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Abstract
The long-term behaviour of the barotropic vorticity equation (BVE), which is beneficial for understanding long-term climate variations,
has been investigated by applying an explicit quadratic conserved finite difference integration scheme. The results suggest that an initial
pattern predominated at the beginning of time evolves to an equilibrium state after a long transition period in which the conserved
prerequisites, such as the integral kinetic energy, square vorticity, and vorticity, are broken by accumulated errors. This could cause the
BVE to be indeterministic. Similar phenomena could reappear in integration cases starting at the same initial patternwith different small
perturbations, initial patterns, time and grid intervals, and difference schemes. The eventual equilibrium states for the above cases are
different from each other but spatially similar. They all possess a single-wave structure in the horizontal plane but with random phases.
The results further imply that despite the indeterministic characteristics due to the nonlinearity, the long-term behaviour of the BVE is
deterministic in a spatial structure, shedding light on long-term climate change studies.
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1 Introduction

The linearized barotropic vorticity equation (BVE) led the dis-
covery of atmospheric Rossby-Haurwitz waves (Rossby 1939;
Haurwitz 1940), which greatly motivated atmospheric and oce-
anic dynamic research. The nonlinear BVE can be simplified
through the use of a double Fourier series and with the omission
of all but the largest scales of motion (Lorenz 1960). The so-
called low-order model (LOM) reduces the nonlinear BVE to an
autonomous dynamical systemwith three ordinary nonlinear dif-
ferential equations whose analytical solutions are elliptic func-
tions of time, and then, the equilibrium solutions, stability, and
trajectories can be further analysed (Lakshmivarahan et al. 2006).
Due to the convenience of reducing the nonlinearity, LOMs have
become a standard method and have been extensively applied in
studies of complex atmospheric phenomena (Saltzman 1962;
Lorenz 1963; Charney and DeVore 1979; Wiin-Nielsen 1992;
Gluhovsky et al. 2002).

Numerical modelling has been greatly developed since the
first successful numerical solution of the BVE over a limited
area of the Earth’s surface in 1950 (Charney et al. 1950).
Many finite difference schemes with integral constraints on
quadratic quantities have been designed to integrate the BVE
and avoid integration instability (Lilly 1965; Arakawa 1966).
These analogues have been widely adopted in many theoret-
ical studies (Galewsky et al. 2004; Thuburn and Li 2000)
and numerical general circulation models (Bryan 1963;
Grimmer and Shaw 1967; Kurihara and Holloway 1967;
Smagorinsky et al. 1965). Computational instability for
long-term integration may occur if no artificial dissipation
term is added (Grammeltvedt 1969). This is because the qua-
dratic conservation constraints are broken when the leap-frog
time difference scheme is used (Zeng and Ji 1981). The com-
putational stability for long-term integration can be improved
by designing schemes with complete quadratic conservation
constraints (Ji and Zeng 1982; Ji and Wang 1991). These
schemes offer powerful tools for exploring the long-term be-
haviour of the nonlinear BVE, which, to our knowledge, has
not yet been studied, unlike its well-known short-term evolu-
tion. Therefore, the long-term integration behaviour of the
BVE under periodic boundary conditions has been explored
in this paper by using a finite difference scheme. The different
schemes used for calculations are described in Section 2. The
results are presented in Section 3, and the conclusions are
summarized in Section 4.
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2 Finite difference integration schemes

The dimensionless BVE for two-dimensional incompressible
flow (Lorenz 1960) can be written as

∂ς
∂t

þ u
∂ς
∂x

þ v
∂ς
∂y

¼ 0 ð1Þ

where t is time; u and v are horizontal velocity vector compo-
nents in the x direction and y direction, respectively; and ς

¼ ∂v
∂x −

∂u
∂y is the vertical vorticity. By introducing the stream

function ψ, the horizontal velocity and the vertical vorticity
can be expressed as

u ¼ −
∂ψ
∂y

; v ¼ ∂ψ
∂x

; ς ¼ ∇2ψ ð2Þ

where ∇2 is the horizontal Laplacian operator. Following
Lorenz (1960), we neglect the latitudinal variation of the ro-
tating effect of the Earth, which has vast applications in atmo-
spheric and oceanic motions. The case for the Coriolis

parameter is discussed separately. The quadratic conservation
features of Eq. (1) can be derived by setting double periodic
condition boundaries

d

dt
∫SKdS ¼ d

dt
∫Sς2dS ¼ 0 ð3Þ

where K ¼ 1
2 u2 þ v2ð Þ is the kinetic energy (KE) and S is the

integration domain. As mentioned above, a finite difference
scheme should satisfy such prerequisites to directly solve the
long-term numerical solution of Eq. (1). The quadratic con-
servations in a finite difference scheme are written as

Knþ1
�� �� ¼ Knk k; ςnþ1

�� ��2 ¼ ςnk k2 ð4Þ

where superscript n and n + 1 denote the time indexes; the

notation Ak k2 ¼ d2 ∑
m
Am⋅Am represents the norm square of

matrix A; ∑
m
represents the summation of the values in each

grid m; and d is the grid interval.

Fig. 1 Stream function patterns at t = 0 (a), t = 20 to t = 100 with a time interval of 20 (b–f), t = 500 (g), t = 1000 (h), t = 5000 (i), t = 10, 000 (j), and t =
20, 000 to t = 100, 000 (k–o) with a time interval of 20,000. Streamlines are drawn at intervals of 0.05 (a–h) and 0.1 (k–o)
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Applying the incompressible condition, Eq. (1) can be re-
written as

∂ς
∂t

þ 1

2
u
∂ς
∂x

þ ∂uς
∂x

� �
þ 1

2
v
∂ς
∂y

þ ∂vς
∂y

� �
¼ 0 ð5Þ

The direct discretization of Eq. (5) can produce the implicit
finite difference scheme that is adopted in this paper

ςþ þ 1

2
uς

x

x þ uς
� �x

x
þ vς

y

y þ vς
� �y

y

� �
¼ 0 ð6Þ

w h e r e ςþ ¼ 1
dt ςnþ1−ςnð Þ; ς ¼ 1

2 ςnþ1 þ ςnð Þ; ςxx ¼ 1
2d

ς iþ1−ς i−1ð Þ; ςyy ¼ 1
2d ς jþ1−ς j−1
	 


are notations for conveniently

expressing the scheme; the subscripts i, j are the grid indexes in
the x and y directions; and dt, d are the time and grid intervals,
respectively. Equation (6) is a stable quadratic conservation
scheme (Ji and Zeng 1982); however, the computation time is
large, especially for long-term integration. Therefore, explicit
quadratic conservation difference schemes are designed to speed
up the computing time. An explicit finite difference scheme can
be constructed by modifying Eq. (6) as follows:

ςþ þ 1

2
uς

x

x þ uςð Þ
x

x þ vς
y

y þ vςð Þ
y

y

h i
þ dt⋅εn⋅ Bςnð Þ ¼ 0 ð7Þ

where εndtBςn is a term that is introduced to ensure that the
scheme satisfies quadratic conservation, εn is an undetermined
coefficient, and Bis a dissipation operator. Equation (7) can be
shortened as

ςþ þ Aςn þ εndt Bςnð Þ ¼ 0 ð8Þ
where A denotes the difference operator in Eq. (7). Ji and Wang
(1991) indicated that Eq. (8) would be a quadratic conservation
scheme by taking

εn ¼ K1= 1−
dt
d
K2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

dt
d
K2

� �2

−
dt
d
K3

� �2
s24 35 ð9Þ

Bςn ¼ Aeςnþ1
−Aςn

� �
=dt ð10Þ

where K1 = ‖Aςn‖2/(Bςn, ςn), K2 = (Bςn, Aςn) ⋅ d/(Bςn,
ςn),K3 = ‖Aςn‖ ⋅ ‖Bςn‖ ⋅ d/(Bςn, ςn), and eςnþ1 ¼ ςn−dtAςn. The
notation (F,G) denotes the inner product of the two variables
F and G in the domain S. Its expression is defined as
F;Gð Þ ¼ ∑

i; j
F⋅GΔS. Refer to Ji and Zeng (1982) and Ji and

Wang (1991) for detailed information.

Fig. 2 The integral kinetic energy (KE) (a), square vorticity (b), and vorticity (c) curves for the whole integration period. To glorify the evolution
features, the whole integration period is divided into three parts that are bound by the vertical lines in each figure
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3 Results

Lorenz (1960) expanded ψ by a double Fourier series and
retained three terms to conduct a theoretical analysis:

ψ ¼ −
A tð Þ
l2

cosly−
F tð Þ
k2

coskx−
2G tð Þ
k2 þ l2

sinly⋅sinkx ð11Þ

where A, F, G are intensity coefficients and k, l are the
wavenumbers in the x and y directions, respectively. It is neces-
sary to retain at least three terms to theoretically analyse the
nonlinear interaction among different terms (Fjörtoft 1953).
Therefore, the integration process is started by specifying A =
0.12,F = 0.24,G = 0, k= 2, and l= 1 (see Fig. 1a) and integrating
for a long time span (t= 105, approximately 34 years for the unit
time scale is 3 h) with grid and time intervals of 2π/40 (approx-
imately 157 km for the unit length scale is 1000 km) and 0.005,
respectively. In contrast, numerical solutions do not always re-
produce the variations in the intensity of the average strength of
the mid-latitude westerly winds, a phenomenon known as the

index cycle (Namias 1950). At the very beginning, the stream
function pattern evolves into an index cycle with circulation cells
appearing and displaced alternately (Fig. 1b–g). However, the
index cycle does not last an indefinitely long time as the analytic
solution predicted. After the beginning period, the stream func-
tion pattern gradually evolves towards a single-wave structure
(Fig. 1h–o), which tends to be steady with continuously accumu-
lated integration time. Compared with the initial pattern (Fig. 1a),
the equilibrium state (Fig. 1o) differs not only in spatial pattern
but also in intensity.

This introduces an interesting question of how the transfor-
mation process from the initial pattern to the equilibrium state
occurs. We analyse variables with conservation properties,
such as the integral KE, square vorticity, and vorticity, to ex-
plore the variations (Fig. 2). As shown in Fig. 2, these vari-
ables do not meet the conservation requirements for the whole
integration period. The integral KE curve (Fig. 2a) exhibits
good conservation properties at the very beginning (left panel
of Fig. 2) in which the influence of the initial pattern is more
significant, and the stream function pattern evolves as an

Fig. 3 The six equilibrium stream function patterns at t = 100, 000
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analogical index cycle as mentioned above. The stream func-
tion no longer meets the conservation constraint with a signif-
icant climbing trend (middle panel of Fig. 2), implying that the
integration results encounter a predictability problem due to
errors and are not reliable. Stopping at this point, the calcula-
tion seems to be perfect. Fortunately, we continue to integrate
for a longer period of time. A new conservation property (right
panel of Fig. 2), significantly different from the previous one,
eventually replaces the climbing trend, accompanying the
stream function pattern approaching an equilibrium state.
Both the integral square vorticity and vorticity curves experi-
ence similar variations (Fig. 2b–c). This demonstrates that the
developed errors in the second period will not develop forever
and disturb the computation but will gradually be suppressed
by the strong conservation property of the flow system. As
Fjörtoft (1953) once noted, the nature of the turbulence devel-
opment in Eq. (1) is born from the conservation requirements
it has to fulfil.

Although the flow system eventually reaches an equilibri-
um state, the system does not regain its predictability after

experiencing a long unpredictable period because slightly dif-
fering initial states could evolve into considerably different
states (Lorenz 1963). We further artificially add six random
normal distributed perturbations with a mean value of zero
and a standard deviation of 0.001 to the initial pattern to sim-
ulate a sort of ‘noise’ superposed on the ‘accurate’ initial state.
All perturbations are insignificant compared with the initial
pattern. The six ‘new’ initial patterns are then integrated for
the same time span. The stream function patterns initially
evolve with little discrepancy (figure omitted), gradually di-
verging from each other and then eventually approaching dif-
ferent equilibrium states (Fig. 3). Although the six equilibrium
states (Fig. 3) are different, they possess similar spatial pat-
terns. Each of them exhibits a single-wave structure similar to
the equilibrium state, and it seems that any one of them could
be reproduced by the translation of one of the others by certain
distances in the x and y directions. All the equilibrium states
have a spatially similar single-wave structure, which demon-
strates the largest scale of motion (wavelength) in the bounded
region. This supports the arguments derived analytically,

Fig. 4 The six equilibrium stream function patterns at t = 100, 000
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which hypothesises that the larger scale (wavelength) is
favoured over the smaller scale (wavelength) due to the strong
conservation constraints in two-dimensional incompressible
flow (Merilees and Warn 1975; Van Delden 1984).
Therefore, we could infer that the stream function patterns
with a single-wave structure might be one kind of eventual
equilibrium state of the nonlinear BVE.

To further confirm the above analysis, we use larger
wavenumbers (k = 10, l = 5) to construct a new initial pattern
for smaller motion scales. We also use a random normal distrib-
uted initial pattern with a mean of zero and a standard deviation
of 0.001 to simulate how the nonlinear BVE evolves with a
complete random perturbation. We also apply the Lorenz
(1960) initial pattern but set a fine grid resolution (d = 2π/80)
and a coarse time resolution (dt= 0.01) to explore the influence
of different integration scheme parameters. Finally, we apply the
implicit finite difference integration scheme described in Eq. (6)
to integrate with the Lorenz (1960) type initial value and the
complete random normal distributed initial value, respectively,

to test whether the phenomenon is scheme dependent. The
eventual stream function equilibrium patterns for the above
six cases (Fig. 4) are spatially similar to the previous equilibri-
um patterns (Fig. 3), further implying that the single-wave
structure equilibrium states are ubiquitous for the numerical
integration of the nonlinear BVE.

The 13 stream function patterns in equilibrium (Figs. 1o, 3,
and 4) could inspire an intuitive conjecture that the eventual
equilibrium patterns should have a similar expression as Eq.
(11), namely,

ψ* ¼ −A*cos l*yþ θ1
	 


−F*cos k*xþ θ2
	 
 ð12Þ

where A∗ and F∗ are intensity parameters; k∗ and l∗ are the
wavenumbers in the x and y directions, respectively, and should
be equal to one according to the above analysis; and θ2 and θ1 are
the phases in the x and y directions, respectively. The specific
values of the six parameters can be identified by applying Eq.
(12) to fit the equilibrium patterns through the least squaresmeth-
od. According to the results, the values of both k∗ and l∗ are very

Fig. 5 Stream function patterns from t = 10, 000 to t = 100, 000 with a time interval of 10, 000. Streamlines are drawn at intervals of 0.1
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close to one, further validating the single-wave structure specu-
lation; both θ2 and θ1 seem to be random numbers, implying that
the deterministic single-wave structure is indeterministic in
phases. Since Eq. (12) can represent the equilibrium states, there
should be no variation if the initial values are taken to continu-
ously integrate the nonlinear BVE, regardless of how long the
integration time lasts. Therefore, one of the 13 equilibrium states
is selected (Fig. 1o) as the initial value to continuously integrate
for the same time span. As expected, the stream function main-
tains its initial pattern and intensity during the whole integration
period (Fig. 5). The integral KE, square vorticity, and vorticity
curves slightly oscillate against the conserved values, showing
good conservation properties (Fig. 6), and the period in which
the conservation constraint is not satisfied (seen in Fig. 2) does
not occur, further demonstrating that the flow system is indepen-
dent of time after approaching the equilibrium state. The equilib-
rium states in Figs. 3 and 4 are also used as the initial values to
integrate the BVE for the same time span. The results are similar
(figure omitted).

4 Conclusion

In the present study, the nonlinear BVE has been direct-
ly solved by applying finite difference schemes with
complete quadratic conservation features. The long-
term numerical solutions show new characteristics that
have not been revealed before. The stream function ini-
tially evolves under the influence of the initial value,
portraying an analogical index cycle similar to the ana-
lytical prediction made by the LOM method. The inte-
gral KE, square vorticity, and vorticity conserve their
values well during this period. After the period, the
influence of the initial value is gradually weakened,
and the conserved variables are not conserved again.
This result is significantly different from the theoretical
solut ion that predicts an endless index cycle .
Computational instability will not be developed due to
the accumulated error. In contrast, it will be gradually
suppressed by the strong conservation constraint that the

Fig. 6 The integral KE (a), square vorticity (b), and vorticity (c) curves for the whole integration period. To glorify the evolution features, the whole
integration period is divided into three parts are bound by the vertical lines in each figure
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flow system obeys. Therefore, the stream function evo-
lution is gradually independent of time and approaches
an equilibrium state with a single-wave structure. The
integral KE, square vorticity, and vorticity regain their
conservation attributes, accompanied by the gradually
steady stream function pattern.

Six random patterns are added to the initial value to
simulate types of errors that cannot be eliminated in the
real world. The results suggest that the stream function
patterns for the six cases initially evolve concurrently
with the undisturbed case. However, the stream function
patterns gradually diverge, and each eventually ap-
proaches an equilibrium state when the integration pro-
cess continues. The eventual equilibrium states do have
certain similarities despite the obvious differences. Each
of them shows a single-wave structure in the domain with
different phases in the x and y directions. Six cases are
further designed to test the performances of the different
initial patterns, spatial resolutions, and time resolutions,
as well as an implicit difference scheme. The results are
similar. The 13 equilibrium stream function patterns to-
gether prove the argument that the equilibrium states of
the BVE are a single-wave structure with different phases.

Classical theory predicts an indeterministic characteristic
of the deterministic system due to the nonlinearity (Lorenz
1963). The results of this study confirm this long-held view
and further demonstrate that the indeterministic characteristics
contain a deterministic component. For the nonlinear BVE,
the eventual equilibrium pattern is indeterministic, but its spa-
tial pattern is deterministic, i.e., a simple single-wave structure
with random phases. This implies that we do not know the
accurate future state of the flow system, but we do know what
its spatial pattern is. Climate systems also obey many conser-
vation laws. Therefore, this result offers the possibility of ex-
ploring long-term climate variability, which is currently a
concern.
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