the next
step is performed. Otherwise, if only 1 day is left, this day is
adopted the most similar day and hence, is used as DB for the
disaggregation (DBD). In addition, if no DB is left after a se-
lection step, the most similar day is selected from all the DB

that were remaining after the prior step. Then, the most similar
DB will be used as DBD and has a minimum distance (EDmin).

The second (alternative) selection approach is stepwise filter-
ing the DB by applying the successively refined LOD (cf. S1)
and a successively extending OWP criteria (Selection 2, S2):

1. LOD ± 2 h of the DD and:

1.1. Exact same WP
1.2. WPG-3
1.3. WPG-2
1.4. WPG-1

2. LOD ± 1 h of the DD and:

2.1. Exact same WP
2.2. WPG-3
2.3. WPG-2
2.4. WPG-1

3. LOD ± 30 min of the DD and:

3.1. Exact same WP
3.2. WPG-3
3.3. WPG-2

4. LOD ± 15 min of the DD and:

4.1. Exact same WP
4.2. WPG-3

5. Same LOD of the DD and:

5.1. Exact same WP
5.2. WPG-3

If no DB is left after a selection step, the next step is per-
formed. If only 1 day is left, this is adopted the most similar day
and hence is used as DB for the disaggregation (DBD). In addi-
tion, if more than one DB is left, the most similar DB will be
used as DBD and has a minimum distance EDmin as written in
Eq. 3.

It is possible that there is more than one DB with EDmin,
especially when only a few or even only one element is used
for the ED calculation. In this case, the DBD is selected by
means of a uniformly distributed random factor.

3.1.3 Adaptation of the selected hourly meteorological
conditions

To ensure self-consistency between aggregated and disaggre-
gated data, an intermediate adjustment step is necessary. Prior
to application toDD, the diurnal cycle of the most similarDB is
rescaled. The rescaling procedure starts with the calculation of
the ratios of the daily values of each climate element besides
temperature; for temperature, the difference is calculated.
These two factors are equal to

RE ¼ ED

EB
ð4Þ

ΔT ¼ TD−TB ð5Þ
where RE is the ratio of the climate element E, ED is the daily
value of the climate element E that has to be disaggregated, EB
is the basic daily value of the climate element E of the most
similar day (DBD), andΔT is the difference between the daily
mean temperatures of the disaggregation day (TD) and the
most similar basic day (TB).

With these two metrics, the hitherto unknown hourly
values of the disaggregation day are generated by applying
them to the known hourly values of the identified analogous
DBD as follows:

EDhr ¼ EBhr*RE ð6Þ
TDhr ¼ TBhr þΔT ð7Þ
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where EDhr is the generated hourly value of the climate ele-
ment, EBhr is the hourly value of the climate element of the
DBD, TDhr is the generated hourly mean temperature, and TBhr
is the hourly mean temperature of the DBD.

Due to multiplication with the scaling RE, it is formally
possible that non-physical hourly sunshine durations of >
60.0 min and relative humidities of > 100.0% are generated.
In this case, the sunshine duration is set to 60.0 min and the
relative humidity is set to 100.0%.

Daily precipitation and sunshine duration values of 0.0 mm
and 0.0 min are not disaggregated. Instead, the related 24
hourly values are set equal to 0.0 mm and 0.0 min,
respectively.

If theDD contains a missing value of a climate element that
is not included in the ED calculation, the missing value is
replaced with 24 hourly missing values for this climate ele-
ment. However, if this climate element is included in the ED
calculation, it leads to missing hourly values for all the climate
elements.

3.1.4 Treatment of hours with precipitations > 0 mm
and 60 min of sunshine

Disaggregation might result in simultaneous co-occurrence of
rain events and clear-sky conditions in the hourly data. Of
course, rain and sunshine might be observed simultaneously
at characteristic time scales shorter than 1 h, e.g., during con-
vective rainfall events in postfrontal cold airmasses with par-
tial cloud coverage and sunny episodes, particularly in sum-
mer (frequently associated with the appearance of rainbows).
Unfortunately, the retrieval of such short-term variability from
the hourly data the historical records are based on requires the
solution of a closure problem, which is even trickier than the
disaggregation of hourly data from daily values (as in the
present study).While consideration of subscale cloud variabil-
ity would be a promising task for model refinement, its real-
ization was far beyond the scope of the present analysis.
Focusing on the characteristic conditions revealed in records
of hourly values, here we make use of the ad hoc assumption
that coinciding rain-sunshine events should be excluded, i.e.,
there is either precipitation or sunshine. The disaggregated
hourly data of the sunshine duration are corrected for the re-
lated hourly precipitation amounts to avoid a sunshine dura-
tion of 60.0 min coinciding with a precipitation value of >
0.0 mm. The applied rescaling algorithm is realized via the
following nine steps:

1. Since the reference time intervals of the daily precipitation
sum and sunshine duration differ, the recorded data are
projected into the same time interval. Auxiliary daily pre-
cipitation sums (Paux) are calculated for the time spans
from 00:00 CET to 23:59 CET for both the DBD (PauxB)
as well as for the DD (PauxD).

2. The theoretical possible precipitation hours are calculated
for DBD and DD as follows:

PPHB ¼ 24:0 h−SDB ð8Þ
PPHD ¼ 24:0 h−SDD ð9Þ
withPPHB as the possible precipitation hours of the basic day,
SDB as the daily sunshine value of the basic day, and PPHD as
the possible precipitation time of DD and SDD as the daily
sunshine value of DD.

3. For the DBD and the DD, averaged daily precipitation in-
tensities are calculated by

PIB ¼ PauxB=PPHB ð10Þ
PID ¼ PauxD=PPHD ð11Þ
with PIB and PID denoting the mean precipitation intensities
of the most similar basic and disaggregation day, respectively.

4. Then, a precipitation intensity ratio PIF is calculated by
dividing the two precipitation intensities:

PIF ¼ PID=PIB ð12Þ

5. The possible numbers of minutes with precipitation for
the hour to be corrected are calculated according to:

PPMB ¼ 60:0 min−SDBhr ð13Þ
where PPMB is the possible number of precipitation minutes
of the basic hour, and SDBhr is the sunshine duration of the
basic hour.

6. The averaged precipitation intensity of the basic hour
PIBhr is calculated by dividing the precipitation value of
the basic hour PIBhr by PPMB:

PIBhr ¼ PBhr=PPMB ð14Þ

7. The averaged precipitation intensity for the generated
hourly precipitation value is obtained by multiplying
PIBhr with the ratio PIF:

PIDhr ¼ PIBhr*PIF ð15Þ

8. Knowing PIDhr , the number of precipitation minutes for
the generated hourly precipitation value is calculated as
follows:

PMD ¼ PDhr=PIDhr ð16Þ
where PMD is the number of precipitation minutes of the gen-
erated hour and PDhr is the generated hourly precipitation
amount.
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9. Finally, the number of sunshine minutes SMD for the hour
to be corrected results from the difference of 60.0 min and
the PMD as follows:

SMD ¼ 60:0 min−PMD ð17Þ
The corrected hourly value of sunshine duration is only

accepted if it is smaller than the value calculated by using
the ratio (Eq. 6).

After this final data adjustment, the process restarts with the
next disaggregation day. When the disaggregation of all days
is finished, the model creates an output file containing the
disaggregated hourly values for all days and climate elements.

3.2 Comparison of disaggregated and observed
hourly data

The disaggregated and observed hourly data are compared by
using Taylor diagrams, quantile-quantile plots (Q-Q plot), ad-
ditional statistical values, and the mean diurnal and annual
variations. Since the days without precipitation (P = 0.0 mm/
d) or measurable sunshine duration (SD = 0.0 min) were not
disaggregated, they were not included in the comparison.

Taylor diagrams (Taylor 2001) were plotted for the ele-
ments Tmean, SD, rH, andWS as they allow good simultaneous
visual comparison of three statistical measures. Here, the mea-
sures of the Pearson correlation coefficient (r), normalized
root mean square difference (RMSDn), and normalized stan-
dard deviation (σn) were used.

For the comparison of the disaggregated and observed
hourly precipitation data, Q-Q plots of two variables were
chosen. Additionally, the lines for the quantiles of 50%,
75%, 90%, 95% (heavy precipitation), and 99% (extreme pre-
cipitation) were added to the plots.

In addition to the values used for the Taylor diagrams and
Q-Q plots, the statistical values minimum (xmin), maximum
(xmax), mean (ex ), median (xmed), and 95% quantile (x95%) were
calculated.

To analyze whether the disaggregated data reproduce the
general basic characteristics of the observed data, the mean
diurnal and annual variations are compared in three ways. The
diurnal variations of the four climate elements T [°C], SD
[min], rH [%], and WS [m/s] are compared by calculating
the diurnal cycles based on the observed and disaggregated
hourly data. In addition, the annual variations of each climate
element were compared by means of annual cycles calculated
from the aggregated observed and generated monthly data.

To compare the results delivered by the EDMwith those of
the toolMELODIST, the root mean square error (RMSE) was
calculated. Further, five major characteristics of hourly pre-
cipitation features of the observed and generated data for the
stations De Bilt and Dresden were calculated: mean duration
of events [h], mean precipitation sum of events [mm], mean

duration of dry spells [h], number of events per year, and
number of hours with P > 0.0 mm per day.

4 Results and discussion

The disaggregated climate data are analyzed for the two cli-
mate stations, Dresden and Fichtelberg. Both stations belong
to different regions of similar climate after Kronenberg et al.
(2015). Dresden is a lowland station and was selected because
it has the best data base. Fichtelberg was selected because it is
a mountain station with a more extreme climate and it serves
hence as a kind of test for the performance of the EDM. The
consequences of pooling stations of different climate regions
are discussed in this section.

The results for both stations are analyzed for various aspects.
The differences concerning whole years, summer and winter
half-years, the influence of the stations used as base stations,
the effects of the climate elements used, and the mean diurnal
and annual variations of the generated data are considered.

4.1 Generated datasets based on five stations

At first, the data for the whole period September 1995–August
2014 are analyzed. These data were generated by using the
observed data of five basic stations. In order to prevent a skill
overestimation, the data of the station which is subject of
disaggregation were not considered in the evaluation of the
pool of basis data. This means that the data for the climate
station Dresden and Fichtelberg, presented here, are generated
without Dresden and Fichtelberg, respectively.

4.1.1 Climate station Dresden

Figure 3 shows the Taylor diagram and the Q-Q plot for cli-
mate station Dresden for both selection approaches S1 and S2,
respectively. The corresponding statistical values are shown in
Table 2. It can be seen that the results of all climate elements
show normalized standard deviations close to 1.0 for S1 as
well as for S2.

The temperature values of both selections show the best
performance with the very high correlations of 0.98 and 0.99
and very low RMSDn values of 0.19 and 0.15. This results
from the homogenous, sinusoidal character of the diurnal cy-
cle of the temperature, which is properly reproduced by EDM.
In contrast to temperature, the wind speed has a more stochas-
tic character with larger and irregular diurnal variations.
Hence, worse results are provided for the wind speeds with
correlations of 0.73 and 0.79 and RMSDn values of 0.76 and
0.67. The results of the generated sunshine duration are very
similar to those of the wind speed. The sunshine duration is
strongly correlated with the highly fluctuating cloud cover,
i.e., it is also characterized by possible high variations during
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the day. Such variations lead to more frequent and greater
differences between the observed and generated hourly
values. Since the relative humidity is characterized by a more
homogenous diurnal cycle (essentially affected by the course
of the temperature), these results reveal higher correlations of
0.88 and 0.91 and lower RMSDn values of 0.48 and 0.42.

The application of the rescaling procedure according to
Section 3.1.3 to hourly rH values results in a cut-off of respec-
tive 3780 (S1) and 2844 (S2) generated hourly values to the
maximum possible value of rH = 100%, corresponding to

correction rates of 2.3% (S1) and 1.6% (S2), respectively.
Correction of hourly data applies to 783 (11.6%) and 620
(9.2%) disaggregated days, respectively.

Analogously for SD, 8917 (S1) and 8564 (S2) generated
hourly values were constrained to the maximum value of
60.0 min, corresponding to correction rates of 11.1% (S1)
and 10.7% (S2). The corrected values affect 1970 (29.2%)
and 1856 (27.5%) disaggregated days, respectively.

The correction to exclude co-occurrence of rain events and
clear-sky conditions according to Section 3.1.4 applies to 601

Table 2 Statistics of the observed and generated data of the Dresden station based on five stations

Climate element Sample size Dataset xmin xmax ex xmed x95% σ σn r RMSDn

T [°C] 162,192 Observed − 20.7 36.7 9.44 9.5 27.8 8.42 - - -

S1 − 22.7 37.7 9.44 9.5 28.0 8.44 1.00 0.98 0.19

S2 − 20.6 36.9 9.44 9.5 27.9 8.43 1.00 0.99 0.15

SD [min] * 80,227 Observed 0.0 60.0 23.99 13.0 60.0 25.12 - - -

S1 0.0 60.0 22.99 12.1 60.0 24.37 0.97 0.74 0.71

S2 0.0 60.0 23.23 12.5 60.0 24.52 0.97 0.78 0.65

rH [%] 162,192 Observed 5.0 100.0 76.17 80.0 100.0 17.19 - - -

S1 2.8 100.0 76.11 79.5 100.0 16.83 0.98 0.88 0.48

S2 14.3 100.0 76.13 79.6 100.0 16.79 0.98 0.91 0.42

WS
[m/s]

162,192 Observed 0.0 20.4 4.18 3.8 10.6 2.15 - - -

S1 0.0 20.5 4.18 3.8 11.1 2.30 1.07 0.73 0.76

S2 0.0 21.3 4.18 3.8 11.0 2.26 1.07 0.79 0.67

P [mm] ** 16,292 Observed 0.1 36.6 0.75 0.3 2.6 1.37 - - -

14,493 S1 0.1 48.6 0.83 0.4 2.8 1.58 1.15 - -

15,091 S2 0.1 48.6 0.80 0.4 2.7 1.41 1.03 - -

* Excluding night time values and days with SD = 0.0 min
** Based on hourly values > 0.0 mm
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Fig. 3 (left) Normalized root mean square difference [-], normalized
standard deviation [-] and correlation [-] of the generated data of T, SD,
rH, andWS for Selection 1 (S1) and Selection 2 (S2); (right) the quantiles

of the observed and generated precipitation [mm/h] for the climate station
Dresden based on five stations
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(S1) and 526 (S2) generated hourly SD values, respectively.
These corrections affect 418 (6.2%) and 366 (5.4%) days, re-
spectively. As a result of these two corrections, the calculated
daily sums differ from the observed daily values. The maxi-
mum differences amount to − 4.5 h (S1) and − 3.4 h (S2), but
89.8% (S1) and 94.2% (S2) of the affected days show only
small differences in the range of − 1 h < SD ≤ 0.0 h, i.e., of less
than 1 h.

In the right panel of Fig. 3, the quantiles of the generated
precipitation data are shown. Up to the 96% quantile, the
quantiles differ only between 0.1 and 0.3 mm/h. For the
quantiles ≥ 96%, representing heavy and extreme precipita-
tion, the differences increase to 0.9 mm/h (S1) and 0.7 mm/h
(S2), and the overestimation amounts to 15% (S1) and 12%
(S2). There are various potential reasons for the overestima-
tion. Both generated datasets contain less hourly values of >
0.0 mm/h (Table 2) which indicates that the EDM tends to
generate shorter and less precipitation events (cf. Section 4.7).
This results from rounding very small intensities to 0.0 mm/h
and from a potential tendency of the EDM to select a day with
a shorter precipitation event as the most similar day. The
rounding of the disaggregated hourly intensities itself might
be a reason for the differences of the observed and disaggre-
gated intensities. Further, in this analysis, precipitation is one
of seven equal-weighted climate elements included in the cal-
culation of ED, i.e., precipitation has an impact of 1/7 of the
selection of the most similar day. If the impact would be
higher, the results are expected to improve for the quantiles.
This is examined in Section 4.4. Last but not least, there are
supposed to be unintended influences of other variables used
in the EDM resampling.

To quantify the magnitude of the overestimation of the
quantiles, it was examined whether the overestimation lays
within the confidence interval of an extreme value statistics
as used for engineering design and flood simulation. For ex-
ample, the precipitation intensity of 7.0 mm/h corresponds to a
return period of 0.2 a, which means such intensities are likely
to be observed 5 times per year at the station Dresden. A
confidence interval of [5.04 mm/h, 9.15 mm/h] was estimated
through fitting of a Gumbel distribution to the hourly data and
assuming a critical value of t95.2 = 2.95 from the Student’s t
distribution. The observed difference [0.9 mm/h] of the 0.99-
quantile lays therefore within the confidence interval of the
fitted extreme value distribution for design rainfall (Fig. 4).

For all elements, Fig. 3 and Table 2 show that the results of
S2 fit better than those of S1, but the differences are very
small. Hence, including the OWP for the selection of the most
similar basic day leads to only weak improvements.

The statistical values contained in Table 2 but not shown in
Fig. 3 exhibit high correspondence for all elements besides the
minimum of rH of S1 (14.3%) and the maximum P of both
selections (48.6 mm/h).

4.1.2 Climate station Fichtelberg

The statistics for climate station Fichtelberg (Fig. 5, Table 3)
show similar results to those of the climate station Dresden,
with normalized standard deviations close to 1.0 for all ele-
ments and both selections. The best results, with a correlation
of 0.97 and RMSDn of 0.25, are again obtained for the gener-
ated temperature data. The worst results are obtained again for
the sunshine duration and the wind speeds with correlations

Fig. 4 Confidence interval for the
observed precipitation intensities
[mm/h] of station Dresden
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between 0.68 and 0.74 and RMSDn between 0.74 and 0.81.
The median of the observed SD (15.0 min) is highly
underestimated by S1 (8.5 min) and S2 (10.0 min) (Table 3).
The observed maximum wind speed (30.1 m/s) is highly
overestimated, with 59.0 m/s and 45.7 m/s. In comparison to
the Dresden station, the generated relative humidity data show
slightly worse results. These findings point to the influence of
meso-climatic variations in the study region, that were not
included in the present analysis.

The application of the rescaling procedure according to
Section 3.1.2 to hourly rH values results in a cut-off of respec-
tive 21,916 (S1) and 22,528 (S2) generated hourly values to
the maximum possible value of rH = 100%, corresponding to
correction rates of 22.1% (S1) and 22.8% (S2), respectively,
which is much higher than for the representative low-land
station Dresden. Concerning SD, 8162 (S1) and 8042 (S2)
generated hourly values were reduced to the maximum val-
ue of 60.0 min. This corresponds to correction rates of
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Fig. 5 (left) Normalized root mean square difference [-], normalized
standard deviation [-], and correlation [-] of the generated data of T, SD,
rH, andWS for Selection 1 (S1) and Selection 2 (S2); (right) the quantiles

of the observed and generated precipitation [mm/h] for climate station
Fichtelberg based on five stations

Table 3 Statistics of the observed and generated data of station Fichtelberg based on five stations

Climate element Sample size Dataset xmin xmax ex xmed x95% σ σn r RMSDn

T [°C] 98,969 Observed − 21.9 28.6 4.93 5.4 20.7 7.62 - - -

S1 − 23.7 30.0 4.93 5.3 21.7 7.78 1.02 0.97 0.25

S2 − 25.4 30.0 4.93 5.3 22.0 7.83 1.02 0.97 0.25

SD [min] * 50,808 Observed 0.0 60.0 24.44 15.0 60.0 25.04 - - -

S1 0.0 60.0 21.93 8.5 60.0 24.60 0.98 0.68 0.81

S2 0.0 60.0 22.58 10.0 60.0 24.74 0.98 0.72 0.74

rH [%] 98,969 Observed 5.0 100.0 84.61 93.0 100.0 18.51 - - -

S1 6.9 100.0 83.97 90.2 100.0 18.34 0.99 0.82 0.59

S2 6.1 100.0 83.74 90.2 100.0 18.41 0.99 0.84 0.57

WS [m/s] 98,969 Observed 0.0 30.1 8.32 7.7 20.5 4.34 - - -

S1 0.0 59.0 8.31 7.5 22.2 4.67 1.08 0.70 0.81

S2 0.0 45.7 8.32 7.5 22.0 4.69 1.08 0.74 0.76

P [mm] ** 11,340 Observed 0.1 32.9 0.79 0.4 2.7 1.39 - - -

10,134 S1 0.1 33.1 0.86 0.4 3.0 1.45 1.04 - -

9326 S2 0.1 26.6 0.93 0.4 3.3 1.58 1.17 - -

* Excluding night time values and days with SD = 0.0 min
** Based on hourly values > 0.0 mm
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16.1% (S1) and 15.8% (S2). The corrected values affect
1771 (42.9%) and 1615 (39.2%) disaggregated days,
respectively.

The correction to exclude co-occurrence of rain events and
clear-sky conditions according to Section 3.1.4 applies to 800
(S1) and 496 (S2) generated hourly SD values, respectively.
This correction affects 460 (11.2%) and 292 (7.1%) days,
respectively. As a result of these two corrections, the calculat-
ed daily sums differ from the observed daily values. The max-
imum differences amount to − 6.6 h (S1) and − 7.0 h (S2), but
77.1% (S1) and 83.7% (S2) of the affected days show only
small differences in the range of − 1 h < SD ≤ 0.0 h, i.e., of less
than 1 h.

As for the lowland station Dresden, the inclusion of the
OWP improves the results slightly.

Concerning the quantiles of the generated precipitation data
(Fig. 5 (right))), both selection approaches tend to overestimate,
and the OWP inclusion leads to even higher overestimations.
This is a clear indication of significant mesoscale variability in
the study region that segregates the climate conditions at the
Fichtelberg station from those of the other five stations. In
addition, EDM tends to prefer days with convective precipita-
tion events to reproduce the higher daily precipitations at sta-
tion Fichtelberg, but this leads to an overestimation of the hour-
ly values. For the quantiles ≥ 93%, the overestimations increase
to maxima of 0.7 mm/h (S1) and 1.5 mm/h (S2), and the over-
estimation amounts increase to 12% (S1) and 26% (S2). For
potential reasons for the overestimation, compare to the analy-
sis in Section 4.1.1.

4.2 Summer and winter half-years

The generated data of the stations Dresden and Fichtelberg are
analyzed separately for the summer and winter half-years based
on five climate stations (cf. Section 4.1). The summer half-year
covers the 6 months from April to September, and the winter
half-year covers the months between October andMarch. These
both half-years are analyzed since they differ in their climatic
characteristics. Due to higher global radiation and temperatures,
the summer half-year is characterized by more convective and
unstable weather patterns while the winter half-year is predom-
inated by more stable weather patterns. This causes different
diurnal cycles of the climate elements, especially of precipita-
tion. While convective (heavy) precipitation events tend to short
durations of one or only a few hours, stratiform (heavy) precip-
itation events tend to longer durations of up to a few days.

The results for the climate elements T, SD, rH, and WG
reveal essentially the same basic characteristics for both, the
half-years and the whole year (cf. Section 4.1) for both sta-
tions (see Fig. 11 (left) and Fig. 12 (left) and Tables 8, 9, 10,
and 11 in the Appendix). The temperature data were found to
fit best the wind speed and sunshine data fit worst and those of
the relative humidity are in between. The inclusion of the

OWP leads to small improvements for these five climate ele-
ments of both half-years.

The climate elements with homogenous diurnal cycles (T,
rH) are well reproduced for the summer as well as for the
winter half-years. In contrast, the climate elements with higher
hourly variations (SD,WS) are less well reproduced in general
but perform slightly better for the winter months. This result
suggests that the basic assumptions of the disaggregation pro-
cedure (e.g., the exclusion of coincidental sunshine and pre-
cipitation) are better fulfilled in the wintertimewith less scatter
in the data caused by convective clouds, turbulence, and un-
stable weather conditions.

Concerning precipitation, the results differ between
Dresden and Fichtelberg. For Dresden, the improved repro-
ductions for the winter half-year also apply to the precipitation
data (Fig. 11 (right) in the Appendix), explainable by the low-
er rain intensities and lower frequency of convective rainfall
events during these months. For Fichtelberg, the generated
data show overestimations for both half-years, especially for
the quantiles ≥ 95% (Fig. 12 (right) in the Appendix). This
overestimation is distinct higher for the winter months. For
the high daily precipitation sums at station Fichtelberg, the
EDM tends to prefer days with convective weather conditions
and hence higher precipitation rates per hour. Further potential
reasons for the overestimation are given in Section 4.1.1.

The inclusion of the OWP leads to small improvements for
both half-years at the station Dresden. But at the station
Fichtelberg, it worsens the performance of the quantiles of
both half-years. This is supposed to be a consequence of the
neglect of the meso-climatic variability in the setup of the pool
of basic data. While the OWP conditions might apply to all
included stations, orographic effects might cause differences
in the statistical precipitation response from one station to
another. As the climate station Fichtelberg, the only mountain
station in the pool, was excluded in this analysis from the pool
of basis data, the EDM could only select a “most similar
event” of a lowland station.

4.3 Data generation based on the full dataset

In this section, it is examined how the results change if the
data of all six Saxon basic stations are used, i.e., the stations
Dresden and Fichtelberg were included as basic stations, too.

In comparison to the results discussed in Section 4.1.1, the
results for station Dresden are at least identical for all five
climate elements (see Fig. 13 (top) in the Appendix). This
suggests that the basic stations Görlitz, Chemnitz, Leipzig,
and Dresden belong more or less to the same mesoclimate-
tope. Hence, the inclusion of station Dresden as an additional
basic station does not lead to a substantial gain in physical
information and to an improvement of the overall EDM per-
formance. For all elements, the results of S2 performs better
than those of S1, though the differences are small.
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In contrast, the inclusion of the station Fichtelberg as a
basic station leads to small improvements for the relative hu-
midity, the sunshine duration, and the wind speed for
Selection S1 (Fig. 13 (bottom, left) in the Appendix). The
precipitation quantiles of S2 are overestimated to the same
amount as for S2 as discussed in Section 4.1.2. However, for
S1, the overestimation increases by 0.2–0.3 mm/h for the
quantiles ≥ 90% (Fig. 13 (bottom, right) in the Appendix).
Furthermore, the inclusion of the OWP leads again to higher
overestimations of the quantiles although the station
Fichtelberg is included (cf. Section 4.1.2).

4.4 Sensitivity of the distance metrics against the
number of considered climate elements

To examine the influence of the climate elements used for the
calculation of the ED, the disaggregation for the stations
Dresden and Fichtelberg was performed by using only the
mean temperature and the precipitation amount to calculate
the ED. These two climate elements were selected as they
are the most frequently available observed elements. The sta-
tistical results are shown in Fig. 6. Since the relative humidity,
the sunshine duration, and the wind speed were not used for
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Fig. 6 (left) Normalized root mean square difference [-], normalized
standard deviation [-], and correlation [-] of the generated data of T, SD,
rH, andWS for Selection 1 (S1) and Selection 2 (S2); (right) the quantiles

of the observed and generated precipitation [mm/h] at climate stations
Dresden (top) and Fichtelberg (bottom) based on six stations and the
calculation of ED using only T and P
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the ED calculation, their statistics show obviously worse re-
sults for both stations and both selection approaches (Fig. 6
(left)). The temperature data fit also slightly worse because the
minimum and maximum temperature were not included in the
ED calculation. However, the quantiles of the precipitation
data show better results for both stations and both selection
approaches (Fig. 6 (right)). For station Dresden, the quantiles
show almost perfect agreements with the observed quantiles.
This is caused by the selection of the most similar day based
on the two climate elements. Hence, the impact of precipita-
tion in an ensemble of only 2 climate elements corresponds to
a weight of 1/2, and in an ensemble of 7 elements (Sections
4.1–4.3) to a weight of only 1/7.

For climate station Fichtelberg, the inclusion of the OWP
leads to equal or even worse results, e.g., of the precipitation
quantiles. Again, this is caused by the fact that for the same
OWP, the climate characteristics at station Fichtelberg differ
from those of the other five stations.

4.5 Mean diurnal cycles

The mean diurnal cycles are analyzed to examine whether the
mean daily statistics and variations are preserved by EDM. The
diurnal cycles were determined for the temperature, the sun-
shine duration, the relative humidity, and the wind speed by
calculating the daily means or sums based on the observed and
generated hourly data of the years 1995–2014. Afterwards, the
mean values were calculated for each hour of the day.

Figure 7 shows the mean diurnal cycles of the four climate
elements at climate station Dresden. For the temperature, the

sunshine duration, and the relative humidity, the mean diurnal
cycles based on the generated data agree with those based on
the observed data. Only for the wind speed, the diurnal cycles
of the generated data show an underestimation during the
night and an overestimation during the day. However, these
are both very small and negligible, with maximum differences
of − 0.2 m/s and 0.2 m/s, respectively. The strong results are
caused by the similar climate conditions of the used basic
climate stations (cf. Table 1). Furthermore, it becomes appar-
ent that the two corrections of the sunshine duration and the
correction of the relative humidity have no influence on the
mean diurnal cycle.

The mean diurnal cycles of the four climate elements at
climate station Fichtelberg are shown in Fig. 8. In contrast to
station Dresden, the mean diurnal cycles of station Fichtelberg
have a worse agreement for all elements and both selection
approaches. The mean temperature is overestimated for each
hour, while the highest differences occur in the early after-
noon. Concerning the sunshine duration, the mean diurnal
cycles of the generated data give a slight overestimation for
the daytime hours. During the nighttime hours, there are no
differences because these hours are automatically set to
0.0 min. A distinct underestimation occurs in the relative hu-
midity data of both selections. The highest differences occur
for the afternoon hours and amount to − 10%.

The diurnal cycle of the wind speed at the climate station
Fichtelberg is characterized by a maximum during nighttime
and a minimum during the afternoon, which is in line with
empirical findings on the wind behavior at mountaintops (cf.
Blüthgen and Weischet 1980; Stull 2000).
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However, for wind speed, both EDM selection approaches
deliver diurnal cycles which are inverse to the observed one,
with an overestimation in the afternoon and an underestima-
tion at nighttime. The underestimation is greater but still
small, with deviations from the observed values up to −
2.2 m/s (S1), and the overestimation amounts to only
1.4 m/s (S1). The inversion of the diurnal cycle is caused by
the differences in the climate characteristic between the station
Fichtelberg and the other five climate stations. An analysis of

the disaggregation of the dataset of Fichtelberg by using only
Fichtelberg itself as basic station showed that the inverse di-
urnal cycle is then reproduced by the EDM.

Hence, the EDM in its current stage of development is not
yet able to reproduce such an inverse cycle when the basic
stations are not characterized by similar climate conditions.
These differences in the climate conditions of the basic sta-
tions are also the reason for the over- and underestimations of
the other three climate elements. The diurnal cycle of the
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observed basic values should fit the diurnal cycle of the dis-
aggregated station. Therefore, the model application is re-
stricted to basic data representing similar climatic conditions.

4.6 Mean annual cycles based on mean monthly
values

Comparable to Section 4.5, in this section, the mean annual
cycles of all climate elements, including precipitation, are an-
alyzed. The mean monthly data were calculated based on the
observed and generated daily data.

The generated mean annual cycles are almost identical to
the observed cycles for all climate elements at station Dresden
(Fig. 9). This is caused by the preservation of the daily sums or
means of the climate elements, which is a basic function of
EDM. The small differences of the sunshine duration and the
relative humidity result from the corrections implemented in
EDM (cf. Section 3.1).

In general, these findings also apply to the annual cycles at
climate station Fichtelberg (Fig. 10), but the underestimations
of the mean monthly sunshine duration and relative humidity
are greater since more days are affected by the corrections (cf.
Section 4.1.2). Furthermore, there are greater differences for
all elements due to the different climate characteristics of the
basic stations.

4.7 Functionality and performance of the EDM in
comparison to MELODIST

To further assess the performance of the EDM and the quality
of the generated datasets, a comparison with the
MEteoroLOgical observation time series DISaggregation
Tool (MELODIST) developed by Förster et al. (2016) is made
in this section. MELODIST is a robust, reliable, and
transferable tool to disaggregate daily time series of the
climate elements T, rH, WS, P, and shortwave radiation.
Physical consistency among the climate elements is not

Table 4 Statistics of the observed and generated data of T [°C] for the stations De Bilt and Dresden

Climate station Dataset ex σ RMSE r

De Bilt Observed 10.42 6.88

MELODIST 10.30 6.94 1.74 0.97

EDM De Bilt S1 10.43 6.85 1.93 0.96

EDM Sax S1 10.43 6.84 2.05 0.96

Dresden observed 9.44 8.42

EDM Dresden S1 9.43 8.41 1.82 0.98

EDM Sax S1 9.44 8.44 1.56 0.98
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inherent in the methodology ofMELODIST as it disaggregates
each element independently. Most of the climate elements are
disaggregated by using parsimoniousmethods with basic levels
of complexity. The daily values of T are disaggregated using a
cosine function with Tmin at the time of sunset and Tmax 2 h
after sun noon. For disaggregating rH, the model generates
hourly values of dew point temperature. Similar to the
disaggregation of T, the values of WS are disaggregated by
means of a cosine function. And for the disaggregation of P,
the multiplicative cascade model after Olsson (1998) was
applied.

For this comparison, the daily data of the climate station De
Bilt were disaggregated two times for the validation period,
January 1991–December 2014 (Förster et al. 2016), firstly, by
using De Bilt as sole basic station (dataset “EDM De Bilt”),
and secondly, by using the six Saxon stations as basic stations
(dataset “EDM Sax”). As De Bilt was disaggregated with itself
as basic station, the same procedure was done for Dresden
(dataset “EDM Dresden”) and the results are compared to
those in Section 4.1.1 (dataset “EDM Sax”).

Following the analyses of Förster et al. (2016), the statisti-
cal valuesex, σ, RMSE, and rwere calculated for T, rH, andWS
(Tables 4, 5, 6), and for P, five major characteristics of hourly
precipitation features of the observed and generated data were
calculated (Table 7).

It can be seen, that EDM and MELODIST perform equal
for the disaggregation of T for station De Bilt. The statistics

show only small differences for RMSE with slightly worse
results for the two data sets generated by the EDM
(Table 4). Concerning station Dresden, the EDM performs
also very well due to the very homogeneous diurnal cycle of
T (cf. Section 4.1). Hence, for the disaggregation of T, also, a
parsimonious method is sufficient (MELODIST).

Concerning the disaggregation of rH for De Bilt, EDM
performs better than MELODIST, with distinct higher corre-
lations and smaller RMSE, and also smaller standard devia-
tions (Table 5). For station Dresden, the results are similar for
both disaggregations with slightly smaller RMSE, smaller
standard deviation, and slightly higher correlation for the data
set “EDM Sax S1.”

The correlations of the disaggregated WS for De Bilt are
distinctly higher for the EDM datasets; although, the RMSE
are higher (Table 6). For station Dresden, the correlation is
slightly higher for the dataset “EDM Sax S1”.

For station De Bilt, the results for P show thatMELODIST
overestimates the mean duration of precipitation events and
underestimates the number of precipitation events per year. In
contrast, EDM generates shorter durations of precipitation
events, less numbers of precipitation events per year (data
set “EDM Sax S1”), and less numbers of hours with
P > 0.0 mm/h per day while the mean precipitation sum of
events is conserved. The results for Dresden reveal that
EDM tends to underestimate the duration and numbers of
precipitation events as already assumed in Section 4.1.

Table 6 Statistics of the observed and generated data of WS [m/s] for the stations De Bilt and Dresden

Climate station Dataset ex σ RMSE r

De Bilt Observed 3.49 1.89

MELODIST 3.49 1.59 1.05 0.38

EDM De Bilt S1 3.48 1.94 1.44 0.72

EDM Sax S1 3.49 1.97 1.56 0.68

Dresden Observed 4.18 2.15

EDM Dresden S1 4.18 2.17 1.70 0.69

EDM Sax S1 4.18 2.30 1.65 0.73

Table 5 Statistics of the observed and generated data of rH [%] for the stations De Bilt and Dresden

Climate station Dataset ex σ RMSE r

De Bilt Observed 81.82 15.12

MELODIST 81.63 15.48 12.67 0.66

EDM De Bilt S1 81.65 14.83 8.60 0.84

EDM Sax S1 81.64 14.94 9.34 0.81

Dresden observed 76.17 17.19

EDM Dresden S1 76.02 17.01 9.30 0.85

EDM Sax S1 76.11 16.83 8.26 0.88
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It can be summarized that both disaggregation tools per-
form comparable for each climate element while both show
some limitations. But the high benefit of the generated
datasets of EDM is the physical consistency over all climate
elements.

5 Summary and conclusions

In this paper, the structure and results of a newly developed
multivariate non-parametric resampling model, the Euclidean
DistanceModel (EDM), for the hourly disaggregation of daily
climate data are presented. As a case study, six climate stations
located in the Free State of Saxony (Germany) were selected.
The daily climate data of stations Dresden and Fichtelberg
were exemplarily disaggregated for the years 1995–2014
and compared to the observed hourly data.

The generated datasets that were disaggregated by using
alternatively either five or six basic stations show very similar
results and strong agreements for all the studied climate ele-
ments. The inclusion of the disaggregated station itself into the
pool of basic stations leads to some improvements of the
model performance. These improvements are greater when
the other basic stations are characterized by different climate
conditions, as is the case for the mountain station Fichtelberg.
It is shown that the results always fit better for such climate
elements, which are characterized by a homogenous diurnal
cycle that is well reproduced by EDM. Hence, each generated
dataset shows the best results for temperature and the worst for
wind speed and sunshine duration.

Concerning precipitation, EDM tends to overestimate the
quantiles of the hourly data, especially for heavy and extreme
values (quantiles ≥ 90%). There are various potential reasons
for this. (i) The EDM tends to generate less and shorter pre-
cipitation events. This might be due to rounding small inten-
sities to 0.0 mm/h and a preferred selection of basic day with
less or shorter precipitation events. (ii) The rounding of the
disaggregated hourly intensities itself. (iii) The equal-
weighted impact of precipitation in the calculation of the
ED. (iiii) The pool of heavy and extreme precipitation events

is significantly smaller. (iiiii) There are supposed to be unin-
tended influences of other variables used in the EDM
resampling.

An exemplarily investigation of the magnitude of over-
estimation in terms of a confidence interval of an extreme
value statistic as used for engineering design and flood
simulation showed that the differences of the quantiles lay
within the confidence interval of the fitted extreme value
distribution for design rainfall. Hence, the uncertainty of
the estimation of design rainfall is much higher, than the
uncertainty of the EDM model. However, the differences
should be investigated and validated in each case of an
EDM application.

The overestimation might be an advantage in the field of
hydroengineering. Since an increase in the hourly intensity of
heavy precipitation events is already observed and is expected
to continue in the future, such overestimation anticipates this
trend. But of course, the higher costs of hydroengineering by
using these higher intensities have to be weighed against the
benefits, e.g., the benefits of higher flood protection.
However, with regard to error propagation and unwanted bi-
asing of post-calculated cost functions in optimal decision
strategies, the underlying models such as EDM should advan-
tageously be free of any bias.

Furthermore, it is shown that, for all datasets, the inclusion
of the OWP in the selection of the most similar day leads to
small improvements for all climate elements besides the pre-
cipitation quantiles for station Fichtelberg. Here, the OWP
causes even a worsening of the results, which is caused by
the disregard of the meso-climatic variations within the inves-
tigated territory and their impact on the setup of the basis data
pool. Furthermore, the worsening results from smaller data
pool for events with heavy precipitation. Therefore, the
OWP are not mandatory to obtain accurate hourly data. It
remains to be investigated whether a more sophisticated
OWP approach based on a refined similarity metrics on the
base of further meteorological field observations can enhance
the EDM skill. It is expected to improve the performance of
the EDM by taking the mean flow directions into account as
they have a high impact on the humidity and temperature of an

Table 7 Major characteristics of hourly precipitation features of the observed and generated data for the stations De Bilt and Dresden

Climate
station

Dataset Mean duration
of events [h]

Mean precipitation sum
of events [mm]

Mean duration of dry
spells [h]

Number of events
per year

Number of hours with
P > 0.0 mm/h per day

De Bilt Observed 2.99 2.45 22.02 351 2.9

MELODIST 3.91 2.52 21.76 342 -

EDM De Bilt S1 2.53 2.41 22.04 357 2.5

EDM Sax S1 2.59 2.50 23.03 342 2.4

Dresden Observed 2.83 2.11 25.45 290 2.4

EDM Dresden S1 2.31 2.18 26.90 275 1.8

EDM Sax S1 2.54 2.11 25.70 285 2.1
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airmass. Hence, they are an important indicator for the
(expected) weather situation, e.g., they impact the precipita-
tion events due to possible luv-lee effects.

The analyses for the summer and winter half-years reveal
that EDM delivers better results for the winter half-year. This
applies to both analyzed stations and all climate elements be-
sides the precipitation for station Fichtelberg due to different
climate characteristics at this mountain station. For the sum-
mer half-year, slightly worse results are shown for both ana-
lyzed stations due to the increased turbulence and unstable
weather conditions during these months.

The results for the disaggregation using only the tempera-
ture and precipitation for the calculation of ED reveal that the
generated data fit better if the climate element is involved in
the calculation of the ED. In addition, the fewer elements
used, the better the fit of the results of the used elements as
their influences on the selection of the most similar day are
increased.

Due to the functionality of EDM, the daily sums or means
of the climate elements are conserved. This leads to an exact
reproduction of the mean diurnal cycle if the used basic sta-
tions show similar climate characteristics. If this is not the
case, as shown for station Fichtelberg, there are some over-
and underestimations of all elements and even an inversion of
the diurnal cycle of the wind speed.

Concerning the mean annual cycles based on the mean
monthly values, EDM delivers an accurate reproduction for
each climate element. For the mean annual cycles, the differ-
ent climate characteristics of the used stations have lower
effects.

An additional comparison of the functionality and perfor-
mance of the EDM to the tool MELODIST, showed that the
EDMdelivers comparable results for all disaggregated climate
elements. Both tools have their limitations, but the physical
consistency over all disaggregated climate elements is a high
benefit of EDM. Therefore, these generated datasets might be
more suitable as input data for hydrological or ecological
modeling.

EDM is a very robust and flexible model that can be ap-
plied to any climate station if hourly data are available within
the same climate region. This method works with several cli-
mate elements as well as with only one climate element. EDM
delivers data with strong correlation to the observed data,
maintaining their statistical characteristics, and the delivered
hourly data set is physical consistent over the disaggregated
climate elements. Additionally, a technical advantage of EDM
is its efficient computing performance and that there is no
time-consuming calibration needed.

However, there are also some restrictions in the application
of this model. (i) The basic climate stations should have sim-
ilar climate conditions to those of the target station. (ii) EDM
also requires a sufficient data base of (continuously) recorded
hourly data.

The climate stations used for this study were selected as
they belong to the samemacro- and meso-climatic zone and as
they are close to each other. It is recommended to preferably
pool only stations of only one region of similar climate, e.g.,
as classified by Kronenberg et al. (2015), but usually this
means a significant reduction of available climate data, espe-
cially concerning hourly recorded data. Although the selected
climate stations spread over four climate regions, the climate
characteristics of the stations were similar enough to achieve
high correspondence of the observed and generated hourly
data besides some restriction for the mountain station
Fichtelberg.

Howmany basic data are sufficient cannot be clearly defined.
The EDMworks independently of the amount of basic data. The
disaggregation with only one basic station was tested for the
comparison with the tool MELODIST, and the results showed
no distinct worsening. However, for analyses with climatological
context, a data base covering 30 continuous years (climatological
period) would be required. But regarding the real spatio-temporal
data availability, at least 10 years of continuously recorded data
are required. Of course, the more basic data are available the
better the disaggregated data correspond and the more the gen-
erated diurnal cycles vary.

Finally, but importantly, since EDM is a resampling model
and uses the observed diurnal cycles of the past, the generated
hourly data are more or less a copy of the past. The applied
offset or boost factors for new “records” in the target time-
series, however, allow the generation of data which have not
yet been observed. Therefore, the model is capable of taking
future trends (like climate change) into account; it can disag-
gregate daily data from statistical downscaling (as, e.g.,
WETTREG, Enke et al. 2005; Kreienkamp et al. 2010) of cli-
mate projections. Such a model chain allows impact modeling
with hourly input requirements and might allow the analysis of
future extremes by changing the occurrences of the observed
extremes. Including generated future OWP would improve the
results of the disaggregation of future climate data because
changes of the frequencies of the weather patterns are expected
due to climate changes. But their generation is extremely com-
plex and time-consuming. Future OWP time series exist for
Germany and Saxony after the classification of Enke et al.
(2005). For Germany, they are generated by the model
WETTREG and for Saxony, they are generated by the model
WEREX. These OWP are weather patterns of the atmospheric
condition concerning temperature and humidity. They do not
comprise information of synoptic flow patterns and the mean
flow direction. But such information would be required espe-
cially for the disaggregation of future precipitation time series.
As far as I am aware, there is still no free available dataset of
OWPs as used for the present study. The generation of such
future OWP datasets is still a complex field of research.

Funding Open Access funding enabled and organized by Projekt DEAL.
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Fig. 11 (left) Normalized root mean square difference [-], normalized
standard deviation [-], and correlation [-] of the generated data of T, SD,
rH, andWS for Selection 1 (S1) and Selection 2 (S2); (right) the quantiles
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year (top) and the winter half-year (bottom) at climate station Dresden
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Fig. 13 (left) Normalized root mean square difference [-], normalized
standard deviation [-], and correlation [-] of the generated data of T, SD,
rH, andWS for Selection 1 (S1) and Selection 2 (S2); (right) the quantiles

of the observed and generated precipitation [mm/h] at climate stations
Dresden (top) and Fichtelberg (bottom) based on six stations
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Table 9 Statistics of the observed and generated data of the winter half-year for station Dresden based on five stations

Climate element Sample size Dataset xmin xmax ex xmed x95% σ σn r RMSDn

T [°C] 81,000 Observed − 20.7 26.0 3.44 3.4 17.1 5.93 - - -

S1 − 22.7 26.3 3.44 3.4 16.9 5.91 1.00 0.97 0.25

S2 − 20.6 25.8 3.44 3.4 17.1 5.93 1.00 0.98 0.20

SD [min] * 27,378 Observed 0.0 60.0 20.75 5.0 60.0 24.89 - - -

S1 0.0 60.0 19.40 3.4 60.0 23.88 0.96 0.76 0.68

S2 0.0 60.0 19.81 4.0 60.0 24.00 0.96 0.80 0.62

rH [%] 81,000 Observed 5.0 100.0 81.69 84.0 100.0 13.09 - - -

S1 11.2 100.0 81.63 83.7 100.0 12.67 0.97 0.85 0.54

S2 14.4 100.0 81.65 83.8 100.0 12.75 0.97 0.88 0.48

WS [m/s] 81,000 Observed 0.0 20.4 4.74 4.4 11.4 2.40 - - -

S1 0.0 20.5 4.74 4.4 12.1 2.52 1.05 0.74 0.74

S2 0.0 21.3 4.74 4.4 11.9 2.49 1.05 0.80 0.65

P [mm] ** 9204 Observed 0.1 11.4 0.52 0.3 1.7 0.64 - - -

8171 S1 0.1 12.5 0.58 0.3 1.9 0.73 1.14 - -

8589 S2 0.1 12.0 0.55 0.3 1.8 0.69 1.08 - -

* Excluding night time values and days with SD = 0.0 min
** Based on hourly values > 0.0 mm

Table 8 Statistics of the observed and generated data of the summer half-year for station Dresden based on five stations

Climate element Sample size Dataset xmin xmax ex xmed x95% σ σn r RMSDn

T [°C] 81,192 Observed − 5.7 36.7 15.42 15.3 29.3 5.90 - - -

S1 − 8.0 37.7 15.42 15.3 29.5 5.96 1.01 0.96 0.28

S2 − 7.2 36.9 15.42 15.3 29.5 5.92 1.01 0.97 0.23

SD [min] * 52,849 Observed 0.0 60.0 25.67 19.0 60.0 25.0 - - -

S1 0.0 60.0 24.85 17.8 60.0 24.41 0.97 0.73 0.73

S2 0.0 60.0 25.00 18.0 60.0 24.59 0.97 0.77 0.67

rH [%] 81,192 Observed 14.0 100.0 70.67 73.0 100.0 18.94 - - -

S1 2.8 100.0 70.59 72.8 100.0 18.58 0.98 0.88 0.50

S2 14.3 100.0 70.63 72.8 100.0 18.44 0.98 0.90 0.43

WS [m/s] 81,192 Observed 0.0 14.1 3.63 3.4 8.6 1.71 - - -

S1 0.0 17.3 3.63 3.3 9.1 1.89 1.11 0.65 0.89

S2 0.0 16.5 3.63 3.3 8.9 1.84 1.11 0.72 0.78

P [mm] ** 6907 Observed 0.1 36.6 1.05 0.4 3.8 1.89 - - -

6322 S1 0.1 48.6 1.15 0.5 4.3 2.20 1.16 - -

6502 S2 0.1 48.6 1.12 0.5 4.3 1.95 1.03 - -

* Excluding night time values and days with SD = 0.0 min
** Based on hourly values > 0.0 mm
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Table 11 Statistics of the observed and generated data of the winter half-year for station Fichtelberg based on five stations

Climate element Sample size Dataset xmin xmax ex xmed x95% σ σn r RMSDn

T [°C] 43,464 Observed − 21.9 20.1 − 0.71 − 0.5 12.8 6.08 - - -

S1 − 23.7 22.2 − 0.71 − 0.6 13.4 6.18 1.02 0.95 0.32

S2 − 25.4 23.2 − 0.71 − 0.6 13.3 6.20 1.02 0.95 0.31

SD [min] * 15,194 Observed 0.0 60.0 25.32 13.0 60.0 26.22 - - -

S1 0.0 60.0 21.69 5.9 60.0 25.13 0.96 0.71 0.75

S2 0.0 60.0 22.51 7.1 60.0 25.44 0.96 0.76 0.68

rH [%] 43,464 Observed 5.0 100.0 87.17 97.0 100.0 19.89 - - -

S1 6.9 100.0 86.08 93.8 100.0 18.26 0.92 0.84 0.56

S2 6.1 100.0 86.04 93.7 100.0 18.23 0.92 0.85 0.53

WS [m/s] 43,464 Observed 0.0 32.0 9.57 9.2 22.0 4.86 - - -

S1 0.0 38.8 9.57 8.9 23.9 5.08 1.05 0.73 0.76

S2 0.0 37.2 9.57 8.9 23.8 5.14 1.05 0.76 0.72

P [mm] ** 5144 Observed 0.1 10.0 0.60 0.3 2.0 0.73 - - -

4468 S1 0.1 13.1 0.69 0.4 2.3 0.97 1.28 - -

4042 S2 0.1 21.9 0.76 0.4 2.5 1.14 1.56 - -

* Excluding night time values and days with SD = 0.0 min
** Based on hourly values > 0.0 mm

Table 10 Statistics of the observed and generated data of the summer half-year for station Fichtelberg based on five stations

Climate element Sample size Dataset xmin xmax ex xmed x95% σ σn r RMSDn

T [°C] 55,505 Observed − 10.8 28.6 9.35 9.4 21.8 5.49 - - -

S1 − 15.3 30.0 9.35 9.3 23.0 5.78 1.05 0.94 0.35

S2 − 11.6 30.0 9.35 9.2 23.1 5.89 1.05 0.95 0.34

SD [min] * 35,614 Observed 0.0 60.0 24.07 15.0 60.0 24.52 - - -

S1 0.0 60.0 22.03 9.5 60.0 22.03 0.99 0.65 0.83

S2 0.0 60.0 22.61 11.0 60.0 22.61 0.99 0.71 0.76

rH [%] 55,505 Observed 12.0 100.0 82.60 86.0 100.0 17.08 - - -

S1 16.6 100.0 81.42 86.2 100.0 18.14 1.06 0.81 0.64

S2 13.6 100.0 81.36 86.3 100.0 18.30 1.06 0.83 0.61

WS
[m/s]

55,505 Observed 0.0 25.6 7.33 6.9 17.2 3.60 - - -

S1 0.0 59.0 7.33 6.7 19.3 4.05 1.13 0.62 0.94

S2 0.0 45.7 7.33 6.7 19.1 4.05 1.13 0.67 0.87

P [mm] ** 5960 Observed 0.1 32.9 0.94 0.4 3.4 1.74 - - -

5666 S1 0.1 33.1 0.99 0.5 3.4 1.73 0.99 - -

5284 S2 0.1 26.6 1.07 0.5 4.0 1.84 1.06 - -

* Excluding night time values and days with SD = 0.0 min
** Based on hourly values > 0.0 mm
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