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Abstract Rainfed agriculture in Sub-Saharan Africa accounts
for 95 % of the local cereal production, impacting hundreds of
millions of people. Early identification of poor rainfall con-
ditions is a critical indicator of food security. As such, moni-
toring accumulated seasonal rainfall gives an important mid-
season estimate of final accumulated totals. However, charac-
terizing the remaining uncertainty in a season has largely been
ignored by the food security community. This paper presents a
new technique describing rainfall conditions over the duration
of a crop-growing cycle by combining estimated rainfall-to-
date with potential scenarios for the remaining season based on
available satellite rainfall estimates, the common tool for rain-
fall analysis in Africa. The limited historical record provided
by satellite rainfall estimates using previous seasons provides
only a coarse view of likely seasonal totals. To combat this,
scenarios developed by bootstrapping dekadal data to create
synthetic seasons allow for a finer understanding of potential
seasonal accumulations. Updating this throughout the season

shows a narrowing envelope of seasonal totals, converging on
the final seasonal result. The resulting scenarios inform the
expectations for the final seasonal rainfall accumulation,
allowing analysts to quantify and visualize the uncertainty in
seasonal totals. Giving decision makers a tool for understand-
ing the likelihood of specific rainfall amounts provides addi-
tional time to enact and mobilize efforts to reduce the impact of
agricultural drought.

1 Introduction

Much of the developing world relies heavily on rainfed
agriculture. In Sub-Saharan Africa, rainfed farms account
for 95 % of the local cereal production (Wani et al. 2009),
employing 70 % of the people (Gelb and World Bank 2000;
Wani et al. 2009). When widespread drought strikes crops,
millions of people, mostly women and children, face hun-
ger. Such was the case in 2009 when poor rainfall contrib-
uted to an increase of 53 million food-insecure people in
Sub-Saharan Africa, according to the annual “State of Food
Insecurity in the World” publications by FAO (Food and
Agriculture Organization of the United Nations 2008,
2009). Fortunately, effective early warning in 2009 helped
to provoke effective food aid responses, totaling 3.6 million
metric tons1. Effective and early rainfall monitoring, based
on satellite rainfall estimates (Funk et al. 2003; Artan et al.
2007), plays an important role in guiding humanitarian
responses. These estimates, while imperfect (Dinku et al.
2008), capture the spatial patterns of rainfall, and can be
compared against previous years to identify anomalous
rainfall (Funk and Verdin 2009). As the satellite record
increases with time, there is a more robust archive of

1 http://documents.wfp.org/stellent/groups/public/documents/news
room/wfp223563.pdf.
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estimates to compare with current values. Exploiting this
historical information effectively can lead to more accurate
and timely drought early warning, saving lives and live-
lihoods, and limiting the economic disruptions produced
by extreme weather. This paper attempts to combine crop
phenology information and satellite-based rainfall estimates
to quantify crop-specific rainfall accumulations in a proba-
bilistic framework. Monitoring rainfall over the course of
the growing cycle of a crop provides a proxy for crop
performance that can be compared to other seasons in the
satellite record. Generating end-of-season results using rain-
fall from previous years to fill out a season helps to define
both the expectation and variability in the remainder of the
crop-growing season. This variability gives a sense for the
uncertainty related to the estimated expectation, an impor-
tant element for decision makers to determine the appropri-
ate response.

The following section describes the rainfall estimates and
how the season is parameterized using this rainfall. Then, a
brief evaluation of seasonal rainfall totals based on the
satellite rainfall record is described for Southern Africa,
highlighting regimes prone to rainfall-related crop yield
reductions. Section 3 details the scenario monitoring tech-
nique with an example from the 2009–2010 growing season
for Southern Africa. The results are displayed through a
series of maps presenting different characterizations based
on the scenario analysis. Section 4 steps through the season
for a single administrative zone of Zimbabwe, capturing the
narrowing cone of uncertainty, includes a validation of the
technique by comparing end-of-season conditions to the
forecast range developed in mid-season, and raises potential
issues going forward. The final section summarizes the
major findings and potential applications of this research.

2 Background

Current estimates show that nearly 160 million people are
undernourished in Sub-Saharan Africa (Food and Agriculture
Organization of the United Nations 2011). In Southern Africa,
more than one in three people face undernourishment. Food
aid to Sub-Saharan Africa in 2010 accounted for nearly two-
thirds of all global food aid, with 72 % of the received amount
coming in the form of “Emergency Aid” (World Food
Programme 2011). Providing tools for analysis to inform deci-
sions regarding the correct amount of aid and timeframe for
delivery to prevent undernourishment can directly impact
millions of lives.

The analyses presented in this report are based on the
National Oceanic and Atmospheric Administration (NOAA)
satellite rainfall estimates (RFE2) (Xie and Arkin 1997).
The RFE2 integrates daily rainfall observations, geostation-
ary infrared cold cloud duration rainfall fields, and passive

microwave rainfall retrievals to produce 0.1° daily grids of
rainfall for Africa. While satellite rainfall fields are associ-
ated with significant bias in areas of complex terrain (Dinku
et al. 2008), this bias can be reduced using high-resolution
climatologic rainfall fields (Funk et al. 2007) to track agri-
cultural crop water deficits (Funk and Verdin 2009).
Furthermore, in areas without much complex topography
such as Zimbabwe, the RFE2 has been shown to be a
preferred rainfall estimate (Dinku et al. 2008). The RFE2
drives a number of monitoring products used in the food
security analysis such as the standardized precipitation in-
dex (SPI) and water requirement satisfaction index (WRSI).
The ability to use RFE2 for quantitatively monitoring food
security in Africa is affirmed in literature (Tadross et al.
2005; Verdin et al. 2005; Sawunyama and Hughes 2008;
Tadesse et al. 2008).

Algorithms exist to utilize RFE2 data to establish some
seasonal parameters for Africa. Onset of rains establish the
start of season (SOS) for each location. Detection of SOS for
Southern Africa begins in September, which is the earliest
possible planting date. This research uses the technique
developed in West Africa (AGRHYMET 1996) and rein-
forced in WRSI literature (Verdin and Klaver 2002; Senay
and Verdin 2003), defining SOS as the first dekad receiving
25 mm of rainfall, followed by two dekads summing to
20 mm. While there may be local deviations from this as a
viable SOS, it is a widely supported approximation (Tadross
et al. 2005; Tadesse et al. 2008; Funk and Budde 2009;
Crespo et al. 2011; Harrison et al. 2011).

Rainfall data also factors into determining the length of
growing period (LGP). The LGP “for each pixel is deter-
mined by the persistence, on average, above a threshold
value of the climatological ratio between rainfall and poten-
tial evapotranspiration,”2 and was provided by the Famine
Early Warning Systems Network (FEWS NET). This iden-
tifies the portion of the year when water is typically avail-
able for crop growth, defined as the time of the year when
rainfall is sufficient to support plant development, as mea-
sured by evapotranspiration. The duration of this portion of
the year defines the LGP. For some northern areas of
Southern Africa, LGP calculated by this measure could be
in excess of 20 dekads, an unrealistic growing duration for
maize, the primary crop. Work on implementing the WRSI
with national meteorological and agricultural services in the
region resulted in feedback on LGP durations that more
accurately reflect the practices in the field. For the purposes
of this research, locations with a calculated LGP longer than
16 dekads have been set to 16 dekads (Fig. 1). This limit
comes from local input and common monitoring practices in
the region, as identified by regional scientists, and is

2 http://earlywarning.usgs.gov/fews/africa/web/readme.php?symbol=
cl.
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supported by seed catalogs suggesting maize varieties to be
grown in the region. This LGP work borrows heavily from
the WRSI crop model implemented by the U.S. Geological
Survey (USGS) (Senay and Verdin 2003) and FEWS NET.

TheWRSI is a measure of the fraction of the water demand
of a crop that is being met by soil moisture and rainfall (Frere
and Popov 1986; Senay and Verdin 2003; Verdin and Klaver
2002). The WRSI incorporates components of rainfall, poten-
tial evapotranspiration, and soil moisture. Additionally, a crop
coefficient specific to the crop type determines the water
demand of the crop for the phonological cycle, from the
SOS for the entire LGP. The WRSI is a leading indicator of
crop yield in monitoring African food production and is
therefore a logical product to use in defining growing season
characteristics for this study. It should be noted that for many
regions, there is a good correspondence between seasonal
rainfall totals, what this study investigates, and end of season
WRSI values (Verdin et al. 2005).

In this paper, climatological LGP is used to define the
duration of accumulation of rainfall following the onset of
rains. This interval varies with respect to the calendar each
year as a function of the SOS, but the duration, as defined by
LGP, is fixed for each location. This combination of onset
and duration defines a “season” in this study. Portions of
Southern Africa have complex seasonal calendars, some
involving multiple seasons. For the purposes of this

research, analysis occurs for a single season for which
monitoring begins in September and involves only one LGP.

Rainfall regimes in Southern Africa cover a wide spec-
trum of possibilities, from consistently very wet locations in
the north to highly variable rainfall in the south. The LGP
map presented in Fig. 1 gives an approximation of the
rainfall regimes by highlighting the duration for which
rainfall can support plant growth. The map of the coefficient
of variation, the standard deviation divided by the mean, for
rainfall during the growing period from the historical RFE2
record (2000–present; Fig. 2) captures the spatial patterns of
rainfall and the seasonal variability. This map shows that in
the northern areas of the region, there is little variability,
relative to the mean, on a seasonal scale. These locations
receive large amounts of rain, such that even substantial
seasonal rainfall anomalies are small with respect to the
average condition over the 16 dekads of accumulation. In
a practical sense, these areas receive enough rainfall to
support agriculture, and any food shortage is not rainfall
related. In the southern, semi-arid areas, the coefficient of
variation is large. This variability with respect to a relatively
small mean indicates a vulnerability of food production to
rainfall, as seasonal totals range from abundant rainfall,
easily capable of supporting agriculture, to a lack of rainfall,
insufficient enough to even establish a start of season. This
latter case is represented in the southwest fringes of the
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growing area in Fig. 2, where seasons that did not experi-
ence and onset of rains received 0 mm of rainfall for the
season. Applications of the techniques presented in this
paper are most critical in the semi-arid regions where the
success of crops is tightly tied to rainfall variability.

While the variability in potential seasonal totals at the
time of SOS for a location may be large, as the season
progresses, the range of potential totals shrinks due to the
reduced time for accumulation. Eventually, the season ends,
and no variability in seasonal totals remain. While monitor-
ing in-season rainfall values may foretell of bad seasonal
conditions, it is possibly more important to estimate the
likelihood of end-of-season values. For instance, it may be
that early season conditions are above average, but with
much variability remaining in the season, there is a high
likelihood of the season ending below average. However,
later in that season, while the relative performance of the
season has remained equally above average, there may be a
very small chance of rainfall ending below average.

Putting an envelope on the potential totals for a season,
and conveying this information to decision makers, leads to
increased warning of extreme end-of-season conditions.
This type of monitoring leads to improvements in the mo-
bilization of relief, better estimates of market conditions,
and the activation of mechanisms to mitigate the impacts of
poor rainfall and crop performance.

3 Methods and results

This section describes the techniques used to monitor the
growing season rainfall performance using the RFE2 history
and synthetic scenarios generated from a bootstrapping
technique for Southern Africa. The results of these techni-
ques, and an evaluation of their performance, are presented
for the 2009–2010 growing season. Scenarios are compared
against actual end-of-season rainfall totals to determine the
value of the proposed technique in capturing these values in
the middle of the season. By showing a direct application,
the reader ascertains the value of incorporating this analysis
in monitoring and the early warning potential of these tech-
niques. For the purpose of contextualizing the described
techniques, examples define the monitoring point as accu-
mulation through the third dekad of January 2010.

Monitoring the rainfall for the onset of rains is performed
by a number of organizations. Notably, this is done by the
USGS using the technique laid out by Senay and Verdin
(2003) and available for viewing on the Africa Data
Dissemination Server (ADDS).3 The results of the SOS for
the Southern Africa region for the 2009–2010 growing
season, as calculated from the RFE2, are shown in Fig. 3.
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3 http://earlywarning.usgs.gov/adds/.
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With the SOS determined from the RFE2 data, the num-
ber of dekads between the SOS and the monitoring point,
the time within the growing season that monitoring is taking
place (typically the most recent dekad), is determined. The
amount of time from SOS to the monitoring point varies in
space in accordance with the SOS, but can be defined as n
dekads, where n is greater than zero at locations where the
onset has occurred and cannot exceed LGP for a location. In
this study, seasons that did not experience an onset of rains
were excluded from the analysis. Summing the rainfall for n
dekads at each location gives the current season total.
Comparing this seasonal total to date, shown in Fig. 4, to
the mean accumulation for n dekads following the SOS
from previous years results in a relative performance of
rainfall for season-to-date. This relative measure, shown in
Fig. 5, averaged over the major crop production zones,
allows the user to determine how the current season meas-
ures up against the mean performance from previous years.

It should be noted that this measure does not directly
incorporate information related to early or late SOS.
However, it is exactly because of this variable SOS that this
measure yields more valuable information than comparing
against the accumulation from a fixed calendar period. For
instance, if the current year had an exceptionally early SOS,
to compare that against a similar calendar period from
previous years would likely show the current year as above

average, since in prior years, there was not enough rainfall
to initiate the SOS. Because of this, the location with the
early start may have an additional two or more dekads of
rainfall accumulation than the climatology would indicate.
Assuming that the rainfall accounting method captures
farmer planting and with the knowledge that seasonal rain-
fall totals are linked to crop performance, the resulting
monitoring tool—the season-to-date percent of normal
(PON)—improves on accumulations over calendar periods.

When monitoring rainfall for food security purposes, it is
valuable to compare rainfall accumulations over the entire
growing period of the crop to previous years. To fill season-
al totals for locations where n is less than the LGP, the
technique presented here utilizes the mean or median rain-
fall for the remainder of the season. Unlike the season-to-
date analysis, the projection of rainfall over the next LGP
minus n dekads (called “remaining period”) is the same
interval from previous calendar years. Combining rainfall
totals from the remaining period of previous years with the
season-to-date accumulation for the current season sums to
an estimate of seasonal total. To derive a season PON,
compare this seasonal estimate with the mean of previous
seasonal totals.

The described analysis leverages temporal and historical
characteristics to give more robust information about sea-
sonal conditions and projections. The term “outcome” is
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used to mean the total rainfall accumulated during an inter-
val, typically the LGP but occasionally a subset of that.
First, taking the mean accumulation over the remaining
period for all previous years gives the expected outcome
for the remainder of the season. Additionally, by using
previous years, it is possible to also estimate the range of
potential outcomes. Figure 6 shows the driest (lowest) and
wettest (highest) seasonal outcomes, expressed as WRSI,
using the previous years to fill the remaining season for the
2009–2010 growing season. In these maps, values close to
100 are areas where little water stress is experienced by the
crop, while values below 50 indicate water-related crop
failure. The difference between the maps is an indication
of how much uncertainty in the crop yield is still to be
determined by the rainfall remaining in the season. At
locations where the values in the driest and wettest scenarios
are similar, such as eastern Zambia (good crop condition) or
southern Zimbabwe (poor crop condition), there is little
uncertainty in the seasonal outcome, with respect to crop
performance. Conversely, where the values are very differ-
ent, such as northern Mozambique, there is a large range in
potential crop performance for the season. Early in the
season, the envelope of outcomes is quite large; however,
as the season progresses and the variability in the remaining
period contracts, the range of potential outcomes is similarly
reduced.

A different depiction of the information from previous
years counts the end of season PON values which are above
or below a threshold. Figure 7 presents this count informa-
tion using a trivariate map to express the likelihood of
different rainfall accumulations in a single figure. This
map uses a combination of rainfall estimates through the
end of January 2010 and rainfall estimates from the nine

(2001–2009) previous years beyond February to fill the
remainder of the season and develop a count of seasons
which end as dry (<85 PON), normal (>85 and <115
PON), or wet (>115 PON). Assessing how these nine com-
bined seasonal totals are distributed among the three classes
provides information about the likelihood of current season-
al totals being within one of these classes.

In describing how to interpret the map, it is best to start
with just one class on the legend. Starting at the bottom axis
of the triangle and moving towards the top vertex, there is an
increase in the normal rainfall category. The bottom layer
represents less than three of the nine events being in that
normal class, resulting in it being “least likely.” The next
layer up is the “somewhat likely” category, corresponding to
three to five events being in this class of seasonal total.
Finally, the top triangle is for when more than five of the
nine potential outcomes result in this “normal” class, mak-
ing it the “most likely” seasonal total for a location. When
this top level occurs, the other classes are in the “least
likely” category. Just as there is increasing likelihood of
the “normal” class as the user goes from the base axis to
the top vertex, there is also an identical relationship for the
“dry” class from the right axis to the lower-left vertex, and
for the “wet” class from the left axis to the lower-right
vertex. In this way, you can identify a categorical likelihood
of any class for a point on the map.

If the counts at a location are evenly split among each
class, then the distribution of outcomes in each category
(dry/normal/wet) is equal. However, where the counts are
predominantly in a single class, that location approaches an
exterior vertex of the trivariate legend, as indicated by the
more intense red/yellow/blue colors, with an anticipated
increase in likelihood of that category and a corresponding
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Fig. 6 Driest (left) and wettest (right) outcomes using previous years to fill out the remainder of the season
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decrease in the others. As the season matures and variability
in seasonal totals is reduced, all points on the map migrate
towards the exterior vertices of the legend, indicating in-
creased certainty of that class.

With the RFE2 product being limited to just over a
decade of rainfall estimates, there is an absence of an exten-
sive number of years to build a full array of potential
seasonal outcomes. One way to simulate a large number of
seasonal outcomes involves bootstrapping to build synthetic
estimates of the remaining season. Built in to this bootstrap-
ping technique is an assumption of independence between
dekads. In order to test the independence of RFE2 dekadal
data, detrended dekadal rainfall estimates during the rainy
season (December–March) were analyzed for autocorrela-
tion. The results of this showed that there is no statistically
significant correlation between detrended dekadal rainfall.
With the assumption of independence confirmed, filling out
a season by selecting the rainfall for each dekad from a
randomly selected prior year results in a synthetic season.
Doing this many times over results in an array of potential
seasonal outcomes, and provides the user with more infor-
mation about the envelope of possibility for the season.
More than just bounding the seasonal outcomes, using syn-
thetic seasons provides finer detailed information, when
compared to using just the nine previous seasons, about
the likelihood of a given value being exceeded in the

seasonal total. So, a user could estimate the PON rainfall
that will be exceeded 4 out of 5 years, or determine the
probability of rainfall greater than a certain PON. An exam-
ple of this is shown in Fig. 8 where 100 synthetic seasons
were created to map the value that will be exceeded four out
of five times (left, 20th percentile) and one out of five times
(right, 80th percentile). Where the values on the two maps
are similar, little variability/uncertainty in the potential sea-
sonal outcome exists. Where the value on the map on the left
(right) is greater (less) than 100 %, there exists a high
probability of rainfall being above (below) average. This
information could be very valuable to decision makers as it
leads to an early indication of locations which are likely
facing seasonal rainfall totals that may not be sufficient for
food production.

Use of previous years or synthetic seasons to fill out the
remainder of a season offers a valuable tool for assessing
seasonal rainfall. For instance, such analysis can offer likely
seasonal totals and their corresponding WRSI by using the
mean rainfall or even more tuned information by looking at
how rainfall from specific years, appended to current sea-
sonal totals, would result at the end of the growing season.
The analysis presented here also provides information on
the range of outcomes, and thus some indication of the
uncertainty remaining in the season at a location. So, while
the mean PON for two locations at the end of the season is
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the same, there would be a very different level of certainty if
one location had a range of outcomes from 70 % to 150 %
while the other ranged from 95 % to 105 %. Finally, the use
of bootstrapped synthetic seasons provides finer probabilis-
tic information regarding the likelihood of certain PON
values being exceeded. This can lead to an earlier determi-
nation of when the variability remaining in the growing
season will have minimal influence on the seasonal out-
come. All this information can lead to earlier and more
informed decisions regarding the expectations for seasonal
rainfall.

4 Analysis and discussion

This section will review a seasonal analysis for Southern
Africa to highlight some of the strengths of the proposed
technique, as well as show a practical example. Additionally,
it provides a discussion of some shortcomings, potential
improvements, and the sensitivity of this approach to the
varying parameters related to seasonal timing. At the end,
the reader will have a more thorough understanding of the
benefits of this approach as well as potential applications.

An instructive way to understand the value of the pro-
posed technique is to look at a single, homogenous growing
area in Southern Africa. For the purposes of this paper, a
province of northeast Zimbabwe (Mashonaland Central) has
been selected as the monitoring region. In practice, this
could be a watershed polygon, corresponding to agricultural
areas or any other area of interest. This region was selected
because it has low variability in the length of season at 14–
16 dekads, and also has a homogenous SOS for the 2009–
2010 growing season of the second dekad of November.

These characteristics facilitate convenient areal analysis be-
cause it is possible to look and treat these timing parameters
in a consistent way, rather than assessing fractions of the
area for different SOS and LGP.

Figure 9 presents this pixel-level information for the
whole administrative unit for the duration of the growing
season. The gray boxplot captures the interquartile range
and extremes using the preceding 9 years to fill out the
remainder of the season, while the black boxplot shows
the results generated using synthetic simulations to fill the
remainder of the season. Both plots show that in the early
part of the season, while the expectation for seasonal out-
come may change somewhat with each passing dekad, the
range of extremes and the interquartile range do not shrink
significantly. However, as this plot shows, the range of
outcomes reduces with each passing dekad, especially dur-
ing the second half of the season. The range based on
synthetic seasons before SOS (Nov-1) extends from 50 to
165 PON. By the second dekad of January, the halfway
point of the season, this reduces to 65–140 PON, but only
1 month later (a month of good rain), that range shrinks even
further from 85 to 125 PON.

The boxplots in Fig. 9 highlight the stability derived from
using the synthetic simulations when the history of rainfall
is relatively short. While the interquartile range and
extremes using the nine previous seasons available from
the RFE2 (gray boxplot) show considerable fluctuations,
the simulations (black boxplot) allow for a consistent de-
crease in both the interquartile range and the extremes.

The seasonal progress of the variability remaining in the
season is represented using a boxplot of synthetic scenarios
in Fig. 9. Before the season starts (first dekad of November),
analysis of Fig. 2 shows this area typically has a moderate
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seasonal variability relative to the mean, with a standard
deviation that is 20–30 % of the mean rainfall. This moder-
ate coefficient of variation is a function of the fairly large
variability in rainfall amount being somewhat offset by large
mean rainfall in this region. Once rains begin (November 2),
a combination of RFE2 estimated rainfall for the season-to-
date and synthetic rainfall scenarios create estimates of
seasonal total, and those totals are divided by mean rainfall
over the LGP from previous seasons.

At the end of January 2010, this region experienced eight
dekads since SOS, or just over half of the growing season.
Figure 5 displays this area as a mix of normal and below
normal conditions at this point in the season. Figure 9 con-
firms this with the median scenario (the black line in each
box) projecting out to just under 90 PON, with the inter-
quartile range extending from 80 PON to 95 PON. The
extent of the whiskers on the box at January 3 defines the
envelope of potential possibilities for the region based on
aggregated rainfall for the area. Figure 6 confirms the driest
previous year results in moderate crop performance, and the
wettest previous year results in crop performance that is
quite good, as indicated by the WRSI. Figure 7 reveals
much of the area to be “somewhat likely” for the dry class,
and “least likely” for the normal and wet classes. From the
gray boxplot in Fig. 9, we can estimate the counts of
combined seasonal accumulations using rainfall from previ-
ous years that the region shows four to five events resulting
in seasonal values below 85 PON and the wettest event
resulting in rainfall just greater than 115 PON at the
January 3 point on the x-axis, confirming the interpretation
of the trivariate map. Typically, it would be expected that
roughly half the time rainfall would be greater than 100

PON, and half the time it would be less. These counts
suggest that given the rainfall in the current season, there
is a half chance of rainfall being greater than 85 PON, and a
half chance of less than this value.

With this sort of information at the end of January, with
about half of the growing period remaining, an estimate for
Mashonaland Central could be made of rainfall most likely
being normal to below normal, with a chance of extreme
dryness. This sort of information, properly presented, could
let decision makers know that there is a moderate chance
that rainfall shortages will be a major factor in the crop
yields for this growing season, but also a reasonable chance
that things will be average. In fact, the seasonal rainfall
accumulations for this area had a consistent second half of
the season resulting in average to slightly below average
seasonal rainfall over much of this region.

This paper does not attempt to make specific forecasts
which can be validated in sense of looking at the difference
in millimeters, but rather in providing decision makers with a
range of seasonal totals or, more specifically, the probabilities
of specific seasonal totals being exceeded. The use of a single
previous year as an example serves as an introduction to the
proposed methodology, but does not capture probabilities of
outcomes. Using the suite of available previous years to help
define the likelihood of dry, normal, or wet outcomes, as in
Fig. 7, leverages multiple years, but is limited by the relatively
short history of the RFE2 dataset. Bootstrapped seasons at-
tempt to make up for this by generating many scenarios which
can be used to derive finer resolution probabilities of out-
comes as well as expand the range of events.

One limitation of this scenario development is that rain-
fall values are constrained to the working history of the

Fig. 9 Progression of
uncertainty in the remaining
season for Mashonaland
Central for the 2009/2010
growing season. Dekads are
shown on the x-axis, with the
median rainfall represented by
the line in the box, and the box
capturing the interquartile range
of scenarios for the remaining
season
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RFE2. While, in sum, a scenario built on the bootstrapping
technique may be more extreme than a seasonal total previ-
ously experienced—as displayed in Fig. 9 with the black
whiskers extending beyond the gray whiskers—the individ-
ual dekads may not be more extreme. A simple validation of
the tested growing year to determine how seasonal percent
of normal values compared to bootstrapped scenarios can
determine if scenarios provide realistic ranges of seasonal
outcomes.

The validation implemented here was designed to test
how well the scenarios generated after the third dekad of
January captured the final season outcomes. Locations
where the growing season was finished were excluded as
there was no scenario to test. Additionally, locations where
the historical minimum PON was greater than 80 % were
also excluded as this indicates that these areas are not
drought prone. The first step was to capture the final season
PON at each pixel by using the RFE2 data from the remain-
der of the season. Then, this PON was compared to the
scenarios generated at each pixel to determine the percentile
of that outcome based on the distribution of scenario out-
comes. The distribution of these percentiles is expected to
be uniform, indicating that the scenarios differentiate both
the range and distribution of outcomes. In fact, while the
distribution was not uniform, 49.28 % of pixels had out-
comes between the 25th and 75th percentile, 76.44 % of
pixels were between the tenth and 90th percentile, and
49.53 % of pixels were less than the median scenario.
What the scenario process failed to capture was the most
extreme tails of the distribution, with 7.11 % of pixels
falling outside the range established by the bootstrapping
technique. This disproportionate number of pixels outside
the scenario range is resulting from two linked factors. The
rainfall at some locations was extraordinary, unlike that seen
in the historical RFE2 record, and also that the bootstrap-
ping technique underestimates the actual variance of the
remaining season. The link between these two factors is
the relatively short period of RFE2, which cannot account
for extreme events not represented in the historical record
and also impacts the ability of the bootstrapping technique
to accurately estimate the true variance in rainfall.

The validation reveals that the 10-year record of the
RFE2 does not appear to be sufficient to indicate the mag-
nitude of extreme events. However, the scenario analysis,
when performed at approximately the midpoint of the sea-
son, does a good job of capturing median events and bound-
ing all but the most extreme seasonal events. The results of
this validation give decision makers confidence in probabi-
listic estimates for all but the most extreme of outcomes.

Use of the RFE2 to determine SOS, while serving as a
suitable approximation, may not accurately capture the true
planting dates. Feedback from working with local experts
implementing the WRSI has shown how changes in SOS

can impact the seasonal WRSI values, resulting in efforts to
capture information from field surveys to better represent
planting. The research presented in this paper suffers from
the same issues as the WRSI in this respect—if timing
(SOS, LGP) and rainfall fields are incorrect, the results will
be compromised—and better inputs should improve the
outputs. This work partially accounts for this by using the
consistent metric to determine SOS for each season rather
than a fixed date, and presents outputs as PON rather than an
absolute rainfall amount that may have a mean that is
biased. These two factors should minimize the impact of
incorrect SOS information because they attempt to represent
results in a relative manner.

Deriving LGP using the climatic data incorporates some
of the shortcomings associated with rainfall estimates as part
of this field. The LGP is used as a surrogate for crop cycle
length, which varies for different crop variety. As with the
SOS, applications of the WRSI have shown the sensitivity
of seasonal accounting to LGP and allows for user input
LGP. The research presented in this paper allows for adjust-
ments to the input LGP field, which can be tuned to local
crop-growing practices. However, as an approximation and
based on feedback from local agencies, the LGP used in the
implementation for the presented research adequately cap-
tures general growing trends across the region.

Overall, this technique gives decision makers an addi-
tional tool for monitoring the seasonal progress and antici-
pated outcomes of a season. The monitoring example of
analysis for rainfall through January shows how this tech-
nique results in both assessment maps describing the con-
ditions since the onset of rains, and also how to use
scenarios to bound potential outcomes and define likely
ranges. Displaying this information in a variety of ways
responds to different specific interests as well as answering
different questions about the season. The progression and
reduction of rainfall variability shown for Mashonaland
Central presents scenario information for a specific geo-
graphic area, and gives the user an idea about how rainfall
uncertainty is reduced throughout the season. The insight
described by these products stands to not only identify areas
facing abnormal conditions but also give decision makers
tools to determine the severity and certainty of conditions
earlier in the growing season.

5 Summary

While calendar periods provide a natural monitoring scale
for evaluating rainfall, for agricultural purposes, in which
the growing season varies with respect to the calendar year,
it is more valuable to monitor over the growing season of
the crop. The spatially varying nature of onset of rains and
duration of the crop cycle over wide areas necessitates
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tracking these variables for smaller regions—pixels, admin-
istrative zones, and homogeneous agricultural areas.
Comparing the current season with previous years gives a
relative performance, contextualizing the current season.
Projecting end of season values, using rainfall from previous
years or synthetic blends of previous years combined with
season-to-date totals, estimates the range of potential out-
comes. As the season progresses, the range narrows, prepar-
ing decision makers for likely outcomes. With an eye
towards agricultural season results, extreme early season
rainfall may be tempered by the large variability in the
remaining season. Conversely, a lack of remaining variabil-
ity gives an early indication of seasonal certainty. The tech-
niques presented here capture the rainfall conditions in such
a way as to frame them both against similar growing inter-
vals, rather than calendar intervals, and also play those
conditions out for the remainder of the season to give a
sense of the remaining uncertainty. Providing this informa-
tion to decision makers can assist in determining the timing
and amount of aid needed to mitigate food shortages result-
ing from poor rainfall performance.
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