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Abstract
Black carbon (BC) is an essential climate forcer in the atmosphere. Large uncertainties remain in BC’s radiative forcing
estimation by models, partially due to the limited measurements of BC vertical distributions near the surface layer. We conducted
time-resolved vertical profiling of BC using a 356-m meteorological tower in Shenzhen, China. Five micro-aethalometers were
deployed at different heights (2, 50, 100, 200, and 350 m) to explore the temporal dynamics of BC vertical profile in the highly
urbanized areas. During the observation period (December 6–15, 2017), the average equivalent BC (eBC) concentrations were
6.6 ± 3.6, 5.4 ± 3.3, 5.9 ± 2.8, 5.2 ± 1.8, and 4.9 ± 1.4 μg m−3, from 2 to 350 m, respectively. eBC temporal variations at different
heights were well correlated. eBC concentrations generally decreased with height. At all five heights, eBC diurnal variations
exhibited a bimodal pattern, with peaks appearing at 09:00–10:00 and 19:00–21:00. The magnitudes of these diurnal peaks
decreased with height, and the decrease was more pronounced for the evening peak. eBC episodes were largely initiated by low
wind speeds, implying that wind speed played a key role in the observed eBC concentrations. eBC wind-rose analysis suggested
that elevated eBC events at different heights originate from different directions, which suggested contributions from local primary
emission plumes. Air masses from central China exhibited much higher eBC levels than the other three backward trajectory
clusters found herein. The absorption Ångström exponent (AAE375–880) showed clear diurnal variations at 350 m and increased
slightly with height.
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1 Introduction

Black carbon (BC) is an important atmospheric aerosol com-
ponent and is produced by the incomplete combustion of

carbonaceous materials (Bond and Bergstrom 2006). Recent
industrial development and rapid increases in world popula-
tion have led to the consumption of large amounts of fossil
fuels, which, together with anthropogenic biomass burning
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and automobile exhaust emissions, have resulted in a signifi-
cant increase in the concentration of BC in the atmosphere
(Ruppel et al. 2014). BC aerosol can affect the climate by
modifying the radiative properties of the atmosphere (Reddy
and Boucher 2007). BCmay be the third most important com-
ponent of global warming after CO2 and CH4 (Bond et al.
2013). The optical absorption properties of BC can greatly
reduce atmospheric visibility (Moosmüller et al. 2009). BC
can also carry toxic substances and heavy metals into the body
and induces respiratory and cardiovascular problems
(Highwood and Kinnersley 2006; Borm et al. 2004).
Because BC can have substantial impacts on global climate
change, regional ambient air quality, and human health, BC
has become an increasingly important field of atmospheric
research in recent years (Bond et al. 2013). In response, nu-
merous counties have established national-wide BC monitor-
ing networks (Kirchstetter et al. 2017; Kutzner et al. 2018;
Zhang et al. 2008, 2012). However, most existing BC studies
have been ground-based. Modeling studies suggested that
substantial uncertainties of BC radiative forcing were arise
from limited measurement of BC vertical profiles (Samset et
al. 2013; Zarzycki and Bond 2010). As a result, field measure-
ments of BC vertical profiles are useful for reducing the un-
certainties of BC radiative forcing in climate models.

In China, ground-based BC observations had been per-
formed in various locations (Zhang et al. 2008; He et al.
2009b; Wu et al. 2009, 2012; Zhuang et al. 2014, 2015;
Chen et al. 2016; Ji et al. 2017). Globally, ground-based BC
measurements have been made from polar regions (Sharma et
al. 2004) to urban areas (Chen et al. 2016). However, mea-
surements of BC vertical distributions remain limited. Wu et
al. (2009) conducted parallel BCmeasurements at the foot and
top of a hill using two aethalometers. Aircraft-based measure-
ment is a useful tool for studying BC vertical profiles. For
example, Schwarz et al. (2008) conducted aircraft-based BC
measurements in Costa Rica. Vaishya et al. (2018) reported
vertically resolved light absorption profiles at Indo-Gangetic
Plain (IGP) using aircraft measurements and found significant
atmospheric warming induced by BC. Wang et al. (2018a)
found a decreasing trend of light absorption with height within
0–3 km, and the light absorption vertical profiles were influ-
enced by the evolution of a boundary layer. The influence of
boundary layer height on BC vertical profiles was also ob-
served by aircraft measurements in India (Safai et al. 2012)
and Nepal (Singh et al. 2019). In the arctic region, BC was
found to be more abundant in the upper polar dome (Willis et
al. 2019). Aircraft measurements in the Yangtze River Delta
found increased organic carbon to elemental carbon ratio with
height (Ren et al. 2018). However, the high cost of aircraft
measurements limits its applications in field studies. Besides
aircraft, balloon sounding was also useful for probing the BC
vertical distribution, especially for height below 1000 m,
whose range was usually not covered by aircraft

measurements due to the takeoff and landing process. Ran et
al. (2016) explored the variability of BC vertical profile mea-
surements at the North China Plain using a tethered balloon.
(Li et al. 2015) studied BC profile variations in Shanghai. Lu
et al. (2019) studied BC vertical profiles in the boundary layer
in the Yangtze River Delta. Tethered balloon–based vertical
profiling of BC was also been reported in India (Babu et al.
2011; Bisht et al. 2016; Mishra et al. 2018), New Zealand
(Trompetter et al. 2013), Italy (Ferrero et al. 2011; Ferrero et
al. 2014), and Arctic region (Ferrero et al. 2016; Markowicz et
al. 2017). In recent years, unmanned aerial vehicles (UAV)
were also applied for BC vertical profiling. UAV-based BC
vertical profiling studies had been conducted in the Yellow
Sea (Ramana et al. 2010), Indian Ocean (Corrigan et al.
2008), Yangtze River Delta (Li et al. 2018), and Pearl River
Delta (Liu et al. 2020). UAV provides more flexibility in field
deployments, but UAV is limited in payload capacity and tem-
poral coverage. Nevertheless, vertical BC profile measure-
ments, and especially time-resolved measurements, remain
limited. In comparison, the meteorological mast can provide
continues measurements at different heights. Xie et al. (2019)
studied the light absorption vertical profile in Beijing during
winter using the Beijing meteorological mast. Wang et al.
(2018b) found that constant BC profiles accounted for 37%
of all profiles during winter haze episodes in Beijing. Recent
studies have suggested that the interactions between BC and
the boundary layer can cause a “dome effect” that leads to air
pollutant accumulation (Wendisch et al. 2008; Ding et al.
2016). Considering the limited number of existing studies on
BC vertical distributions and the importance of BC vertical
profile on evaluating BC’s climate effect, there is a strong
need for time-resolved BC vertical distribution measure-
ments in order to better characterize the environmental
effects of BC.

Shenzhen, which is located in the southern part of
Guangdong Province (in southern China) on the eastern bank
of the Pearl River Estuary, is an important international gate-
way and home to numerous high-tech companies. Shenzhen
ranked 11th cleanest of 74 major Chinese cities in terms of
PM2.5 in December 2017, with a monthly average PM2.5 con-
centration of 46 μg m−3 (CNEMC 2018). The air quality im-
provement of Shenzhen in recent years may be partially attrib-
uted to the active pollution control measures implemented by
the local government. For example, the number of public
electric buses in Shenzhen has surpassed the total number of
electric buses in major metropolitan areas in the USA, and
90% taxis in Shenzhen have been electrified (Keegan 2018).
As a coastal city, Shenzhen is an ideal location to examine the
characteristics of BC from local vehicular emissions. Thus,
this study aims to characterize the temporal dynamics of BC
vertical distributions near the surface layer in the highly ur-
banized areas. Field measurements were conducted at the 356-
m meteorological tower in Shiyan, Shenzhen, on December
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6–15, 2017. Equivalent BC (eBC) concentrations were mea-
sured at different heights, and the vertical distributions were
analyzed in combination with meteorological data.

2 Field measurements

2.1 Observation site

The observation site location is shown in Fig. 1. The
Shenzhen meteorological tower (SZMT) is located in a
protected area in the Tiegang Reservoir, Bao’an District,
Shenzhen, and surrounded by orchards. Although the area
within the reservoir was covered by vegetation, the areas be-
yond the reservoir had been fully urbanized as shown in Fig.
1. An expressway is located near the site, and expressway
vehicle emissions are one of the sources affecting the obser-
vations. Open burning of straw and trash was also observed
within the reservoir area during the observation period occa-
sionally, which may have affected the measurement results.
With a height of 356 m, the SZMT is the tallest meteorological
mast tower in Asia and the second tallest in the world. The
SZMT platform was designed to enable integrated vertical
measurements of meteorological and environmental parame-
ters (Li et al. 2020).

2.2 The advantage of meteorological masts
over other tower types

TV towers have difficulties for meteorological and pollut-
ant measurements (Deng et al. 2015), primarily because
the surrounding airflow may be disturbed by the solid
bulk cross section of the tower structure. In contrast, me-
teorological masts are much smaller and feature a hollow
structure, which is much more conducive to ventilation

and minimizes airflow disturbances. In addition, the mete-
orological mast cross section is identical at all heights,
enabling uniform flow through the mast at all altitudes.
These features ensure consistent measurement accuracy at
different heights. Meteorological masts also have an ad-
vantage over other approaches, including unmanned aerial
vehicles (UAVs) (Liu et al. 2020; Li et al. 2018; Pikridas
et al. 2019), tethered balloons (Ferrero et al. 2011; Li et
al. 2015; Ran et al. 2016; Lu et al. 2019), and airships
(Rosati et al. 2016) in that they can support continuous
time-resolved measurements at different heights (He et al.
2009a). For example, Wu et al. (2015) conducted PM2.5

sampling at four heights (10, 40, 120, and 220 m) using a
meteorological mast in Tianjin, finding that mass percent-
age of SO4

2−, NO3
−, and OC increased with height. The

325-m meteorological tower in Beijing has been used to
study the vertical distribution of PM2.5 (Sun et al. 2013;
Wang et al. 2018b; Zhou et al. 2018), and the Amazon
Tall Tower Observatory (ATTO) has proven useful for
studying atmospheric composition and physical proper-
ties (Andreae et al. 2015). Finally, long-term studies
have been undertaken using the Zotino Tall Tower
Observatory (ZOTTO) in Central Siberia (Chi et al.
2013).

2.3 Instrumentation and deployment

Two types of micro aethalometers were used in this study: the
MA200 (AethLabs, CA, USA), which provides eBCmeasure-
ments at five wavelengths, and the AE51 (AethLabs, CA,
USA), which reports eBC at 880 nm only. Micro-
aethalometers employ the same principle as rack-mount
aethalometers (Hansen et al. 1984). Both MA200 and AE51
were operated at a flow rate of 150 ml/min for sampling. The
AE51 collects samples on a quartz filter strip, which requires
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Fig. 1 Map of the sampling site and photo of the 356-m Shenzhen meteorological tower (SZMT)
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manual replacement once the light attenuation (ATN) value
exceeds 100 (unitless).

The MA200 uses a filter cartridge with 15 sampling spots,
making it more suitable for multiple-day sampling. The filter
advancing threshold for ATN was 100 for MA200 in this
study. MA200 equipped with 5 LED light sources, covering
the wavelength from 375 to 880 nm. That enables the deter-
mination of wavelength dependency of the samples. The me-
teorological tower has 13 vertically distributed observation
platforms (at 10, 20, 40, 50, 80, 100, 150, 160, 200, 250,

300, 320, and 350 m); the observations for this study were
performed at ground level (2 m) and 50, 100, 200, and
350 m (Fig. S1). Three AE51 instruments (placed at 2,
50, and 100 m), and two MA200 instruments (placed at
200 and 350 m) were used, and eBC data were obtained
at a total of five altitudes. Due to a power supply in-
terruption, eBC data were not available at 350 m on
December 12–15. Meteorological parameters such as
temperature, relative humidity, wind speed, and wind
direction were also measured.

Fig. 2 eBC concentration
frequency distributions at the five
sampling heights as shown in a–e.
The solid line red represents the
lognormal distribution function
fitted curve, and N represents the
amount of data. Box plot of eBC
at different heights is shown in f
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2.4 Data processing

The AE51 and MA200 are capable of acquiring eBC data at
high time resolution (1 s), but are subject to optical and elec-
tronic noise at lower eBC concentrations. The Optimized
Noise-reduction Averaging (ONA) algorithm (Hagler et al.
2011) was therefore applied for signal noise reduction. The
ONA treatment results are shown as black lines in Fig. S2.
The data logging interval used in this study is 1 min for AE51
and 1 s for MA200. The higher time resolution used in
MA200 leads to a noisier signal of the raw data (shown as
red dots in Fig. S2). It is worth noting that the negative values
of the raw data do not reflect any physical meanings of the
eBC concentrations. These are just raw data that need ONA
treatment. The data fluctuation was minimized after ONA
treatment as shown by the black lines in Fig. S2. After ONA
treatment, the data were further corrected for the loading effect
following the algorithm proposed by Virkkula et al. (2007).
The loading correction equations are shown below:

BCcorrected ¼ 1þ k � ATNð ÞBC0 ð1Þ

ki ¼ 1

ATN ti;lastð Þ
BC0 tiþ1;first

� �
BC0 ti;last

� �
 !

ð2Þ

where BC0 is the raw BC concentration reported by the
aethalometer; ATN is the light attenuation measured by
aethalometer; k is an empirical constant that can be derived
from Eq. 2; ti, last is the time of the last measurement data for
filter spot i; and ti + 1, first is the time of the first measurement
data for the next filter spot. For each spot (sampling cycle), a
factor ki is obtained to correct the data according to Eq. 1. As

shown by the blue lines in Fig. S2, the divergence of BC
before and after filter change was effectively minimized by
the correction scheme.

An Igor Pro (WaveMetrics, Inc., Lake Oswego, OR, USA)
based program (MA Toolkit) was developed to incorporate
both ONA and loading correction for MA200 and AE51
(Fig. S3).

Inter-instrument comparisons were conducted to ensure
consistency between the MA200, AE51, and stationary refer-
ence instruments. In this study, a rack-mounted AE33
aethalometer (Drinovec et al. 2015) was used as the reference
instrument. As shown in Fig. S4, the MA200 and AE51 cor-
relate well with the AE33. As a result, the given slopes were
used to correct the AE51 and MA200 data to ensure data
consistency in this study. The AE51 had been proved as a
suitable tool for ambient measurements in previous evaluation
studies (Cheng and Lin 2013; Viana et al. 2015). We conduct-
ed extensive field tests on the MA200, and the systematic
characterization of MA200 will be discussed in a separate
paper in detail (Wu et al. 2020). Another two Igor Pro–based
programs, Histbox (Wu et al. 2018) and ScatterPlot (Wu and
Yu 2018), were used for data visualization (box plot and scat-
ter plot).

3 Results and discussion

3.1 Characteristics of eBC concentration changes
at different heights

Figure 2 shows eBC concentration frequency distributions at
five heights during the campaign. The average eBC concen-
trations at 2, 50, 100, 200, and 350 m are 6.6 ± 3.6, 5.4 ± 3.3,
5.9 ± 2.8, 5.2 ± 1.8, and 4.9 ± 1.4 μg m−3, respectively, show-
ing a decreasing trend with height (Fig. 2f). The mode con-
centrations of eBC (from 2 to 350 m, respectively) are 4.1 ±
0.5, 3.3 ± 0.3, 4.1 ± 0.4, 4.3 ± 0.3, and 4.4 ± 0.2 μg m−3. eBC
features a bimodal distribution at 2 and 50 m, and a unimodal
distribution at 100, 200, and 350 m. This implies that episodic
events affect the surface levels (2 and 50m) more than they do
the upper levels (100, 200, and 350 m).

3.2 Linear relationships between eBC concentrations
at different heights

Linear relationships between eBC concentrations at differ-
ent heights are shown in Fig. 3. It should be noted that
considering the measurement uncertainties and the relative-
ly short sampling period, the results shown here should
not be interpreted to a high degree of accuracy. The slopes
represent the ratios of eBC at 50, 100, 200, and 350 m to
eBC at 2 m, which are 0.82, 0.73, 0.35, and 0.20, respec-
tively (Fig. 3). All p values of slopes at different heights

Fig. 3 Linear relationships between eBC concentrations at different
heights
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were 0.000, suggesting that all slopes are significantly
different from zero. The slopes at 50 and 100 m are
similar, but those at 200 and 350 m decrease substantially.
In contrast, the intercept increased with height, from 0.03
to 3.1. In addition, the relatively larger intercepts at the
upper two levels (2.19 at 200 m and 3.10 at 350 m)
suggest a large fraction of the concentration variations
cannot be explained by the linear relationship. Besides
intercept, R2 decreases with height, from 0.56 to 0.22 as
shown in Fig. 3. The large intercept and low R2 found at
200 and 350 m imply that the variations of BC at these
two heights were less associated with ground-level BC
comparing with 50 and 100 m.

3.3 eBC diurnal variations at different heights

eBC diurnal variations are shown at five heights on the SZMT
in Figs. 4 and 5. The eBC diurnal variations clearly show

bimodal patterns at all five heights, with peaks appearing be-
tween 09:00 and 10:00 in the morning and between 19:00 and
21:00 in the evening.Minima occur from 13:00 to 14:00 in the
afternoon and from 06:00 to 07:00 in the morning. Vehicle
emissions likely drive the elevated eBC near the morning and
evening rush hours. The evening peak is higher in magnitude
and broader, which may be associated with traffic regulations
in Shenzhen, where trucks are banned in urban areas from
7:00 to 22:00. Because trucks typically have higher emission
factors, this truck ban may contribute to the large evening
peak observed in this study. Higher emission combining the
generally shadow mixing height during the evening leads to
the enrichment of BC near the surface as shown in Fig. 5d.
The minimum from 13:00 to 14:00 is associated with the
gradual decrease in traffic volume after the morning rush hour
and the increase in solar radiation in the afternoon, which
causes strong atmospheric turbulence (i.e., mixing) and eleva-
tion of the boundary layer (i.e., dilution) (Tiwari et al. 2013).

Fig. 4 Diurnal variations in eBC
at five heights. Red circles
represent hourly averages, the
lines inside the boxes indicate the
hourly medians, the upper and
lower boundaries of the boxes
represent the 75th and 25th
percentiles, and the whiskers
above and below each box
represent the 95th and 5th
percentiles
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With the full development of the mixing layer, the vertical
profiles are straight in the afternoon (Fig. 5c). The magnitude
of the morning peak is comparable at all five heights, while the
magnitude of the evening peak decreases significantly with
height. This may imply that the emission source of the eve-
ning peak is closer to the sampling site than the emission
source of the morning peak, as an emission source closer to
the measurement site is expected to produce a more pro-
nounced eBC vertical gradient.

3.4 Temporal variations in eBC and PM2.5 at different
heights

Temporal variations in eBC and PM2.5 are shown at five
heights in Fig. 6. The eBC and PM2.5 trends are similar at
all five heights during most of the sampling period. The
eBC-to-PM2.5 ratio from ground to 350 m is about 15%,
8%, 11%, 9%, and 10%, respectively. The eBC/PM2.5 mass
ratio could potentially be an indicator for PM2.5 composition
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and sources. For the same height, occasionally the eBC/PM2.5

ratio could be lower (e.g., December 9, 2017, at ground level),
which implies the increase of non-BC fraction in PM2.5 (e.g.,
secondary aerosol formation). The occasional increase or
spikes of the eBC/PM2.5 ratio (e.g. December 10, 2017, 2
and 50 m) may suggest the passing by of a primary emission
plume that is rich in BC-containing contents (e.g., individual
high emission vehicles or combustion events). The differences
in eBC/PM2.5 between different heights can also provide some
qualitative source information. For example, eBC/PM2.5 is
highest at 2 m, in agreement with the fact that most BC parti-
cles are emitted at the ground level.

3.5 Effect of meteorological factors on eBC temporal
variations

On December 6, the region was experiencing the final stages
of a cold episode. December 7–11 featured a cold high-pres-
sure degeneration process, during which a stagnant zone
formed near the ground, causing heavy pollution; December
12–15 featured southward movement of the cold air mass.

Temporal variations in temperature (T), relative humidity
(RH), solar radiation (R), and eBC are shown in Fig. 7.
Solar radiation drives both T and RH; T increases as solar
radiation increases, leading to decreased RH in the afternoon.
Both T and the amplitude of the variations in RH decrease
with increasing height. Under sufficient solar radiation
(December 6–11), decreases in T lead to more variable RH
diurnal patterns; however, under cloudy conditions, when so-
lar radiation is blocked (December 12–15), the diurnal varia-
tions in RH are much less pronounced at all heights. It can be
seen from Fig. 7 that the trend of eBC concentration is similar to
the trend of RH, which is generally opposite to the trend of T.

Figure 8 shows the effect of wind speed on eBC concen-
trations at five altitudes. Wind speed increases significantly
with height, measuring two-fold higher at 350 m than at
ground level. High wind speeds likely contribute to the de-
crease in eBC with height (Bibi et al. 2017). The eBC episode
during December 9–10 was likely driven primarily by the low
wind speed during this period, confirming the key role of wind
speed, among other meteorological factors, in the observed
eBC concentrations.
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3.6 Influence of wind direction on eBC concentrations

Figure 9 shows eBCwind-rose plots that were generated using
ZeFir (Petit et al. 2017) for the five sampling heights. The
results suggest that high eBC concentrations come from dif-
ferent directions at different heights. At 2 m, high eBC

concentrations arise mainly from the west, but occur relatively
infrequently since northwest winds are dominant. At 50 m,
high eBC episodes arise mainly from the southwest. At
100 m, elevated eBC is associated with both southerly and
westerly winds. At 100, 200, and 350 m, northeasterly winds
are dominant; however, high eBC events arise from different

Height Concentration Probability

2 m

50 m

100 m

200 m

350 m

Fig. 9 eBC wind-rose plots for
the five sampling heights. The left
column shows the distributions of
eBC concentration as a function
of wind speed and wind direction
at the five heights, where the color
represents the eBC concentration.
The right column shows the
probability of wind arising from
the given wind direction, where
the color represents probability
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directions at different heights, confirming that local primary
emission plumes contribute to these events.

3.7 Backward trajectory cluster analysis

Backward trajectory cluster analysis has proven useful for
exploring relationships between air pollutants and their air
mass origins (Stein et al. 2015). In this study, 72-h backward
trajectories were calculated on an hourly basis in Metinfo
(Wang 2014) using GDAS data from the National Oceanic
and Atmospheric Administration (NOAA). The resulting

backward trajectories were then subjected to cluster analysis,
producing four clusters (C1–C4).

Figure 10 shows the 72-h backward trajectory clusters and
corresponding eBC concentrations at 100 m. During the sam-
pling period, the region was affected by a northeastern mon-
soon and thus dominated by air masses transported from the
northeast. The fractional contributions of the four clusters are,
in descending order: C4 (45%) > C3 (22%) > C1 (20%) > C2
(13%). The highest eBC concentrations are found in C3 (7.8 ±
3.4 μg m−3), followed by C1 (5.8 ± 1.5 μg m−3), C4 (5.6 ±
1.6 μg m−3), and C2 (5.6 ± 2.5 μg m−3). C3 originates from
inland central China, and C1 and C4 possess shorter paths
than do C2 and C3, implying lower wind speeds during air
mass transport. The results identify central China as an impor-
tant long-range contributor to eBC levels in Shenzhen, which
consisted with previous research on eBC in Shenzhen (Cheng
et al. 2018).

3.8 Absorption Ångström exponent variations

The absorption Ångström exponent (AAE) can be used to
quantify the wavelength-dependent absorption characteristics
of BC aerosols. AAE is calculated using light absorption at
two wavelengths via (Moosmüller et al. 2011):

AAE λ1;λ2ð Þ ¼ −
ln σabs;λ1
� �

−ln σabs;λ2
� �

ln λ1ð Þ−ln λ2ð Þ ð1Þ

In this study, 375 nm and 880 nm were used to determine
AAE375–880. Due to limited multi-wavelength data availability
at 200 m, the AAE375–880 at 350 m was used in the diurnal
variation analysis.
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Diurnal variations in AAE375–880 at 350 m are shown in
Fig. 11, in which the hourly average values range from 1.2 to
1.5. The AAE375–880 diurnal maximum occurs at 16:00, while
the diurnal minimum is found at 23:00. The local AAE375–880
minimum at 10:00 may arise from an increase in freshly emit-
ted BC particles during the morning rush hour (with a 1–2-h
delay due to the required vertical dispersion). The decrease in
AAE375–880 in the evening may be associated with a combi-
nation of evening rush hour and truck regulation (trucks are
banned from urban areas from 7:00 to 22:00). The increase in
AAE375–880 in the afternoon may be associated with the aging
of BC particles (Lack and Cappa 2010). The AAE375–880 at
350 m (1.31) is slightly higher than that at 200 m (1.26), as
shown in Fig. S5. Our hypothesis for the increase in AAE375–
880 with height was associated with particles aging during
vertical transport. Since the difference is relatively small
(1.31 vs. 1.26), more evidence is needed to verify this hypoth-
esis in future study.

4 Conclusions

In this study, eBC variations were measured at five altitudes
(2, 50, 100, 200, and 350 m) using the 356-m Shenzhen me-
teorological tower (SZMT). During the observation period,
the average eBC concentrations were, from 2 to 350 m, 6.6
± 3.6, 5.4 ± 3.3, 5.9 ± 2.8, 5.2 ± 1.8, and 4.9 ± 1.4 μg m−3, re-
spectively. The temporal variations in eBC at different heights
were well correlated, and the eBC concentrations decreased
with height; the ground-level eBC concentration was 1.2 times
that at 50 m, 1.4 times that at 100 m, 2.8 times that at 200 m,
and 4.9 times that at 350 m. At all five heights, the eBC
diurnal variations featured a bimodal pattern, with peaks
appearing between 09:00 and 10:00 in the morning and be-
tween 19:00 and 21:00 in the evening. The magnitude of the
evening peak decreased with height.

The eBC-to-PM2.5 ratio was relatively stable throughout
the campaign. eBC episodes were largely driven by low wind
speed, and, considering the increase in wind speed with
height, wind speed likely played a key role in the observed
eBC concentrations, among other meteorological factors. eBC
wind-rose analysis suggested that high eBC events arose from
different directions at different heights, confirming the contri-
bution of local primary emission plumes. In the backward
trajectory cluster analysis, air masses from central China ex-
hibitedmuch higher eBC levels than the remaining three back-
ward trajectory clusters. The AAE375–880 at 350 m showed
clear diurnal variations, which may have been associated with
both eBC aging and varying fractional contributions of freshly
emitted eBC. A slightly increasing trend in AAE375–880 with
height was observed.

Although meteorological towers enable time-resolved ver-
tical measurements, the vertical resolution is relatively coarse

(e.g., five heights in this study) and is limited by the availabil-
ity of observation decks of a tower. In contrast, battery-
powered UAV can provide higher vertical resolution (e.g.,
1~10 m) and better vertical coverage (e.g., ~ 1 km).
However, current battery technology limits the UAV flight
time of a single flight (less than 1 h), leading to poor temporal
coverage. Incorporating these two complementary approaches
for co-located measurements in the future study can provide
more insights into the characterization of BC vertical profiles.
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