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An invited Editorial [1] comments on a recent work where we
used cardiac-gated phase-contrast magnetic resonance imag-
ing (PC-MRI) to estimate net volumetric cerebrospinal fluid
(CSF) flow rate in the cerebral aqueduct of individuals with
cerebral aneurysms with or without a previous subarachnoid
hemorrhage (SAH) [2]. The authors seemingly find daily CSF
flow rates in the order of liters heavy to digest, particularly as
they try to interpret the results in light of traditional concepts
about CSF production and resorption.

First, we are indeed aware that PC-MRI has methodologi-
cal weaknesses, which may become even more imminent by
net CSF flow measurements. However, our main objective by
reporting these data was to make the point that net CSF flow
can occur in both directions through the cerebral aqueduct and
in very different amounts in different patients. Even though
the precision level of our results may be up for discussion, we
can hardly see how the critique raised against our methodolo-
gy changes the essence of the findings by order of magnitude
and direction. The objections raised include too large slice
thickness (5 mm), use of different scanners, long acquisition
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time (6 min) making results susceptible to respiration, and
application of tailored VENC to measure high CSF flow ve-
locities. We think otherwise; slice thickness of 5 mm (and in-
plane resolution of 0.63 x 0.63 mm?) is quite average [3] and
should be acceptable at the aqueductal mid-level, where shape
is close to being tubular. The fact that our findings are not
machine-dependent should be considered a strength, not a
weakness. Longer imaging duration renders for averaging
out respiration effects, not increased influence. Correctly ap-
plied VENC for accurate measurements of high flow veloci-
ties in the center of the lumen should be preferred above
aliased flow, as high flow contributes more to flow volume
than slow flow in the periphery.

However, the main point being made in the Editorial [1] is
simply that “bucket flow” does not fit into a model where CSF
is produced exclusively by the choroid plexus within the ven-
tricles and resorbed exclusively at the arachnoid villi at the
brain surface. Harvey Cushing, by many considered as the
father of modern neurosurgery, coined the term “the third
circulation” in 1925 [4], in part based on the experiments by
his contemporary, Walter E Dandy, who observed hydroceph-
alus after plugging the foramina of Monro in one single dog
[5], and also the experiments by Lewis Weed [6], who had to
proceed from small CSF tracers to avoid “diffuse tissue
staining” within the brain to arrive at tracers large enough to
accumulate solely at brain surface (reviewed by [7]). Since
1925, many lines of research have provided evidence that “the
third circulation” represents a profound over-simplification
for describing the pathways of CSF. It is, however, under-
standable that this model, attractive by its simplicity, and in
which many scientists have invested much of their work, is
hard to abandon.

Today, we know that the subarachnoid space is continuous
with the perivascular and interstitial spaces of the entire brain and
spinal cord, not only in animals [8—11], but also in humans [12,
13] (Fig. 1a). To and from the perivascular space, water mole-
cules are continuously exchanged over the capillary wall [7],
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Fig. 1 The subarachnoid space communicates with the entire
extravascular compartment of the human brain (a) and has been
confirmed on cohort level in prospective studies [12—14]. The color
scale illustrates percentage increase in normalized T1 signal intensity in
brain of iNPH patient 24 h after intrathecally administered MRI contrast
agent (gadobutrol) as CSF tracer. In contrast to normocephalic reference
subjects (b), early and persistent CSF tracer reflux is a typical feature of
hydrocephalic patients diagnosed with iNPH (¢). Compared to pre con-
trast MRI (d), late scans obtained 24 h later demonstrate persistent ven-
tricular tracer reflux (a) and enhancement of periventricular white matter
(aand e)

which in human brain renders for a surface area for water ex-
change of up to 15-25 m? [15]. CSF and some of its molecular
constituents are excreted to blood over the capillary wall, re-
sorbed by true lymphatic vessels in the wall of dural sinuses
[16, 17], and/or drained along lymphatic pathways through
neuroforamina at the skull base [18]. In this respect, applying
Davson’s equation [19] to estimate to which extent all CSF is
resorbed at the arachnoid villi must be considered an anachro-
nism. That said, modeling studies demonstrated that the forces
involved in aqueductal CSF flow are orders of magnitude smaller
than those predicted by Davson’s equation [20, 21].
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Contrary to reference subjects (Fig. 1b), net retrograde
aqueductal CSF flow in patients has been indicated by direct
observations of early and persisting ventricular reflux of CSF
tracer (intrathecal MRI contrast agent) [12, 13] (Fig. 1c).
Ventricular tracer reflux precedes escape of tracer through
the ventricular ependyma (Fig. 1a, d, e), even though the mo-
lecular size of tracer is far above that of water. In this sense,
assuming that ventricular CSF would in its entirety be drained
by an inserted tube appears as a logical shortcut.

A major issue of general interest in science is observations
being put aside as flawed when not in line with a predefined
model. Thereby, bias is introduced as the established model is
exclusively receiving support. Science should rather be data-
driven, not governed by hypotheses that are almost predefined
as unalterable. According to the science philosopher Karl
Popper (1902-1994), true progress in scientific knowledge
goes through the method of falsification rather than verifica-
tion, or “enlarging the graveyard of falsified hypotheses”
(reviewed by [22]). This would, however, require both origi-
nal and independent thinking.

Publisher’s note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.
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