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Abstract
Rain is often characterized using statistical approaches. Among the most common are temporal correlations and power (vari-
ance) spectra from time series measurements at a single location. Likewise, temporal observations over a network are used 
to deduce a radial distribution function and spatial power spectra. In such studies the potential effects of advection on the 
results are ignored. Moreover, observations involve filtering of the data. In time, this may involve sampling over a sufficiently 
long period so as to increase statistical confidence in the measurement. The same is also true for spatial observations over 
a network which must contain a sufficient number of instruments for a reliable characterization of the spatial variability. 
This also usually includes some form of averaging over time as well. Temporal averaging amounts to a low pass filter that 
attenuates contributions from higher frequencies. In contrast, the finite dimension of a network acts as a high-pass filter 
that tends to suppress the lower wavenumbers much larger than the dimension of the network. In this work the effects of 
both the advection of the rain and the observational filtering are considered for the simplest case of wide-sense statistically 
stationary and homogeneous rain along one-dimension for rain exponentially correlated in both space and time. It is found 
that advection and filtering can significantly shift the portrayal of the rain from the true structures. Consequently, rainfall 
characterizations from observations should not be over-generalized to other situations.

1 Introduction

Rain is obviously very important to humankind as both 
a sustainer of agriculture and also as a destroyer through 
flooding. Consequently, there has always been a lot of inter-
est in characterizing rain not only to maximize its agricul-
tural benefits through soil erosion management, irrigation 
and water storage but also to minimize its occasionally 
destructive impacts through flood abatement planning and 
forecasting on many different scales. This is not an easy task 
because rain is a multi-dimensional random variable in time 
and space. In order to reduce some of this variability, his-
torically, there has been an on-going search for commonali-
ties among various rain events. Because of its randomness, 
this has, naturally, involved investigations into the statistical 
properties of rain to include correlations in space and in time 

(Zawadzki 1973; Errico 1985; Berndtsson and Niemczyno-
wicz 1988; Crane 1990; Germann and Zawadzki 2002; de 
Lima et al. 2012; Wong and Skamarock 2016) as well as 
calculations of power (variance) spectra for different types of 
rain. This latter variable is of particular value when attempt-
ing to scale rain observations and outputs from numerical 
models to different dimensions (Ahrens and Beck 2008; 
Ochoa-Rodriguez et al. 2015). Hence, for such applications 
there have been many studies characterizing the spatial and 
temporal correlations of rain as well as their associated 
power spectra (e.g., Zawadzki 1973; Errico 1985; Berndts-
son and Niemczynowicz 1988; Bell et al. 1990; Crane 1990; 
Harris et al. 2001; Germann and Zawadzki 2002; Parodi 
et al. 2011; de Lima et al. 2012; Ochoa-Rodriguez et al. 
2015; Wong and Skamarock 2016).

Typically, correlations and power spectra are computed 
using an ensemble of observations at a single location or 
over a network of instruments. At a single location, observa-
tions are usually in the form of a time series which is then 
processed to derive, say, the temporal correlation function 
and power spectra. Over networks, observations are usu-
ally averaged in time in order to help reduce fluctuations, 
but then they are combined to yield estimates of the radial 
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correlation function (e.g. see Kostinski and Jameson 2000) 
and, in some cases, power spectra as well, particularly for 
rainfall scaling studies (Simpson and Woodley 1975; Kra-
jewski and Duffy 1988; Bell et al. 1990; Crane 1990; Short 
et al. 1993; Rosenfeld et al. 1994; Sauvageot 1994; Seed 
et al. 1999; Krajewski et al. 2003; Steiner and Smith 2004; 
Rebora et al. 2006a, b; Ciach and Krajewski 2006; Larsen 
et al. 2010; Tokay and Bashor 2010; Jaffrain and Berne 
2012; Jameson and Larsen 2016; Raupach and Berne 2016).

In reality, such studies have not only ignored the role of 
filtering of the observations, that is observation intervals as 
well as the finite dimension of networks act to filter the spec-
tral components of a time series or spatial series of observa-
tions as described in detail in (Jameson 2017). These studies 
have also ignored the complexity introduced by statistical 
heterogeneity and by advection of the precipitation. These 
are important features of rain as revealed in the analyses of 
radar data by Zawadzki (1973) and in the numerical simula-
tions of Leblois and Creutin (2013), for example. In such 
conditions the interpretations of power spectra are suspect. 
Specifically, when statistical heterogeneity is occurring, the 
power spectra lose all generality (Jameson 2019). The ques-
tion becomes, “When power spectra should be generally 
applicable because of statistical homogeneity, can advection 
and filtering undermine this generality?”

Throughout this work it is assumed that over small 
enough domains, the temporal and spatial changes in the 
rain are the consequence of the evolution of the rain in the 
vertical as well as its horizontal transport by advection lead-
ing to precipitation streaks such as those evident in Fig. 1a, 
b. In this case, then, spatial refers to a one-dimensional line 
to at the surface while temporal refers to a one-dimensional 
line in time. Figure 1a shows a thunderstorm with several 
distinct rain streaks (it is known that this is rain because 
the original photograph contained a rainbow that has been 
removed from Fig. 1a). Obviously, precipitation is a compli-
cated process involving different sedimentation velocities for 
different drop sizes spatially altered as well by vertical shear 
of the horizontal wind. In Fig. 1a, the vertical dimension 
is taken to represent what is happening in time so that the 
changes in optical brightness can be considered to be repre-
sentative of temporal variations of rain intensity in many of 
the individual rain shafts. This can also be observed as well 
in many of the time-lapse rain shaft videos that can be found 
on the internet. These temporal fluctuations are then being 
independently advected horizontally by the wind. The spa-
tial distribution of the rain streaks themselves is obviously 
representative of the spatial structure so that the rainfall rate 
at the surface represent both of these temporal and spatial 
structures.

Figure 1b is a plot of a steady-state pattern of rainfall rate 
produced by a fixed source (generating cell) of constant pre-
cipitation at the top of the plot dropping particles at a steady 

rate into a wind-sheared environment (from Fig. 3.3 and 
described in further detail in Jameson and Johnson 1990) so 
that the generating cell is moving the fastest. Consequently, 
the rain is stretched out in space to degrees depending upon 
the observation altitude as well as the advection speed of 
the generating cell. The patterns near the surface can then 
be identified as the statistically homogeneous spatial rain 
structure. Now suppose the generating cell rain was also 
changing, say, sinusoidally in time. The spatial pattern and 
mean value would then remain the same, but the temporal 
changes would appear as independent sinusoidal oscilla-
tions in the contour levels. Thus, in this work we consider 
time and space to be statistically independent. Hence, a 
time series of the rainfall rate at a location will reflect the 
advection of the intrinsic spatial structure (Fig. 1b) as well 
as the advection of temporal changes that are occurring in 
the generating cell, for example. The same will also be true 

Fig. 1  a A Colorado rain shaft observed while on College of 
DuPage’s Storm Chasing Trip 3. Photographer: Jared Rackley. Taken 
on May 27, 2014. Credit: NOAA Weather in Focus Photo Contest 
2015. https ://creat iveco mmons .org/licen ses/by/2.0/legal code. This 
picture has been cropped, converted to black and white and enhanced 
to emphasize the rain shafts. Note the vertical temporal structure 
(time) as well as the obvious horizontal structure. b A numerical 
simulation of the rainfall pattern produced by a generating cell with 
precipitation falling into a wind sheared environment as discussed in 
the text

https://creativecommons.org/licenses/by/2.0/legalcode
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for an observation network that, in many respects, can be 
considered to be just a large point measurement instrument.

In this study, then, we assume the rain to be statistically 
homogeneous and stationary.

This is useful because the effect of simple one-dimen-
sional advection can be addressed analytically. It is shown 
below that even in such simple conditions, advection and fil-
tering obscure the true correlation functions and power spec-
tra often sought for practical applications. That is, the results 
that suggest that while the measurements of correlations and 
power spectra are easy, their interpretations as intrinsic, true 
characterizations of the rain are difficult even in the absence 
of statistical heterogeneity and non-stationarity.

2  Theory

As just discussed, in this study we only consider wide-sense 
statistically stationary and statistically spatially homogene-
ous rain (both indicated by WSS). That is, the mean values 
and variance spectra do not depend upon where and when 
they are measured. To reiterate, consider a single instrument 
or network when there is no advection. The instruments, 
then, will only see the temporal variance at its location cor-
responding to the length of the observations as filtered by 
the time window. They will not see any of the spatial fluc-
tuations. Now consider when there is advection. A single 
instrument (rain gage or network) will now see temporal 
fluctuations induced by the passage of spatial structures (var-
iance) over the instrument (see Fig. 1) so that fluctuations 
in its time series now consists of two components, namely 
the intrinsic temporal fluctuations and those caused by the 
advection of the spatial fluctuations over the instrument.

As argued in the previous section, the spatial and tempo-
ral structures are considered to be statistically independent 
in this study. A physical reason for this independence is that 
the temporal structure is predominately the consequence of 
raindrop evolution so that the rainfall temporal changes are 
in the vertical. On the other hand, in the orthogonal hori-
zontal dimension, the spatial structure of the rain is largely 
governed by two-dimension dynamics of, say, the convec-
tion, as well illustrated in Fig. 1. Consequently, it is reason-
able to treat the rainfall structures in time and space as being 
statistically independent variables so that their variances are 
additive.

It then follows from basic Fourier transform the-
ory that if the total variance of a variable x is �2

x
(t) , it 

is also the integral over the power spectrum S so that 
�
2
x
(t) = ∫ Sx(�)d� , for example, while for another statisti-

cally independent random variable y is �2
y
(t) = ∫ Sy(�)d� . 

Then, since x and y are statistically independent, it that 
�
2
x
(t) + �

2
y
(t) = ∫ Sx(�)d� + ∫ Sy(�)d� = ∫ [Sx(�) + Sy(�)]d� 

so that the power spectra are also additive. This is true for 

spatial power spectra as well, of course. Moreover, if the data 
are wide-sense stationary and/or statistically homogeneous, the 
Wiener–Khintchine theorem (Wiener 1930; Khintchine 1934) 
shows that the power spectra and the autocorrelation functions 
are Fourier transform pairs so that the respective autocorrela-
tion functions of x and y also add.

Before beginning the more detailed theoretical discussion, 
for the convenience of the reader, a list of mathematical sym-
bols used in this section is provided in Table 1. Spatial power 
spectra are expressed in terms distance (wave number κ or its 
inverse wavelength λ) while time spectra are written in terms 
of temporal frequency ω. For spectra to be summed, they must 
have the same units so that for spatial spectra contributing to 
temporal spectra so that, κ → ω/v while for temporal spectra 
contributing to the spatial spectra, ω → κ × v. 

The purpose of this study was to consider such effects for 
one model of precipitation in which the independent temporal 
and spatial correlation functions are decreasing exponential 
functions. Other models are possible, of course, such as the 
modified exponential functions in Ciach and Krajewski (2006) 
and Jaffrain and Berne (2012), but since all correlation func-
tions for rain decrease with increasing lags, it can be argued 
that many of the effects derived using this model have general 
applicability even though some of the specifics will be model 
dependent. Moreover, we only consider localized advection so 
that it can be well represented by a constant velocity. Further-
more, for simplicity we will also only consider a one-dimen-
sional line of detectors so that the advection velocity v is then 
just the velocity component along that line.

With these considerations, the temporal and spatial correla-
tion functions are, respectively,

and

where τ is the temporal lag while � and � are the respective 
1/e decorrelation lengths. Each of these correlation func-
tions are then associated with their power (variance) spectra 
through the Wiener–Khintchine theorem vis a vis the Fou-
rier transform (Wiener 1930; Khintchine 1934) applicable 
to wide-sense statistically stationary and homogeneous data. 
Hence,

(1a)�(�) = exp
(
−
�

�

)
,

(1b)�(s) = exp
(
−
s

�

)
,

(2a)S(�) =
2�2

�(1 +�2�2)2

(2b)S(�) =
2�2

�(1 + �2�2)2
,
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where ω is the frequency (here we use per second) and κ is 
the wave number (here we use per meter).

When there is advection velocity v, the distance over 
which the 1/e temporal decorrelation occurs is �t = � × v 
while t = s/v. Consequently, (1a) becomes

so that

and, therefore, the total spatial spectrum becomes

On the other hand, when the advection of the spatial 
field (implicit in Fig. 1) is considered, then the time to 
decorrelation for that field will be Ts = L/v while t = s/v so 
that (1b) becomes

(3a)�t(s) = exp

(
−

s

�t

)
,

(3b)St(�) =
2�2

t

�(1 + �
2
t �

2)2
,

(4)Stotal(�) =
1

2

[
2�2

�(1 + �2�2)2
+

2�2
t

�(1 + �
2
t �

2)2

]
.

and

Therefore, the total temporal power spectrum becomes

Obviously, by the Wiener–Khintchine, the correlation func-
tions corresponding to (4) and (6) are then

(5a)�s(�) = exp

(
−

�

�s

)
,

(5b)Ss(�) =
2�2

s

�(1 +�2
s
�2)2

.

(6)Stotal(�) =
1

2

[
2�2

�(1 +�2�2)2
+

2�2
s

�(1 +�2
s
�2)2

]
.

(7a)�total(s) =
1

2

[
exp

(
−
s

�

)
+ exp

(
−

s

�t

)]
,

(7b)�total(�) =
1

2

[
exp

(
−
�

�

)
+ exp

(
−

�

�s

)]
.

Table 1  List of mathematical 
symbols D: characteristic dimension of a rain measurement network

L: 1/e spatial decorrelation distance
Lt: 1/e spatial decorrelation distance corresponding to T × v
s: spatial lag along the horizontal
S (κ): spatial power spectrum
S (ω): temporal power spectrum
St (κ): spatial power spectrum corresponding to the advection of the temporal power spectrum S (ω)
Ss (ω): temporal power spectrum correspond gin to the advection of the spatial power spectrum S (κ)
Stotal (ω): total power spectrum arising from the sum of the intrinsic temporal power spectrum and the 

advected spatial power spectrum
Stotal (κ): total power spectrum arising from the sum of the intrinsic spatial power spectrum and the 

advected temporal power spectrum
T: 1/e decorrelation time
Ts: 1/e decorrelation time corresponding to L/v
v: advection speed
t: temporal lag corresponding to s/v
ρ (τ): intrinsic temporal autocorrelation function
ρ (s): intrinsic spatial autocorrelation function
ρt (s): spatial autocorrelation function corresponding to the advection of ρ (τ)
ρs (τ): temporal autocorrelation function corresponding to the advection of ρ (s)
ρtotal (s): total spatial autocorrelation function corresponding to Stotal (κ)
ρtotal (τ): total temporal autocorrelation function corresponding to Stotal (ω)
κ: wave number
τ: time lag
ω: frequency
λ: wavelength
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Clearly, advection alters what is being measured both 
temporally and spatially. Moreover, as an additional com-
plication, temporal measurements are usually averaged over 
time in order to reduce fluctuations as discussed further in 
Jameson (2017). In its simplest and most common form, 
this is the convolution of box filter of sampling length T 
having uniform weighting applied to a time series so that its 
Fourier transform is the well-known Sinc function which, 
in this case, turns out to be Sinc(ω) = sin(ωT/2)/(ωT/2) as 
illustrated in Fig. 2a for T = 600 s. Because the Fourier trans-
form of a convolution becomes the product of the Fourier 
transform of the two convolving functions, the temporal 
power spectrum in its most complete form for this model 
with advection is then given by:

where Ts is a function of advection velocity, v as presented 
above.

On the other hand, as described previously, the spatial 
measurements are subject to spectral filtering by the spa-
tial dimension of the network (Jameson 2017) illustrated 
in Fig. 2b. For computational convenience this filter is well 
represented by the relation

where D is the dimension of the network. This filter is 
applied directly to the spatial power spectrum so that (4) 
becomes:

This latter expression becomes even more complex when 
we also consider that temporal observations are often first 
averaged before calculating spatial characteristics so that the 
Sinc function must also be applied to the time observation 
before first converting to spatial κ. The temporal filtering 
Sinc function component is then Sinc2

(
T�

2

)
→ Sinc2

(
Tv�

2

)
 

so that (10) becomes:

where T and v represent the sample interval mean advection 
velocity, respectively, along the line of instruments.

(8)

Stotal(�) =
1

2

[
2�2

�(1 +�2�2)2
+

2�2
s

�(1 +�2
s
�2)2

]
Sinc2

(
T�

2

)

2�
,

(9)Fs = [1 − Sinc2(4���
2)],

(10)

S
total

(�) =
1

2

[
2�2

�(1 + �2�2)2
+

2�2

t

�(1 + �
2

t
�2)2

]

×
[
1 − Sinc

2(4���
2)
]
.

(11)

Stotal(�) =

⎡⎢⎢⎢⎣
2�2

�(1 + �2�2)2
+

�2
t
Sinc2

�
Tv�

2

�

�2(1 + �
2
t �

2)2

⎤⎥⎥⎥⎦
×
�
1 − Sinc2(4���

2)
�
, Note that  Mathematica® reveals that the filtered power 

spectra in (8), (10) and (11) all have deterministic inverse 
Fourier transforms which we use in subsequent analyses but 
which are much too large to be expressed here, although one 
can also numerically estimate the inverse Fourier transforms 
quite readily in  Matlab®, for example.

Fig. 2  a The Sinc function filter in time for a sample period of 
T = 600  s used in the analyses. It is a low pass filter. b The spatial 
filter defined in Jameson (2017) but now with the correct x-axis and 
now also fit by the [1 −  Sinc2(4πDκ)] where D denotes the dimension 
of a network. It is a high-pass filter
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In the next section we consider all of the power spectra 
given by (4), (6), (8), and (11) as well as their correspond-
ing correlation functions as functions of advection veloci-
ties ranging from 0.1 to 9 m s−1. We begin by looking first 
at the effects of spatial advection on the temporal power 
spectra and correlation functions without any filtering as 
given by (6) and (7b). It is sufficient for the purpose here 
to present only examples having intrinsic 1/e decorrelation 
time T = 600 s and decorrelation distance L = 2000 m.

3  Examples of the effects of advection 
and of sampling

(a) Unfiltered temporal example using Eqs. (6) and (7b)

Figure 3a is a contour plot of the power (variance) spectra 
over the range of advection velocities. The most notewor-
thy features are the gradual upward slopes of the contours 
as the velocity increases as well as the bump of increased 
power at low frequencies and for velocities less than 1 m s−1. 
The reason for the second feature is that at low velocities, 
the movement of the spatial structures introduces longer Ts, 
i.e., introduces low frequencies, into (6). On the other hand, 
in contrast, as v increases, Ts decreases so that higher and 
higher frequencies play an increasingly important role.

These differences are also reflected in the power profiles 
presented in Fig. 3b. For the smallest advection velocity, the 
enhanced contributions at the lower frequencies are evident. 
In addition, the increasing importance of higher frequencies 
as the velocity increases is reflected in the change in shape 
as the contributions from lower frequencies decrease. Thus, 
the shapes of the power spectra depend upon the advection 
velocity.

This is also emphasized in Fig. 4 showing the fractional 
contribution by advection to the total spectral power. At 
low velocities, the contributions at lower frequencies are 
maximized, while those at higher frequencies are mini-
mized. The opposite is true at larger advection velocities. 
Here it is worth noting that if the advection velocity were 
exactly v = L/T, then advection causes no deviation from the 
intrinsic power spectrum. In these examples, this occurs at 
a v = 3.33 m s−1.

Of course, changes in the power spectrum are also 
reflected as changes in the correlation functions as illus-
trated in Fig. 5. Since lower frequency contributions tend 
to enhance correlation while those at higher frequencies 
tend to decrease correlation, the tendency toward greater 
values in Fig. 5a at lower advection velocities at longer lags 
is understandable. Figure 5a also illustrates the decrease in 
correlation at larger v as a downward slope of the contours 
as v increases. These features are also clearly evident in 
the correlation profiles in Fig. 5b. As explained above, for 

advection velocities less than about 3 m s−1, the times to 
decorrelation are significantly increased beyond the intrinsic 
value of 600 s, so that at a v = 0.5 m s−1, the time to decorre-
lation is 1615 s or about 2.6 times the intrinsic value. On the 
other hand, for velocities greater than that, the opposite is 
true so that at v = 9 m s−1, the decorrelation time is reduced 
to 367 s or only 0.6 the intrinsic value. Thus, advection can 

a

b

Fig. 3  a The logarithm (base 10) of the spectral powers (numbers on 
color bars) associated with temporal observations having an exponen-
tially decreasing correlation function exp (− τ/T) where τ is the time 
lag in combination with the advection at different velocities of spa-
tial structures having an exponentially decreasing correlation function 
exp (− s/L), where s is the separation distance. T and L select profiles 
are given in (b). Note that over 99.99% of the spectral power occurs 
for ω ≤ 0.01 s−1
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significantly alter the intrinsic power spectra as well as the 
associated correlation functions of temporal observations.

(b) Filtered temporal example using Eq. (8)

When the temporal spectra are filtered, there are also signifi-
cant changes to the power spectra and to the correlation func-
tions for the reasons illustrated in Fig. 2a. The Sinc function 
acts to filter out higher frequencies so that the total power 
level decreases and a greater portion of the power is distrib-
uted into lower frequencies. This is illustrated for a sample 
time T of 10 min in Fig. 6a where the reduction in the spectral 
powers at frequencies greater than around 0.02 s−1 is quite 
evident. Of course, this effect depends upon T so that when 
T is 1 min, the effect is to reduce those frequencies around 
0.1 s−1 and larger (Fig. 6b). Thus, the effects of filtering over 
1 min are less than those over a 10-min period. The results 
of applying Eq. (8) for 10-min sample filtering (T = 600 s) to 
the advected field in Fig. 3 are illustrated in Fig. 7.

Because of the filtering, oscillations appear and contribu-
tions from the higher frequencies show a sharper decline as 
shown in Fig. 7b than they did in Fig. 3b in which the latter 
closely followed the intrinsic profile. After filtering, they 
do not. Consequently, the relative importance of the lower 
frequencies increases, and this, in turn, impacts the correla-
tion functions illustrated in Fig. 8. While the contours in 
Fig. 8a look similar to those in Fig. 5a, the profiles in Fig. 8b 
quite clearly illustrates the significant differences with all 

correlation functions now lying above the intrinsic curve. 
Now the time to achieve 1/e decorrelation at 0.5 m s−1 and 
at 9 m s−1 are on the order of 7800 s and 1017 s, respec-
tively. Obviously, these values are much greater than the 
intrinsic value of 600 s. When T is only 60 s, these values 
are reduced somewhat because of less averaging thereby 
leaving more of the higher frequencies so that, for example, 
the time to decorrelation for v = 9 ms−1 reduces to 1006 s. 
Thus, in this example at least, whether T is 60 s or 600 s is 
not terribly important. What is important is that the filtering 

Fig. 4  Contours of the fraction (numbers on color bars) of the total 
temporal power spectra arising from the advection of the spatial 
structures presented in Fig. 3. Note that at low advection velocities, 
the advection of the spatial structures enhances low frequency contri-
butions, while the opposite is true at larger advection velocities

a

b

Fig. 5  a Contours of the correlation functions (numbers on color 
bars) associated with the power spectra in Fig. 3. As noted in Fig. 4, 
advection enhances lower frequencies and hence correlation at small 
velocities, while large velocities enhance larger frequencies and, 
hence, decorrelation as evident as well in the profiles in (b) at select 
velocities
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of the higher frequencies by time averaging can significantly 
impact the correlation functions and power spectra.

(c) Unfiltered spatial example using Eqs. (4) and (7b)

When considering the effects of the advection of the tem-
poral fluctuations over a network, the characteristic spatial 

scale becomes Lt = v × T. Consequently, when v is small, 
so is Lt . This means that there will be an increase in the 
importance of small-scale (large wave number) fluctua-
tions. On the other hand, when v is large, Lt is also large so 
that the importance of larger scales (small wavenumbers) 
increases instead. The reverse is also true. These effects are 
illustrated in Fig. 9 where the increase in the power contribu-
tion at small velocities and large wave numbers is contrasted 
with the increase in power contributions at large velocities 

Fig. 6  The ratio of filtered power to the unfiltered power (numbers 
on color bars) using the Sinc function for two filter times, namely 
of 600  s (a) and for T = 60  s (b). The attenuated frequencies only 
decrease from about 0.08  s−1 at 60  s down to 0.008  s−1 at 600  s. 
Detailed calculations show that for the conditions set in this example, 
these differences produce very small changes between the two corre-
sponding correlations. Consequently, in this rain model 1-min averag-
ing has just as much impact as 10 min of averaging

a

b

Fig. 7  a Logarithm (numbers on color bars) of the Sinc-filtered spec-
tral power contours for the temporal exponential correlation func-
tion along with (b) select profiles. Note the reduced power levels and 
steeper profile changes as compared to those in Fig. 3b as well as the 
oscillations introduced by the filtering. Note that over 99.99% of the 
spectral power occurs for ω ≤ 0.01 s−1
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and small wavenumbers. This alters the power spectra as 
indicated in Fig. 10a where the contours of power at large 
wavenumbers tilts upward at low velocities while the spec-
tral powers increase at small wavenumbers (larger scales) at 
large velocities. Hence, the spectral power profiles change 
with a clockwise rotation with increasing velocities.

Obviously, these changes will also be reflected in the 
spatial correlation functions as illustrated in Fig. 11. At 
v = 0.5 m s−1, the separation to 1/e decorrelation is now only 
808 meters as compared to the intrinsic value of 2000 m. 
In comparison, at v = 9 m s−1, that length has increased to 
3295 m as shown in Fig. 11b. Thus, just as for the temporal 

observations, and even with this simple model it is clear that 
advection can potentially cause profound deviations from 
the intrinsic spectral power and correlation function. These 
changes are even more complicated when the effects of fil-
tering are included as discussed next.

(d) Filtered spatial example using Eq. (11)

In spatial observations there are two sources of filtering. 
The most obvious is that of the finite dimension of the net-
work as illustrated in Fig. 2b in which the lower frequencies 
are strongly attenuated for wavelengths greater than about 
four times the network dimension (Jameson 2017). The less 
apparent filtering arises because of time averaging at the 
different locations in a network before being combined to 
estimate the spatial properties [e.g., see Ciach and Krajewski 
(2006)]. These two filters are given in (11).

The power spectra in Fig. 12 shows significant differ-
ences from the unfiltered example in Fig. 10 with a smaller 
contribution to larger wavenumbers at small velocities 
but a significant increase in the contributions to smaller 
wavenumbers at all velocities. This is quite apparent in 
Fig. 13. Such changes also significantly alter the asso-
ciated correlation functions. These are reflected in the 
correlation functions are illustrated in Fig. 14a where 
the upward slopes of contours for velocities greater than 

a

b

Fig. 8  Contours of the power-filtered correlation functions (numbers 
on color bars) in Fig. 7. Because the Sinc function is a low-pass fil-
ter, all the correlations are now enhanced beyond those in Fig. 5 and 
that of the intrinsic correlation function. Hence, observed correlation 
functions can be significantly affected by temporal averaging

Fig. 9  Contours of the fraction (numbers on color bars) of the spec-
tral power contributing to spatial observations from the advection 
of temporal fluctuations where κ is the wave number. In contrast to 
Fig.  4, advection now contributes power to higher wavenumbers at 
low velocities tending to increase decorrelation with increasing lag 
more quickly, while at larger velocities, the contributions of more 
power at lower wave numbers tend to enhance correlation
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v = 0.5 m s−1 are obvious. Furthermore, in Fig. 14b even 
the unique velocity of v = L/T of 3.3 m s−1 (approximately 
represented by the 3 m s−1 profile in the figure), now no 
longer traces the intrinsic correlation curve. Moreover, 
the separations to 1/e decorrelation exceed 4 km at all 
velocities. All the correlation curves assume much more 
parabolic shapes reminiscent of the curves in Fig. 6 of 
Ciach and Krajewski (2006) and of that in Fig. 5 of Jaffrain 
and Berne (2012). Unfortunately, detailed comparisons are 
unwarranted because T is not given in either study and, of 

course, the forms of the intrinsic correlation functions in 
those studies may well be different from the exponential 
functions assumed here.

(e) Accounting for advection velocity

As the above analyses indicate, it is important to try to 
account for precipitation advection. When available, obser-
vations of radar echo motion often provide a reasonable esti-
mate of the advection vector v. Perhaps one of the cleanest 

a

b

Fig. 10  a Contours of the logarithm of the spatial spectral power 
(numbers on color bars) combined with the advection of temporal 
fluctuations showing the enhanced powers at lower wave numbers and 
greater powers at larger κ at smaller velocities. These changes are also 
reflected in the profiles in b 

a

b

Fig. 11  a Contours of the correlation function (numbers on color 
bars) as a function of advection velocities showing the enhanced cor-
relation at larger velocities and b select correlation functions corre-
sponding to the spatial power spectra in Fig. 10. Note the enhanced 
decorrelation at v = 0.5  m  s−1 and the enhanced correlation at 
v = 9 m s−1 compared to the intrinsic spatial correlation function
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approaches to begin accounting for advection, then, is to use 
an estimate of v, and then using a vehicle or drone moving 
at v to carry a detector for collecting temporal observations. 
In that way, v = 0, and the temporal correlation function 
and power spectra could then be estimated independently. 
Moreover, the form of this function could be used as a proxy 
for the form of the correlation function corresponding to the 
spatial measurements from a network. Thus, for example, in 
this particular model, after computing Lt = |v| × T, one can 

then subtract the component exp(− s/Lt) in (7a, 7b) from 
the observed correlation function to derive the estimate of 
the actual spatial correlation function. Alternatively, one 
could also work with the power spectra after first dividing 
out the filters, which are known, and then using the Wie-
ner–Khintchine theorem to derive the correlation functions. 
Trying to account for advection, however, is not a trivial 
matter and it will require additional thought and research.

4  Concluding discussion

Because of the multi-dimensional, multi- stochastic char-
acter of rain, one of the greatest challenges in the study of 
rain has always been that of measurements. Yet rain affects 
many aspects of human existence from the inconvenience of 
rained-out picnics to devastating floods. Consequently, such 
observations, even if challenging, remain of great interest.

This study shows just how difficult and misleading even 
the apparently straightforward observations of temporal and 
spatial correlation functions and power spectra might be 
even in the absence of statistical heterogeneity and/or non-
stationarity. In particular, a simple mean velocity advection 
can produce a blending of the temporal and spatial statistical 
characteristics of the rain making it very difficult to extract 
the intrinsic, true spatial and temporal power spectra and 
correlational functions.

a

b

Fig. 12  a Contours of the logarithm of spatially and temporally fil-
tered spatial power spectra (numbers on color bars) as discussed in 
the text. Compared to Fig. 10a, the enhanced powers at lower wave-
numbers is obvious even at the very lowest advection velocities which 
still retain some contributions at higher wavenumbers as indicated in 
the profiles in b 

Fig. 13  Contours of the ratio of the filtered to unfiltered power spec-
tra (numbers on color bars) as a function of advection velocity are 
illustrated. Compared to Fig. 9a, the enhanced contributions at lower 
wavenumbers at all velocities as well as the suppression of contribu-
tions for κ < 0.01 m−1 are obvious. This produces significant enhance-
ments in the correlations as illustrated in the next figure
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While this study focuses on a specific rain model, the 
following are likely valid regardless of the precise forms 
of the intrinsic correlation functions in time and space as 
long as they decrease with increasing lags. Specifically, the 
advection of the spatial variance structures during temporal 
observations at a location can produce either enhanced cor-
relation and greater decorrelation times when the advection 
velocity is small, or it can lead to greater decorrelation and 
smaller decorrelation times when the advection velocity is 

substantial. The opposite appears to be true for the passage 
of temporal variance structures over a network, namely small 
advection velocities introduce higher spatial wavenumbers 
which lead to greater decorrelation, while larger velocities 
lead to enhance correlation because of increased contribu-
tions at lower wavenumbers. As illustrated in this work, 
these effects are also modulated by the filtering that occurs 
during the measurement process.

While it is important for a scientist to understand what 
is being measured, the original intent of this research was 
to find methods to circumvent the effects of advection on 
measurements of some of the basic statistical characteristics 
of rain, namely the spatial and temporal correlation func-
tions and their associated power (variance) spectra often 
used to scale rain observations or numerical model outputs 
(e.g., Errico 1985; Berndtsson and Niemczynowicz 1988; 
Bell et al. 1990; Crane 1990; Harris et al. 2001; Germann 
and Zawadzki 2002; Parodi et al. 2011; de Lima et al. 2012; 
Ochoa-Rodriguez et al. 2015; Wong and Skamarock 2016). 
During this work, however, it became clear that achieving 
that objective requires additional measurements.

Consider (8). By using sufficiently short sample times (T) 
the Sinc function approaches unity. Alternatively, it could 
also, in principle, be divided out of Stotal (ω). The second 
term in the summation in (8) disappears as v  → 0 so that 
measurements must be made when v is small. In all other 
cases one can attempt to estimate v during the course of 
measurements, perhaps by using a radar or lidar to track 
echo motion over the location during observations.

With regard to (11) one can in principle remove the filter-
ing effect of the grid size D by dividing it out of Stotal (κ). In 
this case, however, the only way for removing the effect of 
the sample time is to make it small so that the Sinc function 
goes to unity. Finally, the second term goes to zero as v → 
0, so that one must again either make observations when v 
is small or, preferably, estimate v as suggested above. The 
practicality of achieving all of these possibilities remains to 
be explored.
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a

b

Fig. 14  a Contours of the correlation function (numbers on color 
bars) versus the advection velocity. Note the upward slope of the 
contours for all velocities greater than about 1 m s−1. At all veloci-
ties, however, the enhanced correlation compared to the intrinsic cor-
relation function is evident in the profiles which are reminiscent, for 
example, of those found in Fig. 6 of Ciach and Krajewski (2006)
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